JUMO di 308
 Digital Indicator

B 70.1550.0
Operating Manual

Please read this operating manual before commissioning the instrument. Keep the manual in a place accessible to all users at all times. Your comments are appreciated and may assist us in improving this manual.
All necessary settings are described in this operating manual. Manipulations not described in the manual or expressly forbidden will jeopardise your warranty rights. Please contact the nearest subsidiary or the head office, should you encounter problems.

The manual is valid from instrument software version 217.01.01

It appears by simultaneously pressing the rem and $\boldsymbol{\Delta}$ keys (four-digit display; example: 01.01).

When accessing the inner parts of the unit and returning modules, assemblies or components, please observe the regulations according to EN 61340-5-1 and EN 61340-5-2 „Protection of electrostatic sensitive devices". Only use ESD packaging for transport.
Please note that we cannot accept any liability for damage caused by ESD.
ESD=Electro Static Discharge
1 Introduction 7
1.1 Description 7
1.2 Typographical conventions 9
2 Identifying the instrument version 11
2.1 Type designation 11
2.2 Scope of delivery 13
2.3 Accessories 13
3 Mounting 15
3.1 Mounting site and climatic conditions 15
3.2 Dimensions 15
3.3 Fitting in position 15
3.4 Removing the plug-in module 16
4 Electrical connection 17
4.1 Installation notes 17
4.2 Electrical isolation 19
4.3 Connection diagram 20
4.4 Termination resistor for the RS422/485 interface 25
4.5 Connection of the PROFIBUS-DP connector 26
5 Operation 27
5.1 Displays and controls 27
5.2 Level concept 28
5.3 Level inhibit 29
5.4 Entries and operator prompting 30
6 Operator level 31
7 Configuration 33
7.1 Analog inputs „INPUT" 35
7.2 Limit comparators „LIMITCOM" 42
7.3 Outputs „OUTPUT" 51
7.4 Binary functions „BINFUNCT" 54
7.5 Display / Operation „DISPLAY" 56
7.6 Interfaces „INTERFCE" 60
8 Extra codes 63
8.1 Math and logic module 63
8.2 Difference, humidity or ratio calculation 64
9 Retrofitting of modules 65
10 Appendix 67
10.1 Technical data 67
10.2 Alarm messages 72
11 Index 73

1 Introduction

1.1 Description

The digital indicator shows temperatures in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ and standard signals in plain text.

Inputs/outputs
The standard instrument is equipped with an analog input, two binary inputs, two relay outputs, two logic outputs as well as a voltage supply for two-wire transmitters.

Optional modules

Displays
$\begin{array}{ll}\text { Operation } & \begin{array}{l}\text { The instrument is operated and configured by four } \\ \text { keys; an optional setup program for a PC is available. } \\ \\ \\ \\ \\ \\ \\ \text { The user-friendly setup program provides additional } \\ \text { conation possibilities (e.g. math and logic }\end{array}\end{array}$
The instrument is operated and configured by four
keys; an optional setup program for a PC is available.
The user-friendly setup program provides additional
configuration possibilities (e.g. math and logic
The instrument is operated and configured by four
keys; an optional setup program for a PC is available.
The user-friendly setup program provides additional
configuration possibilities (e.g. math and logic
The instrument is operated and configured by four
keys; an optional setup program for a PC is available.
The user-friendly setup program provides additional
configuration possibilities (e.g. math and logic functions, display texts).

Special functions

Three extension slots can be equipped with additional inputs and outputs as well as interfaces.
The high-contrast, multi-colour LCD display for process value/text and operator prompting contains a five-digit 7 -segment display (showing the value or parameter setting) and an eight-digit 16-segment display with colour change (value, parameter name, channel name, process/alarm text as max. 24 character ticker or pseudo bargraph). Four additional switch position indicators are available for binary outputs (relay or logic).

The instrument offers 4 configurable limit comparators and an optional math and logic module (two virtual channels).
Extensive binary functions are available for the assignment of functions to the signals of limit comparators, logic and binary inputs.

1 Introduction

Special functions (continued)

Probes

Interface and electrical connection

The computation results of both math functions can be used for the different analog parameters (e.g. as value shown in the display).
Instruments with a second (optional) analog input allow the computation of differential, humidity or ratio computations by means of default formulas.

10 types of probes (RTD temperature probe, thermocouple, resistance transmitter, standard signals) and more than 20 linearisations are available for analog input configuration. Customer-specific linearisation with 10 interpolation points or by the entry of the polynomial coefficients is possible.

An optional interface (RS422/485 or PROFIBUS-DP) can be used for integration of the instrument in a data network.

The electrical connection is made at the back of the instrument by means of screw terminals.

Block

 structure

1 Introduction

1.2 Typographical conventions

Warning signs

Danger This symbol is used when there may be danger to personnel if the instructions are ignored or not followed correctly!
(a6) Caution This symbol is used when there may be damage to equipment or data if the instructions are ignored or not followed correctly!

Caution This symbol is used where special precautionary measures are required when handling components liable to damage through electrostatic discharge.

Note This symbol is used to draw your

Note signs
special attention to a remark.

Reference This symbol refers to further information in other operating manuals, chapters or sections.

* $\quad \begin{aligned} & \text { Action } \\ & \text { instruction }\end{aligned}$ This symbol refers to a description of an action to be performed.
The individual steps are marked by this asterisk, e.g.:
* Press ExT//

1 Introduction

Representation

Menu items Text referring to the setup program is shown in italics, for example: „Display/Operation".

Blinking display "1IDIDIDID"

2 Identifying the instrument version

2.1 Type designation

(1) Basic type

(3) Option slots

1.	2.	3.	Option slot	Max. number	
0	0	0	not assigned		Please note: The position of the options (slot 1, 2 or 3) is freely assignable,
1	1	1	Analog input 2 (universal)	1	however, the max. number must not be exceeded.
2	2	2	Relay (change-over)	2	
3	3	3	2 relays (n.o. make)	2	
4	4	4	Analog output	2	
5	5	5	2 binary inputs	2	
6	6	6	Solid state relay 1A	2	
7	7	7	RS422/485 interface	1	
8	8	8	PROFIBUS-DP interface	1	

(4) Voltage supply

23	AC $110-240 \mathrm{~V}-15 /+10 \%, 48-63 \mathrm{~Hz}$
25	AC/DC $20-30 \mathrm{~V}, 48-63 \mathrm{~Hz}$

(5) Extra codes

000	none
214	Math and logic module

2 Identifying the instrument version

View of option slots

2 Identifying the instrument version

2.2 Scope of delivery

- Display instrument
- Seal
- Mounting brackets
- Operating Manual B70.1550.0 in DIN A6 format

2.3 Accessories

Mini-CD	Mini-CD with demo setup program and PDF documents (operating manual and further documentation)
	Sales No.: $70 / 00448699$

PC interface

USB interface

Setup program
$\overline{\text { PC interface with TTL/RS232 converter and adapter }}$ (socket connector) for setup program
Sales No.: 70/00350260
$\overline{\text { PC interface with USB/TTL converter, adapter (socket }}$ connector) and adapter (pins)
Sales No.: 70/00456352
Setup program with startup function (recording and visualisation measuring data) Sales No.: 70/00493223

2 Identifying the instrument version

Setup program (continued)

Required hardware:

- PC Pentium IV or compatible
- 256MB RAM, 100MB free fixed disk memory
- CD ROM drive
- free serial or USB interface

Required software:

Microsoft ${ }^{1}$ Windows 2000/XP/Vista

1. Microsoft is a registered trademark of Microsoft Corporation

3 Mounting

3.1 Mounting site and climatic conditions

The conditions at the mounting site must meet the requirements specified in the technical data. The ambient temperature at the mounting site can range from $0 . . .55^{\circ} \mathrm{C}$ with a maximum relative humidity of $\leq 90 \%$.

3.2 Dimensions

3.3 Fitting in position

* Place the supplied seal on the instrument body.
* Insert the instrument from the front into the panel cut-out.
* From the panel rear, slide the mounting

3 Mounting

brackets into the guides on the sides of the housing.
The flat faces of the mounting brackets must make contact with the housing.

* Place the mounting brackets against the panel rear, and tighten them evenly with a screwdriver.

Mounting

 controllers back-to-back/ next to each other| Minimum spacing of panel cut-outs | | |
| :--- | :--- | :--- |
| | horizontal | vertical |
| without setup plug | 30 mm | 11 mm |
| with setup plug (arrow) | 65 mm | 11 mm |

Care of the front panel

The front panel can be cleaned with commercial detergents and cleaning agents. It has a limited resistance to organic solvents (e.g. methylated spirits, white spirit, P1, xylol, etc.). Do not use high-pressure cleaning equipment.

3.4 Removing the plug-in module

The plug-in module can be removed from its housing for servicing.

* Press together the
knurled surfaces on the front panel (left and right), and pull out the plug-in module.

When re-inserting the plug-in module, ensure that the latches (beneath the knurled areas) engage.

4 Electrical connection

4.1 Installation notes

- The choice of cable, the installation and the electrical connection of the instrument must conform to the requirements of VDE 0100 "Regulations on the Installation of Power Circuits with Nominal Voltages below 1000V" or the appropriate local regulations.
- The electrical connection must only be carried out by qualified personnel.
- The instrument shall be operated by mains protected with a branch circuitry overcurrent protection device not more than 20 Amps. For servicing/repairing a Disconnecting Device shall be provided to disconnect all conductors.
- The load circuit must be fused for the maximum relay current, in order to prevent the output relay contacts becoming welded in the event of a short circuit occurring at that point.
- Electromagnetic compatibility conforms to the standards and regulations cited in the technical data.
\Rightarrow Chapter 10.1 „Technical data"
- Run input, output and supply cables separately and not parallel to one another.
- Sensor and interface cables should be shielded cables with twisted conductors. Do not run cables close to current-carrying components or cables. Ground the shielding on one side.
- Do not connect any additional loads to the supply terminals of the instrument.

4 Electrical connection

- The instrument is not suitable for use in areas with an explosion hazard (Ex areas).

Only allow qualified personnel to carry out the electrical connection.

雨 Identify the instrument version by means of the type code.

Installation information on conductor cross

 sections and core ferrules| | Minimum
 cross-
 section | Maximum
 cross-
 section | Min.
 length of
 core-end
 ferrule |
| :--- | :--- | :--- | :--- |
| Without core-end ferrule | $0.34 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ | 10 mm
 (stripped) |
| Core-end ferrule without lip | $0.25 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ | 10 mm |
| Core end ferrule with lip
 up to 1.5mm | $0.25 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | 10 mm |
| Core end ferrule with lip
 above 1.5mm | $1.5 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ | 12 mm |
| Twin ferrule with lip | $0.25 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | 12 mm |

4 Electrical connection

4.2 Electrical isolation

4 Electrical connection

4.3 Connection diagram

Terminal strips on the back of the instrument:

Connection diagram in the setup program

The setup program includes a graphic connection diagram subject to updates depending on the configuration or equipment.
It also allows the preparation of a list of connections containing the hardware equipment and configuration of the connections.

Connection diagram and list of connections can be printed out.
\Rightarrow Setup program (Extras -> Connection diagram; or via Toolbar „IN/OUT")

4 Electrical connection

Assignment of terminal strip 3:

Voltage supply and binary outputs 1+2

4 Electrical connection

Assignment of terminal strip 2:

Analog input 1, binary inputs 1+2, and binary outputs 3+4

Position of terminal strip 1 and 2 (on the back of the instrument):

Terminal strip 1	$\begin{array}{l\|l\|l\|l\|} \hline \vec{\omega} \mid \vec{\sigma} \end{array}$ Option 3	- Vのण Option 2		$\begin{aligned} & \hline A\|\omega\| N \mid- \\ & \hline \text { Option 1 } \end{aligned}$		
Terminal strip 2						
Terminal strip 3	पडण	$\vec{\omega} \\|$	P 80	のणी -	23	

4 Electrical connection

Assignment of terminal strip 1 (option boards): Inputs, outputs and interfaces

The maximum number of option boards has to be taken into account (see Chapter 2.1 „Type designation").

Note numbering of the outputs (see Chapter 7.3 „Outputs „OUTPUT"").

4 Electrical connection

Assignment of terminal strip 1 (option boards) - continued: Inputs, outputs and interfaces

The maximum number of option boards has to be taken into account (see Chapter 2.1 „Type designation").

Note numbering of the outputs (see Chapter 7.3 „Outputs „OUTPUT""').

4 Electrical connection

4.4 Termination resistor for the RS422/485 interface

Setting
resistors

To ensure fault-free operation of several instruments in a line structure, their internal termination resistors must be activated at the start and end.

* Pull plug-in module out towards the front by pressing on the knurled areas
* Using a suitable aid (e.g. ballpoint pen), press all the white switches into the same direction

Bus termination active	$*$ Push all 5 switches down
	* Push all 5 switches up
No bus termination (ex-factory)	

* Re-insert the module into the housing

Check
 * Press the Pcm + $\boldsymbol{\Delta}$ keys

When checking the software version and the termination resistors activated, an additional decimal point appears behind the version number (top display).

Example of version number 01.01:
active: 51.0 i.
inactive: 1.01

4 Electrical connection

4.5 Connection of the PROFIBUS-DP connector

Mounting the adapter

* Identify option slot with the PROFIBUS-DP interface by means of the type code (in the case of pre-configured instruments)

In this example, the PROFIBUS-DP interface is in option slot 1.

Assignment of the 9 pole D-Sub socket

Pin at D-Sub socket		Pin at terminal strip 1: Signal (Example for option slot 1)	Designation
6	5	1: VP	Voltage supply, positive
3		2: RxD/TxD-P	Receive/Transmit data, positive
8		3: RxD/TxD-N	Receive/Transmit data, negative
5		4: DGND	Ground

To fit the D-Sub adapter, open the black housing of the adapter board; otherwise the connection screws in the instrument back are not accessible.

It is important to note that the adapter is fitted in the position shown above to ensure correct pin assignment.

5 Operation

5.1 Displays and controls

(1) 7-segment display (measured value display) five-digit, red; decimal place is configurable (automatic adjustment on display overflow)
(2) 16-segment display (24 character ticker, parameter name, level symbols) eight-digit, green or red; decimal place configurable
(3) Indication yellow; for four switch positions of max. four outputs (display lit = ON)
(4) Keys

The displays are configurable.
\Rightarrow Chapter 7.5 „Display / Operation „DISPLAY"""

5 Operation

5.2 Level concept

The parameters for instrument setting are organised at different levels.

	USER ${ }^{1}$		User level Up to eight freely chosen parameters
T. 201	OPERATOR		Operator level Process data
$\left\lvert\, \begin{array}{\|l\|l} \text { ExT/F/f }>2 \text { sec } \\ \text { or time-out } \end{array}\right.$	CONFIG		Configuration level - INPUT (analog inputs) - LIMITCOM (limit comparators) - OUTPUT (outputs)
Navigation principle			- BINFUNCT (binary functions) - DISPLAY (display) - INTERFCE (interfaces)

> Time-out If no key is pressed for 180 secs the instrument \quad changes back to normal display! \Rightarrow Chapter 6 "Operator level" \Rightarrow Chapter 7 "Configuration" \Rightarrow Setup program (Display/Operation -> Operation -> Operation time-out)

User data

 „USER"The setup program allows the display and editing up to 8 freely chosen parameters at this level.

$$
\begin{aligned}
\Rightarrow & \text { Setup program (Display/Operation -> User data -> } \\
& \text { Parameters 1...8) }
\end{aligned}
$$

The user can assign a symbol for the representation of each parameter. Otherwise, the default symbol will appear. All letters and numbers that can be presented by a 16 segment display are permissible.

5 Operation

5.3 Level inhibit

Access to the individual levels can be prevented.

Code	Configuration level
0	enabled
1	inhibited

* Enter code by pressing PCM and $\boldsymbol{\nabla}$ (simultaneously for $>5 \mathrm{sec}$).
* Change code by pressing PaM (display blinks!)
$*$ Enter code by pressing $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$. Ex-factory: all levels enabled.
* Return to normal display by pressing ExT/:/ or automatically after approx. 180 secs

The configuration level can also be inhibited via the binary function.
\Rightarrow Chapter 7.4 „Binary functions „BINFUNCT"""

5 Operation

5.4 Entries and operator prompting

When entries are made within the levels, the parameter symbol appears in the lower display.

* Select parameter by pressing $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$.
* Change to the entry mode by pressing $\mathbf{~ P C M}$ (lower display blinks!)
* Alter value by pressing $\boldsymbol{\Delta}$ and ∇

The value alters dynamically for as long as the key is kept pressed.

* Assign the value by pressing Pcm or automatically after 2 secs

or

* Cancel the entry with ExT/:

The value will be assigned.

To enter digits after the decimal point, the value of system point must be set accordingly (see page 57).
For the display of measurement values of the analog inputs, the digits after the decimal point can be set separately (see page 38).

6 Operator level

Access

6 Operator level

Process data
Process data is shown in the operator level in accordance with the configuration.

Symbol	Meaning
INPUT1	Measured value of analog input 1
INPUT2	Measured value of analog input 2 (only if available)
MIN INP1	Minimum value for analog input 1 (only if function is activated)
MAX INP1	Maximum value for analog input 1 (only if function is activated)
HOLD1	Hold value for analog input 1 (only if function is activated)
MAX INP2 2Maximum value for analog input 2 (only if analog input 2 is available and (only if analog input 2 is available and function activaten activated)	
HOLD2	Hold value for analog input 2 (only if analog input 2 is available and function activated)
MATHE1	Calculated result of mathematical formula 1 (only if mathematics module is available or if analog output 2 is available as a prerequisite for function „Humidity", "Difference" or „Ratio")
MATHE2	Calculated result of mathematical formula 2 (Same conditions as with MATHE1)

7 Configuration

Access

Levels can be inhibited
\Rightarrow Chapter 5.3 „Level inhibit"

Parameters are not displayed if the equipment level does not permit the function assigned to the parameter. Example: Analog output 2 cannot be configured if no second analog output is implemented in the instrument.
\square Some parameters can only be programmed through the set-up program. In the following tables, these are marked in the „Parameter" column with „(Setup)".

7 Configuration

Analog selector

With some parameters, you can choose from a series of analog values. To provide you with an overview, this selection is listed below.

Value	Description
0	deactivated
1	analog input 1
2	analog input 2
3	(reserved)
4	(reserved)
5	math 1
6	math 2
7	(reserved)
8	(reserved)
9	(reserved)
10	(reserved)
11	analog marker
12	minimum value input 1
13	minimum value input 2
14	(reserved)
15	(reserved)
16	maximal value input 1
17	maximal value input 2
18	(reserved)
19	(reserved)
20	hold value input 1
21	hold value input 2
22	(reserved)
23	(reserved)
24	any analog value
25	internal Pt100
26	sampling cycle time

7 Configuration

7.1 Analog inputs „INPUT"

Configuration

Analog inputs
Limit comparators
Outputs
Binary
functions
Display /
Operation
Interfaces

Depending on the instrument version, up to two analog inputs are available.
\rightarrow INPUT1 (analog input 1) \rightarrow
\rightarrow INPUT2 (analog input 2) \rightarrow

Sensor type

Parameter	Value/ Selection	Description
SENSOR	0	No function
	$\mathbf{1}$	RTD temperature probe in 3-wire circuit
	2	RTD temperature probe in 2-wire circuit
	3	RTD temperature probe in 4-wire circuit
	4	Thermocouple
	5	Resistance transmitter
	7	$0 \ldots 20 \mathrm{~mA}$
	8	$4 \ldots 20 \mathrm{~mA}$
	9	$0 \ldots 10 \mathrm{~V}$
	10	$2 \ldots 10 \mathrm{~V}$
	11	$0 \ldots 1 \mathrm{~V}$
		Factory set on analog input 2: no function

Factory settings are shown bold.

7 Configuration

	\rightarrow INPUT1 (analog input 1) \rightarrow \rightarrow INPUT2 (analog input 2) \rightarrow		
	Parameter	Value/ Selection	Description
Linearization	LINEAR	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Linear Pt100 DIN Pt500 DIN Pt1000 DIN KTY11-6 Pt100 GOST Pt 50 GOST Cu100 Cu50 Chromel-Copel W5Re-W26Re C W3Re-W25Re D NiCr-Con E Cu-Con T Fe-Con J Cu-Con U Fe-Con L NiCr-Ni K Pt10Rh-Pt S Pt13Rh-Pt R Pt30Rh-Pt6Rh B NiCrSi-NiSi N W3Re-W26Re Customised linearization For customised linearization, a maximum of 10 knee points can be implemented, or a 4th order polynomial function programmed (only through the setup program). For the „KTY11-6" linearization, the resistance is $2 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$ (setting only through the setup program and with 2-wire circuit).
Measurement offset	OFFSET	$\begin{aligned} & \hline-19999 \ldots \\ & 0 \ldots \ldots \\ & 99999 \end{aligned}$	The measurement offset is used to correct a measured value by a certain amount upward or downward. Examples: To enter digits after the decimal point, the value of system point must be set accordingly (see page 57). Special case: „2-wire circuit" If the input is connected to an RTD temperature probe in 2-wire circuit, then the lead resistance is set in ohms here.

Factory settings are shown bold.

7 Configuration

	\rightarrow INPUT1 (analog input 1) \rightarrow \rightarrow INPUT2 (analog input 2) \rightarrow		
	Parameter	Value/ Selection	Description
Scale low point	SCAL-LOW	$\begin{aligned} & -19999 \ldots \\ & 0 \ldots . . . \\ & 99999 \end{aligned}$	On transducers with standard signal and on resistance potentiometers, a display value is assigned to the physical signal (scaling). Example: $0-20 \mathrm{~mA} \xlongequal{ } \wedge-1500^{\circ} \mathrm{C}$. The range of the physical signal can be 20 \% wider or narrower without generating an out-ofrange signal. With a standard signal and customised linearization, the display range coincides with the linearization range (range of the x values). For the above example this means: Start $x=0$, End $x=20$, in order that the display range goes from 0 to $1500^{\circ} \mathrm{C}$. If the range of the x values is smaller, the display range is reduced accordingly.
Scale high point	SCAL-HI	$\begin{aligned} & -19999 \ldots \\ & 100 \ldots \\ & 99999 \end{aligned}$	
Filter time constant	FILTER	$\begin{aligned} & 0.0 \ldots \\ & 0.6 \ldots \\ & 100.0 \end{aligned}$	To adjust the digital input filter (time in seconds; $0.0 \mathrm{sec}=$ filter off). 63% of the alterations are acquired after $2 x$ filter time constant (2nd order filter) at a filter time step change. When the filter time constant is large: - high damping of interference signals - slow reaction of the process value display to process value changes - low limit frequency (low-pass filter)
Fine adjustment begin value	FINEADJB	$\begin{aligned} & -19999 \ldots \\ & 0 \ldots \\ & 99999 \end{aligned}$	These parameters are factory- deactivated. (Activation in the setup program > Non documented parameters; please contact the
Fine adjustment end value	FINEADJE	$\begin{aligned} & \hline-19999 \ldots \\ & 1 \ldots . . . \\ & 99999 \end{aligned}$	manufacturer.) These values cannot be accepted by another instrument. If these values have been altered by mistake, this setting has to be canceled using the procedure described under "Customised fine tuning". See description on page 39.

Factory settings are shown bold.

7 Configuration

	\rightarrow INPUT1 (analog input 1) \rightarrow \rightarrow INPUT2 (analog input 2) \rightarrow		
	Parameter	Value/ Selection	Description
Decimal point	DECPOINT	0 1 2 3 7	no digit after the decimal point one digit after the decimal point two digits after the decimal point three digits after the decimal point System point This setting is only valid for the display of measurement value of analog input 1 or 2 ! (Adjustment in the setup program under Display/Operation -> Display -> Channel name)
Correction value KTY at $25^{\circ} \mathrm{C}$	(Setup)	$\begin{aligned} & 0 \ldots \\ & 2000 \ldots \\ & 4000 \end{aligned}$	Resistance in ohms at $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$ for „KTY 11-6" linearisation Adjustment only possible in the setup program: -> Analog inputs -> Analog input 1 or 2

Factory settings are shown bold.
\rightarrow INPUT (analog inputs general) \rightarrow

Temperature unit Temperature unit		Selection	
	UNIT	0	deg. Celsius deg. Fahrenheit Unit for temperature values
Mains frequency Mains frequency	FREQUENC	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	50Hz 60 Hz Adaptation of the conversion time of the input circuitry to the supply frequency
Sampling cycle time Sampling cycle time	CYCLE-t	0 1 2 3	50 ms 90 ms 150 ms 250 ms

Factory settings are shown bold.

7 Configuration

Customised fine adjustment

The customised fine adjustment is used to correct the values displayed by the instrument. This may be necessary, for example, after a system validation, if the displayed values no longer coincide with the actual values at the point where the measurement is taken.

Using a reference measuring instrument, two measured values are determined which should be as far apart as possible (start value, end value). Ensure that the measuring conditions are stable. Enter the reference value found as the start value (FINEADJB) or end value (FINEADJE) on the instrument to be tuned.

Example
The temperature inside an oven is measured with an RTD temperature probe and displayed on an instrument. The reading on the instrument deviates from the actual temperature as a result of the sensor temperature drifting. At $20^{\circ} \mathrm{C}$ the instrument reads $15^{\circ} \mathrm{C}$, at $80^{\circ} \mathrm{C}$ it shows $70^{\circ} \mathrm{C}$ (exaggerated example for better understanding).

7 Configuration

Procedure:

* Step 1: The measurement carried out with the reference measuring instrument shows a constant oven temperature of $20^{\circ} \mathrm{C}$.
* Step 2: Enter value 20 as start value (FINEADJB) at the instrument.
* Step 3: The oven temperature is increased to $80^{\circ} \mathrm{C}$, the temperature is still controlled by a reference measuring instrument. The temperature must remain constant.
* Step 4: Enter the value 80 as end value (FINEADJE) at the instrument.

The following diagram shows the changes in the characteristic curve caused by the fine adjustment (point of intersection with the x axis as well as ascent)

7 Configuration

Special case: If the deviation between measured value and Offset

Repeated fine adjustment displayed value at the low and high measuring point is identical, an offset correction is sufficient (ascent remains unchanged). In this case, fine adjustment is not required.
\Rightarrow Measured value correction (offset), page 36
Reset the fine adjustment prior to repeating it. For this purpose, program start value (FINEADJB) and end value (FINEADJE) are given the same value. This automatically sets the start value to 0 and the end value to 1 .
(al) Always check the start value and the end value prior to starting fine adjustment.
Reset the fine adjustment, if they deviate from the factory-set values 0 (FINEADJB) and 1 (FINEADJE).

7 Configuration

7.2 Limit comparators „LIMITCOM"

Configuration

Analog inputs Limit comparators
Outputs Binary functions
Display / Operation Interfaces

Limit

 comparator functionsLimit comparators (threshold monitors, limit contacts) can be used to monitor an input variable (process value for the limit comparator) against a fixed limit value or another variable w (setpoint value for the limit comparator). When a limit value is exceeded, a signal can be output or an internal controller function initiated.

4 limit comparators are available.

Limit comparators can have different switching functions (lk1 to lk8). The switching differential HySt (HYSTERES) can be set and is, in all cases, symmetrical in relation to the limit value.

The hysteresis function (symmetrical, asymmetrical) defines the ranging of the switching differential around the limit value (adjustment in the setup program).

7 Configuration

Limit value AL The limit comparator functions Ik1 to Ik6 monitor the relative to setpoint input variable for a limit value AL (LIMVALUE) to be set, the absolute value depending on setpoint value w . value w

Ik1	symmetrical	
	asymmetrical, left	asymmetrical, right
Ik2	symmetrical	
	asymmetrical, left	asymmetrical, right

7 Configuration

Ik3	symmetrical
	asymmetrical, left asymmetrical, right
Ik4	symmetrical

7 Configuration

Ik5	symmetrical	
	asymmetrical, left	asymmetrical, right
Ik6	symmetrical	
	asymmetrical, left	asymmetrical, right

Example of a variable setpoint value

The measurement is monitored (analog input 1). The setpoint value w default value is manually entered via a potentiometer connected to analog input 2. For this, analog input 2 is selected as setpoint value (LCSETVAL).

7 Configuration

Fixed limit value AL

In the case of the limit comparator functions Ik7 and lk8, the measurement is monitored with respect to a fixed limit value AL (LIMVALUE).

Ik7	symmetrical ON	
	asymmetrical, left	asymmetrical, right
Ik8	symmetrical	
	asymmetrical, left	asymmetrical, right

7 Configuration

	\rightarrow LIMITC 1 (limit comparator 1) \rightarrow \rightarrow LIMITC 2 (limit comparator 2) \rightarrow \rightarrow LIMITC 3 (limit comparator 3) \rightarrow \rightarrow LIMITC 4 (limit comparator 4) \rightarrow		
	Parameter	Value/ Selection	Description
Function	FUNCTION	0 1 2 3 4 5 6 7 8	no function lk1 lk2 lk3 lk4 lk5 lk6 lk7 lk8
Limit value	LIMVALUE	$\begin{aligned} & -19999 \ldots \\ & 0 \ldots \\ & 99999 \end{aligned}$	Limit value to be monitored (see limit comparator functions Ik1 ... Ik8: limit value $A L$)
Hysteresis	HYSTERES	$\begin{aligned} & 0 \ldots 1 \ldots \\ & 99999 \end{aligned}$	Switching differential in respect to the limit value (see limit comparator functions lk1...lk8: hysteresis HySt)
Fixed limit comparator setpoint value	FIXLCVAL	$\begin{aligned} & -19999 \ldots \\ & 0 \ldots . . . \\ & 99999 \end{aligned}$	A fixed setpoint value can be set for the limit comparator (lk1...Ik6). The limit comparator setpoint value LCSETVAL must be deactivated for the fixed setpoint value to be active.
Action/ Range response	ACT-RESP	0 1 2 3	absolute/off relative/off absolute/on relative/on Defines the switching action of the limit comparator and the switch status for an overrange or underrange (signal at „Out of Range"). See description on page 49.
Switch-on delay	ON DELAY	0... 9999	Delays the switch-on edge by a definable time period (time in seconds).
Switch-off delay	OFFDELAY	0... 9999	Delays the switch-off edge by a definable time period (time in seconds).

Factory settings are shown bold.

7 Configuration

	\rightarrow LIMITC 1 (limit comparator 1) \rightarrow \rightarrow LIMITC 2 (limit comparator 2) \rightarrow \rightarrow LIMITC 3 (limit comparator 3) \rightarrow \rightarrow LIMITC 4 (limit comparator 4) \rightarrow		
	Parameter	Value/ Selection	Description
Acknowledgement	ACKNOWL	0 1 2	no acknowledgement acknowledgement only possible with the limit comparator inactive acknowledgement always possible For setting with acknowledgement, the limit comparator is latching, which means, it remains "ON" even when the switch-on condition is no longer present. The limit comparator must be reset by pressing the + ExIT/F) keys or a binary signal.
Pulse time	PULSE-t	0... 9999	The limit comparator resets automatically after an adjustable time period (time in seconds).
Limit comparator actual value	LCACTVAL	(analog selector) Analog input 1	Input variable for limit comparator (see limit comparator functions lk1...Ik8: Measurement) \Rightarrow „Analog selector", page 34
Limit comparator setpoint value	LCSETVAL	(analog selector) deactivated	Setpoint value for limit comparator (see limit comparator functions Ik1 ... Ik6: setpoint value w) \Rightarrow „Analog selector", page 34 When LCSETVAL is deactivated, parameter FIXLCVAL can be used to enter a fixed default setpoint value.
Hysteresis function	(Setup)	symmetrical asymmetrical left asymmetrical right	Switching differential ranging around the limit value Adjustment only possible in the setup program: -> Limit comparators -> 1 ... 4

Factory settings are shown bold.

7 Configuration

Switching action

Switching action means: limit comparator reaction to a limit value or setpoint value change as well as to Power ON.
„absolute" switching action:
At the time of the change, the limit comparator reacts according to its function.
„relative" switching action:
Following Power ON, the limit comparator remains in its „OFF" switch position, even if the process value is within the switch-on range.

If the setpoint value or the limit value is altered while the limit comparator is in its "OFF" position, which leads to the actual value now being in the switch-on range, the limit comparator still remains in the „OFF" switch position.

The limit comparator will only resume operation according to its function when the process value is outside of the switch-on range. In other words: it remains "OFF" until the process value has again reached the switch-on range.

See the following example:

7 Configuration

```
Example of the
switching
action
„relative":
Monitoring the actual value \(\times\) with function Ik4, change of setpoint value \(\mathrm{w}_{1} \rightarrow \mathrm{w}_{2}\)
a) Start situation:
Limit comparator „OFF", as actual value x not in the switch-on range (grey area).
```


b) Situation at the time of the setpoint value change: Limit comparator remains „OFF", although the actual value is now in the switch-on range.

c) Actual value has left the switch-on range:

Limit comparator operates according to its function again, which means it remains "OFF" until the actual value has reached the switch-on range again.

7 Configuration

7.3 Outputs „OUTPUT"

Configuration

Analog inputs
Limit comparators
Outputs
Binary functions
Display /
Operation
Interfaces

Configuration of the instrument outputs is subdivided into analog outputs (OUTANALG; max. 2) and binary outputs (OUTLOGIC; max. 10). Binary outputs are relays, solid-state relays and logic outputs. Display and numbering of the outputs depends on the assignment of the option slots.

The switching states of the binary outputs $1 . . .4$ are shown in the display (K1...K4).

Numbering of the outputs

Standard for all instrument versions:
(Binary) output 1 = relay
(Binary) output $2=$ relay
(Binary) output 3 = logic output
(Binary) output $4=$ logic output
Extended numbering of the option slots:

Option slot	Plug-in board with 1 analog output	Plug-in board with 1 binary output (relay or solid-state relay)	Plug-in board with 2 binary outputs (2 relays)
Option 1	Output 5	Output 5	Output 5+8
Option 2	Output 6	Output 6	Output 6+9
Option 3	Output 7	Output 7	Output 7+10

7 Configuration

Binary
output 1
...
Binary output 10

Inversion
\rightarrow OUTLOGIC (binary outputs) \rightarrow

	Parameter	Value/ Selection	Description
Binary output 1	OUTPUT 1	0	no function
		,	Binary input 1
		2	Binary input 2
		3	Binary input 3
\cdots	\ldots	4	Binary input 4
Binary output 10	OUTPUT10	5	Binary input 5
		6	Binary input 6
			Binary input 7
		8	Binary input 8
		9	Limit comparator 1
		10	Limit comparator 2
		11	Limit comparator 3
		12	Limit comparator 4
		13	Logic formula 1
		14	Logic formula 2
		15	Binary marker
		16	(reserved)
		17	(reserved)
		18	(reserved)
Inversion	(Setup)	active inactive	Function inverted
			Function not inverted
			Inversion also affects function „Deactivated", i. e. the output is always activated!
			Adjustment only possible in the setup program: -> Outputs -> Binary outputs

Factory settings are shown bold.

7 Configuration

	\rightarrow Output $6 \rightarrow$ \rightarrow Output $7 \rightarrow$				
	Parameter	Value/ Selection	Descripti		
Function	FUNCTION	(analog selector) deactivated	Function \Rightarrow „Analog	he outpu elector",	$\text { e } 34$
Type of signal	SIGNAL	0 1 2 3	$\begin{aligned} & \hline 0 \ldots 10 \mathrm{~V} \\ & 2 \ldots 10 \mathrm{~V} \\ & 0 \ldots 20 \mathrm{~mA} \\ & 4 \ldots 20 \mathrm{~mA} \\ & \text { Physical ou } \\ & \hline \end{aligned}$	t signal	
Range error	RANG ERR	0... 101	Output sig an overra 101=last	(in \% of or underr put signal	e value range) for nge.
Scale low point	SCAL-LOW	$\begin{array}{\|l} -19999 \ldots \\ 0 \ldots \\ 99999 \end{array}$	A value ran assigned to ex-factory	of the ou physical tting corre	put variable is utput signal. The ponds to an output
Scale high point	SCAL-HI	$\begin{aligned} & -19999 \ldots \\ & 100 \ldots . . . \\ & 99999 \end{aligned}$	variable with Example: Via an anal temperatur is to be out i.e.: 150 ... Scale low p		ge of 0... 100. $\begin{aligned} & \ldots 2 \mathrm{~mA}), \text { a } \\ & \text { ween } 150 \ldots 500^{\circ} \mathrm{C} \end{aligned}$ 20 mA cale high point: 500
Offset	(Setup)	$\begin{aligned} & -19999 \ldots \\ & 0 \ldots \\ & 99999 \end{aligned}$	The offset is signal by a downwards. Examples: Original value 294.7 295.3 To enter dig value of syst accordingly Adjustment program: -> Outputs	used to co ertain amo Offset $+0.3$ - 0.3 s after the m point (see page nly possib Analog out	rect the output nt upwards or Output value 295.0 295.0 decimal point, the ust be set). in the setup tputs

Factory settings are shown bold.

7 Configuration

7.4 Binary functions „BINFUNCT"

Configuration
Analog inputs Limit comparators Outputs

Binary

 functionsDisplay /
Operation
Interfaces

Switching

 actionBinary signals of binary inputs, limit comparators and logics can be assigned functions.

The following binary functions react to switch-on edges:

- Acknowledge limit comparator
- Reset min/max value
- Tare function
- Reset tare function
- Go to the next scroll parameter

All remaining binary functions react to switch-on or switch-off states.

7 Configuration

	Parameter	Value/ Selection	Description
Binary input 1	B-FUNCT1	0	no function Key inhibit Level inhibit Display off (keys inactive) Acknowledge limit comparator Hold function Reset min/max value Tare function Reset tare function Text display Go to the next scroll parameter Colour change Level inhibit: The configuration level is inhibited. Tare function: The tare function is used to zero the display value of the analog inputs and values (math) derived from these inputs. The function is reset after Power ON. Text display: With the binary function active, a configurable text appears on the lower display: This text can be uniquely defined (only through the setup program).
		2	
Binary input 8	B-FUNCT8		
Limit comparator 1	LCFUNCT1	6	
Limit comparator 4		10	
	LCFUNCT4	11	
Logic 1	L-FUNCT1		
Logic 2	L-FUNCT2		

Factory settings are shown bold.

Further functions via setup program

Several binary functions can be combined with each other in the setup program. The text display can be configured as an information or as an alarm text (with colour change).
(a) No information or alarm texts are shown when the instrument is in the USER, OPERATOR or CONFIGURATION level.

7 Configuration

7.5 Display / Operation „DISPLAY"

Configuration

Analog inputs
Limit comparators
Outputs
Binary functions

Display /

Operation
Interfaces

Display 1
(upper display)

Display 2
(lower display)

Display type (lower display)

Display colour (lower display)

The values to be shown, the type of presentation (e.g. text, pseudo bargraph) and the display settings (e.g. colour, brightness) can be configured under this menu item.

Furthermore, start delay after Power ON, operation time-out, level inhibit and function key assignment can be defined here.

Parameter	Value/ Selection	Description
DISPLAY1	(analog selector) Analog input 1	Display value for the upper display \Rightarrow „Analog selector", page 34
DISPLAY2	(analog selector) deactivated	Display value for the lower display \Rightarrow „Analog selector", page 34
DISPTYPE	0 1 2 3 4	Value Channel name Process display text Unit and value display Pseudo bargraph display Channel name (max. 8 characters), process display text (max. 24 characters), unit (max. 2 characters) as well as bargraph scaling can only be entered through the setup program. For better legibility we recommend the exclusive use of capitals, numbers as well as the following special characters: $0 \% / \backslash()+-<>_{-} \mid,$ Enter a space at the end of text comprising more than 8 and less than 24 characters.
COLOUR	0	green red

Factory settings are shown bold.

7 Configuration

	Parameter	Value/ Selection	Description
Ticker time (ticker)	TICKER-t	0 1 2 3 4 5 6 7 8 9 10	100 ms (fast ticker) 200 ms 300 ms 400 ms 500 ms 600 ms 700 ms 800 ms 900 ms 1000 ms 1100 ms (slow ticker)
Decimal point (system point)	DECPOINT	0 1 2 3	no digit after the decimal point one digit after the decimal point two digits after the decimal point three digits after the decimal point If the value to be displayed cannot be shown including the programmed decimal point, the number of digits after the decimal point are automatically reduced. If subsequently the measured value contains less digits, the reading appears with the decimal point as programmed.
Brightness	BRIGNESS	0... 5	(bright) 0... 5 (dark)
Time-out	TIMEOUT	$\begin{aligned} & 0 \ldots 180 \ldots \\ & 255 \end{aligned}$	Time period in seconds, after which the instrument automatically returns to normal display if no key is pressed.
Start delay time	START-t	0... 3600	Start delay time in seconds after Power ON
Min/max mode	MIN-MAX	0 1 2 3	Min/max mode inactive Min/max mode active for analog input 1 $\mathrm{Min} / \mathrm{max}$ mode active for analog input 2 $\mathrm{Min} / \mathrm{max}$ mode active for analog input 1 and 2
Hold (Value)	(Setup)	active not active	Hold mode for analog input 1 or 2 With the hold mode active, the current measurement can be saved with function key "F" or the binary function. The saved value can be shown in display 1 or 2 as well as in the scroll mode. Adjustment only possible in the setup program: -> Display/Operation -> Display -> Min-Max/ Hold

Factory settings are shown bold.

7 Configuration

	Parameter	Value/ Selection	Description
Scroll time	SCROLL-t	0... 255	Scroll mode change-over time in seconds; 0 = scroll mode inactive 255 = scroll mode stop With the scroll mode active, keys \triangle and $\boldsymbol{\nabla}$ can be used to select the next or the previous scroll parameter. If the scroll mode was stopped, further actions are only possible with this key. Adjustment of the scroll parameters only possible in the setup program: -> Display/Operation -> Display > Scroll mode The parameter names are shown in the lower display. Example: INPUT1 = Channel name, analog input 1 MIN INP1 = Min. value, analog input 1 MAX INP1 = Max. value, analog input 1 HOLD1 = Hold value, analog input 1
Function key „F"	F-KEY	0 1 2 3 4 5 6	no function Apply hold value Tare function Reset tare function Reset min.-max value Scroll mode stop LK acknowledgement Keep the function key pressed for at least 2 seconds to ensure that the function will be performed.
Level inhibit	(Setup)	none Configuration level	Access to the configuration level can be inhibited. The setting is independent of binary function „Level inhibit". Setting in the setup program: -> Display/Operation -> Operation See also Chapter 5.3 „Level inhibit".

Factory settings are shown bold.

7 Configuration

Bargraph scaling	(Setup)	-19999 $\ldots 0 \ldots$ +99999 -19999 $\ldots 100 \ldots$ +99999	Scaling start Scaling end Adjustment only possible in the setup program: -> Display/Operation -> Display > Lower display
Channel name	(Setup)	INPUT1 INPUT2 MATHE1 MATHE2 xxxx XXX.X XX.xx X.xxx System point	Channel name for analog input 1 Channel name for analog input 2 Channel name for math 1 Channel name for math 2 no digit after the decimal point one digit after the decimal point two digits after the decimal point three digits after the decimal point Digit after the decimal point as system point Individual channel names (max. 8 characters) can be allocated for the analog inputs and math functions. The decimal point of the values of the analog inputs can be defined different to that of the system point. Adjustment only possible in the setup program: -> Display/Operation -> Display > Channel name (The setting at the instrument is made in the menu for analog input, parameter „DECPOINT".)
User data	(Setup)		A maximum of eight parameters from the configuration level can be defined to be available in the user level of the instrument. The parameter name (max. 8 characters) can be user-defined. Without a user-defined entry, the name programmed in the instrument will appear. Adjustment only possible in the setup program: -> Display/Operation -> User data

Factory settings are shown bold.

7 Configuration

7.6 Interfaces „INTERFCE"

Configuration

Analog inputs
Limit comparators
Outputs
Binary
functions
Display /
Operation
Interfaces

The interface parameters for the RS422/485 or PROFIBUS-DP interface have to be configured in order to communicate with PCs, bus systems and peripheral devices.

Protocol
Baud rate

Data
format

Device address
Min. response time

Parameter	Value/ Selection	Description
PROTOCOL	$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	Modbus Modbus integer
BAUD RATE	0	9600 bps 19200 bps 38400 bps
DFORMAT	0 1 2 3	8 data bits, 1 stop bit, no parity 8 data bits, 1 stop bit, odd parity 8 data bits, 1 stop bit, even parity 8 data bits, 2 stop bits, no parity
ADDRESS	$\begin{aligned} & 0 \ldots 1 \ldots \\ & 255 \end{aligned}$	Address in data network
(Setup)	0... 500	Time period in milli-seconds that elapses between the request of a device in the data network and the response of the display instrument. Adjustment only possible in the setup program: -> Interfaces -> RS422/RS485

Factory settings are shown bold.

7 Configuration

\rightarrow PROFIBUS (PROFIBUS-DP) \rightarrow			
	Parameter	Value/ Selection	Description
Protocol	PROTOCOL	0 1 2	Intel Motorola Intel integer
Device address	ADDRESS	$\begin{aligned} & 0 \ldots 125 \ldots \\ & 255 \end{aligned}$	Address in data network
Analog marker (analog value)	ANA-VAL	$\begin{aligned} & -19999 \ldots \\ & 0 \ldots . . . \\ & 99999 \end{aligned}$	Analog value
Binary marker (binary value)	BIN-VAL	0... 255	Binary value

Factory settings are shown bold.

For further information, please refer to the separate interface descriptions:

- B70.1550.2.0 (Modbus)
- B70.1550.2.3 (PROFIBUS-DP)

7 Configuration

8 Extra codes

8.1 Math and logic module

Prerequisite: The „Math" extra code must be enabled.
\Rightarrow Setup program (Extras -> Enable extra codes)
The Setup program can be used to carry out two mathematical calculations or logical combinations of various signals and process variables from the controller. The formula is created by means of a formula editor.
\Rightarrow Setup program (Math/Logic)
With math formulae, the calculated result is presented through the two signals "Math 1" and „Math 2" of the analog selector. With logic formulae, the result of the logical combinations is available through the signals "Logic 1" and „Logic 2" of the binary selector when configuring the binary functions.
\Rightarrow Chapter 7.4 „Binary functions „BINFUNCT"""

Entering formulae

- The string of characters in the formula consists of ASCII characters. It can have a maximum length of 60 characters.
- The formula can only be entered in the setup program.
- Formulae can be freely entered according to the standard mathematical rules.
- In the string of characters of the formula, spaces can be inserted as required. Spaces are not permitted within function designations, variables names and constants.

8 Extra codes

8.2 Difference, humidity or ratio calculation

The controller can be configured through the Setup program such that a difference, humidity or ratio calculation is carried out by means of a default formula. Analog input 2 must be available. The functions need not be enabled.
\Rightarrow Setup program (Math/Logic)

Difference

Humidity

Ratio

Result

The difference of the measurements is formed from analog input 1 (E1) and analog input 2 (E2).

Difference: E1-E2
The relative humidity is determined by means of a psychrometric humidity sensor, through the mathematical combination of the wet bulb and dry bulb temperature.

Relative humidity: (E1, E2)
E1 - dry bulb temperature via analog input 1
E2 - wet bulb temperature via analog input 2
The math module forms the ratio of the measurements from analog input (E1) and analog input 2 (E2).

Ratio: E1/E2
The result is under „Math 1" or „Math 2" and can be used as analog value for various parameters.
\Rightarrow Analog selector, Page 34

9 Retrofitting of modules

Safety notes

Removing the controller module
(a)

Only qualified personnel are permitted to carry out module retrofits.

Risk of damage to the modules by electrostatic discharge. For this reason, avoid electrostatic charge during fitting and removal. Carry out retrofitting on a grounded workbench.

* Press together the knurled surfaces on the front panel (left and right), and pull out the controller module.

Identifying the module

* Identify the module by the sales number pasted on the packaging

Modules	Code	Sales No.	View of boards
Analog input 2	1	70/00442785	
1 relay (changeover)	2	70/00442786	
2 relays (make, N/O)	3	70/00442787	
1 analog output	4	70/00442788	
2 binary inputs	5	70/00442789	

9 Retrofitting of modules

Modules	Code	Sales No.	View of boards
$\begin{aligned} & 1 \text { solid-state relay } \\ & 230 \mathrm{~V} / 1 \mathrm{~A} \end{aligned}$	6	70/00442790	
$\begin{array}{\|l\|} \hline \text { Interface } \\ \text { RS422/485 } \end{array}$	7	70/00442782	
PROFIBUS-DP	8	70/00442791	

Retrofitting of modules

* Select slot for the option

* Push the module into the slot until the plug connector engages

* Push the module into the housing until the lugs engage in their slots

10.1 Technical data

Thermocouple input

Designation		Measuring range	Measuring accuracy ${ }^{1,3}$	Ambient temperature error
Fe-Con „L"		-200 to $+900^{\circ} \mathrm{C}$	$\leq 0.25 \%$	100ppm/K
Fe-Con „J"	EN 60584	-200 to $+1200^{\circ} \mathrm{C}$	$\leq 0.25 \%$	100 ppm/K
Cu-Con „U"		-200 to $+600^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} / \mathrm{K}$
Cu-Con "T"	EN 60584	-200 to $+400^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} / \mathrm{K}$
$\mathrm{NiCr}-\mathrm{Ni}$ „"K"	EN 60584	-200 to $+1372{ }^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} / \mathrm{K}$
NiCr-Con „E"	EN 60584	-200 to $+1000^{\circ} \mathrm{C}$	$\leq 0.25 \%$	100ppm/K
NiCrSi-NiSi „, ${ }^{\text {c }}$	EN 60584	-100 to $+1300^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} / \mathrm{K}$
Pt10Rh-Pt „S"	EN 60584	0 to $+1768^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} / \mathrm{K}$
Pt13Rh-Pt „R"	EN 60584	0 to $+1768^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} / \mathrm{K}$
Pt30Rh-Pt6Rh „B"	EN 60584	0 to $+1820^{\circ} \mathrm{C}$	$\leq 0.25 \%{ }^{2}$	$100 \mathrm{ppm} / \mathrm{K}$
W5Re-W26Re "C"		0 to $+2320^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} / \mathrm{K}$
W3Re-W25Re "D"		0 to $+2495^{\circ} \mathrm{C}$	$\leq 0.25 \%$	100ppm/K
W3Re-W26Re		0 to $+2400^{\circ} \mathrm{C}$	$\leq 0.25 \%$	100ppm/K
Chromel-Copel	$\begin{aligned} & \text { GOST R } \\ & 8.585-2001 \end{aligned}$	-200 to $+800^{\circ} \mathrm{C}$	$\leq 0.25 \%$	100ppm/K
Cold junction		Pt 100 internal		

${ }^{1}$ incl. measuring accuracy at the cold junction
2 in the range from $300 \ldots 1820^{\circ} \mathrm{C}$

RTD temperature probe input

Designation		Connection circuit	Measuring range	Measuring accuracy ${ }^{3}$		Ambient temperature error	
		3-/4- wire		2wire			
Pt100	$\begin{aligned} & \text { DIN EN } \\ & 60751 \end{aligned}$		2-wire/3-wire/ 4-wire	-200 to $+850^{\circ} \mathrm{C}$	$\leq 0.05 \%$	$\leq 0.4 \%$	50ppm/K
Pt500	$\begin{aligned} & \text { DIN EN } \\ & 60751 \end{aligned}$	2-wire/3-wire/ 4-wire	-200 to $+850^{\circ} \mathrm{C}$	$\leq 0.2 \%$	$\leq 0.4 \%$	100ppm/K	
Pt1000	$\begin{aligned} & \text { DIN EN } \\ & 60751 \end{aligned}$	2-wire/3-wire/ 4-wire	-200 to $+850^{\circ} \mathrm{C}$	$\leq 0.1 \%$	$\leq 0.2 \%$	50ppm/K	
Pt50	$\begin{aligned} & \text { GOST } \\ & \text { 6651-94 } \end{aligned}$	2-wire/3-wire/ 4-wire	-200 to $+850^{\circ} \mathrm{C}$	$\leq 0.1 \%$	$\leq 0.8 \%$	50ppm/K	
Pt100	$\begin{aligned} & \text { GOST } \\ & \text { 6651-94 } \end{aligned}$	2-wire/3-wire/ 4-wire	-200 to $+850^{\circ} \mathrm{C}$	$\leq 0.05 \%$	$\leq 0.4 \%$	50ppm/K	
Cu50	$\begin{aligned} & \text { GOST } \\ & \text { 6651-94 } \end{aligned}$	$\begin{aligned} & \text { 2-wire/3-wire/ } \\ & \text { 4-wire } \end{aligned}$	-50 to $+200^{\circ} \mathrm{C}$	$\leq 0.2 \%$	$\leq 1.6 \%$	50ppm/K	
Cu100	$\begin{aligned} & \text { GOST } \\ & 6651-94 \end{aligned}$	2-wire/3-wire/ 4-wire	-50 to $+200^{\circ} \mathrm{C}$	$\leq 0.1 \%$	$\leq 0.8 \%$	50ppm/K	
KTY11-6		2-wire	-50 to $+150^{\circ} \mathrm{C}$	-	$\leq 2.0 \%$	50ppm/K	

${ }^{3}$ The accuracy refers to the max. measurement range span. The linearization accuracy is reduced with short spans.

10 Appendix

RTD temperature probe input (continued)

Sensor lead resistance	max. 30Ω per lead for 3-wire/4-wire circuit
Measuring current	approx. $250 \mu \mathrm{~A}$
Lead compensation	Not required for 3-wire and 4-wire circuit. For a 2-wire circuit, the lead resistance can be compensated in the software by correcting the actual value.

Standard signals input

Designation	Measuring range	Measuring accuracy	Ambient temperature error
Voltage	$0(2)-10 \mathrm{~V}$ $0-1 \mathrm{~V}$ Input resistance $\mathrm{R}_{\mathrm{IN}}>100 \mathrm{k} \Omega$	$\leq 0.05 \%$ $\leq 0.05 \%$	$100 \mathrm{ppm} / \mathrm{K}$ $100 \mathrm{ppm} / \mathrm{K}$
Current	$0(4)-20 \mathrm{~mA}$ Voltage drop $\leq 1.5 \mathrm{~V}$	$\leq 0.05 \%$	$100 \mathrm{ppm} / \mathrm{K}$
Resistance transmitter	min. $100 \Omega, \operatorname{max.~} 4 \mathrm{k} \Omega$	$\pm 4 \Omega$	$100 \mathrm{ppm} / \mathrm{K}$

${ }^{3}$ The accuracy refers to the max. measurement range span. The linearization accuracy is reduced with short spans.

Binary inputs

Floating contacts open = inactive; short-circuited to GND = active

Measuring circuit monitoring

In the event of a fault, the outputs change to defined statuses (configurable).

Sensor	Measuring overrange / underrange	Probe or lead short-circuit	Probe or lead break
Thermocouple	-	-	\bullet
RTD temperature probe	-	-	-
Voltage $2-10 \mathrm{~V}$ $0-10 \mathrm{~V}$ $0-1 \mathrm{~V}$	-	$\stackrel{-}{-}$	-
$\begin{array}{\|ll} \hline \text { Current } & \begin{array}{l} 4-20 \mathrm{~mA} \\ 0-20 \mathrm{~mA} \end{array} \end{array}$			\bullet
Resistance transmitter	-	-	-

$\bullet=$ detected - = not detected

10 Appendix

Outputs

Relay (change-over) Contact rating Contact life	5A at 230VAC resistive load 350,000 operations at rated load/750,000 operations at 1 A
Relay (changeover (option)) Contact rating Contact life	8 A at 230VAC resistive load 100,000 operations at rated load/350,000 operations at 3 A
Relay (n.o. make (option)) Contact rating Contact life	3A at 230VAC resistive load 350,000 operations at rated load/900,000 operations at 1 A
Logic output	0/12V / 25 mA max. (sum of all output currents)
Solid-state relay (option) Contact rating Protection circuitry	1 A at 230 V Varistor
Voltage (option) Output signals Load resistance Accuracy	$\begin{gathered} 0-10 \mathrm{~V} / 2-10 \mathrm{~V} \\ \mathrm{R}_{\text {Load }} \geq 500 \Omega \\ \leq 0.5 \% \end{gathered}$
Current (option) Output signals Load resistance Accuracy	$\begin{gathered} 0-20 \mathrm{~mA} / 4-20 \mathrm{~mA} \\ R_{\text {Load }} \leq 500 \Omega \\ \leq 0.5 \% \end{gathered}$
Voltage supply for 2-wire transmitter	electrically isolated, not stabilised $15.8-15.2 \mathrm{~V} / 30-50 \mathrm{~mA}$ (no-load voltage approx. 25 V)

A/D converter

Resolution	dynamic up to 16 Bit
Sampling cycle time	$50 \mathrm{~ms}, 90 \mathrm{~ms}, 150 \mathrm{~ms}, 250 \mathrm{~ms}$ (configurable)

Display

Type	LCD with background lighting
Display 1	7-segment display, 18mm high, 5 digits, color: red
Function of display 1	measurement display and parameter setting
Display 2	16-segment display, 7mm high, 8 digits, color: red/green (switchable)
Function of display 2	24-character running text display (alarms), display of measurements or parameter names
Display 3	4 switching status indicators (K1 to K4), 3mm high

10 Appendix

Electrical data

Supply voltage (switchmode PSU)	$\begin{gathered} \text { AC } 110-240 \mathrm{~V}-15 /+10 \%, 48-63 \mathrm{~Hz} \\ \text { AC/DC } 20-30 \mathrm{~V}, 48-63 \mathrm{~Hz} \end{gathered}$			
Electrical safety	acc. to EN 61010, part 1 Overvoltage category III, pollution degree 2			
Power consumption	max. 13VA			
Data backup	EEPROM			
Electrical connection	at the back via screw terminals, conductor cross section up to max. $2.5 \mathrm{~mm}^{2}$ with core-end ferrule (length: 10 mm) Installation information on conductor cross-sections and core-end ferrules			
		min. crosssection	max. crosssection	Min. length of core-end ferrule
	Without core-end ferrule	$0.34 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	10 mm (stripped)
	Core-end ferrule without lip	0.25 mm	$2.5 \mathrm{~mm}^{2}$	10mm
	Core end ferrule with lip up to 1.5 mm 2	$0.25 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	10 mm
	Core end ferrule with lip above 1.5 mm 2	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	12 mm
	Twin ferrule with lip	$0.25 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	12 mm
Electromagnetic compatibility Interference emission Interference immunity	Class B meeting industrial requirements			

10 Appendix

Housing

Housing type	Plastic housing for panel mounting acc. to IEC 61554
Depth behind panel	90 mm
Ambient/storage temperature range	0 to $55^{\circ} \mathrm{C} /-30$ to $+70^{\circ} \mathrm{C}$
Climatic conditions	rel. humidity $\leq 90 \%$ annual average, no condensation
Operating position	horizontal
Enclosure protection	acc. to EN 60529, front IP 65, back IP 20
Weight (fully equipped)	approx. 380g

Interface

Modbus

Interface type	RS422/RS485
Protocol	Modbus, Modbus-integer
Baud rate	$9600,19200,38400$
Device address	$0-255$
Max. number of nodes	32

PROFIBUS-DP
Device address $\quad 0-255$

Approvals/approval marks

Approval mark	Testing agency	Certificate/ certification number	Test basis	valid for
c UL us	Underwriters Laboratories	E 201387	UL 61010-1 CAN/CSA-C22.2 No. 61010-1	JUMO di 308

10 Appendix

10.2 Alarm messages

Display	Cause	Fault remedy (test/repair/replace)
-19999 (blinking!)	Underrange for the value being displayed.	ls the medium being measured within the range (too hot? too cold?)
99999 (blinking!)	Overrange for the value being displayed. Check probe for break and probe short-circuit. Check the probe connection and the terminals. Check cable.	
all displays on	Watchdog or power ON trigger initialization (reset).	Replace unit if initialization takes longer than 5s.
PROF-ERR	PROFIBUS error	Can be suppressed by setting the PROFIBUS address to "0".
OPT-ERR	Hardware configuration error	Check which option boards are installed in the slots.

Overrange / underrange covers the following events:

- Probe break or short-circuit

- Measured value outside the probe measuring range
- Display overflow

A

Accessories 13
Acknowledgement 48
Action - limit comp. 47
Actual value - limit comp. 48
Analog input 35
Analog selector 34
Analog value 61

B

Bargraph scaling 59
Baud rate 60
Binary functions 54
Binary output 52
Binary value 61
Brightness of the display 57

C

Care of the front panel 16
Channel name 59
Configuration level 33
Connection diagram 20
Controls 27
Correction value KTY 38

D

Data format 60
Decimal point - analog input 38
Description of the instrument 7
Device address 60-61
Difference control 64
Dimensions 15
Display / Operation 56
Display colour 56
Display text 56

Displays 27,56

E

Electrical isolation 19
Entering formulae 63
Entering values 30
Extra codes 63

F

Filter time constant 37
Fine calibration 37
Fitting in position 15
Function - analog output 53
Function - limit comp. 42, 47
Function key 58

H

Hold mode 57
Humidity control 64
Hystereses - limit comp. 47
Hysteresis function 42, 48

I

Installation notes 17
Instrument version 11
Interfaces 60
Inversion - binary output 52

L

Level concept 28
Level inhibit 29, 58
Limit comparator 42
Limit value 47
Linearisation 36

11 Index

M

Mains frequency 38
Math and logic module 63
Measurement offset 36
Measuring range 53
Min/max mode 57
Modbus 60
Mounting site 15

0

Offset - analog output 53
Operation time-out 57
Operator level 31
Option slots 12
Outputs 51

P

PC interface 13
Process data 32
PROFIBUS-DP 61
Protocol 60-61
Pulse time - limit comp. 48

R

Ratio control 64
Removing the controller module 16
Response time 60
Retrofitting of modules 65
RS422/485 60

S

Sampling cycle time 38
Scaling 37, 53
Scope of delivery 13
Scroll mode 58
Sensor type 35
Setpoint value - limit comp. 48
Setup program 13
Special characters 56
Start delay time 57
Switch status - limit comp. 47
Switching action - binary function 54
Switch-off delay 47
Switch-on delay 47
System point 57

T

Tare function 55
Temperature unit 38
Ticker 57
Type designation 11
Type of signal - analog output 53

U

USB interface 13
User data 28,59

V

Variable setpoint value 45

JUMO

JUMO GmbH \& Co. KG

Street address:
Moritz-Juchheim-Straße 1
36039 Fulda, Germany
Delivery address:
Mackenrodtstraße 14
36039 Fulda, Germany
Postal address:
36035 Fulda, Germany
Phone: +49 661 6003-0
Fax: +496616003-607
E-mail: mail@jumo.net
Internet: www.jumo.net

JUMO Instrument Co. Ltd.
JUMO House
Temple Bank, Riverway
Harlow, Essex CM20 2DY, UK
Phone: +44 1279635533
Fax: +44 1279635262
E-mail: sales@jumo.co.uk
Internet: www.jumo.co.uk

JUMO Process Control, Inc.

8 Technology Boulevard
Canastota, NY 13032, USA
Phone: 315-697-JUMO
1-800-554-JUMO
Telefax: 315-697-5867
E-mail: info@jumo.us
Internet: www.jumo.us

