
24 Experimente, die Spaß machen

24 thrilling experiments ADVENTSKALENDER
FÜR RASPBERRY PI

ADVENTSKALENDER FÜR RASPBERRY PI

ADVENT CALENDAR FOR RASPBERRY PI

ADVENTSKALENDER
FÜR RASPBERRY PI

ADVENTSKALENDER FÜR RASPBERRY PI

ADVENT CALENDAR FOR RASPBERRY PI

ADVENTSKALENDER
FÜR RASPBERRY PI

ADVENTSKALENDER FÜR RASPBERRY PI

ADVENT CALENDAR FOR RASPBERRY PI

ADVENTSKALENDER
FÜR RASPBERRY PI

ADVENTSKALENDER FÜR RASPBERRY PI

ADVENT CALENDAR FOR RASPBERRY PI

2

Raspberry Pi Advent Calendar 2019 3
1st day . 4

Today in the Advent calendar . 4
Preparing the Raspberry Pi . 4
Operating system installation in a nutshell . 4
The most important components briefly explained 5
LED lights up .8

2 . day . 9
Today in the Advent calendar .9
Two LEDs flash alternately .9
Basic settings for Scratch .9
The program . 10

3rd day .12
Today in the Advent calendar . 12
Traffic light circuit with Python . 12
The program . 13
How it works . 14

4th day . 16
Today in the Advent calendar . 16
Three segments of the seven-segment display will flash alternately 16
The program . 17
How it works . 17

5th day . 18
Today in the Advent calendar . 18
Running light on the seven-segment display . 18
The program . 18
How it works . 18

6th day .19
Today in the Advent calendar . 19
Another running light on the seven-segment display 19
The program . 19
How it works . 20

7th day .21
Today in the Advent calendar . 21
Jumper wire . 21
Four digits show the same flashing pattern . 21
The program . 22
How it works . 22

8th day . 23
Today in the Advent calendar . 23
Controlling a seven-segment display with Scratch 23
The program . 23

9th day . 26
Today in the Advent calendar . 26
Digits on the seven-segment display . 26
The program . 26
How it works . 27

10th day . 28
Today in the Advent calendar . 28
Multiple digits on the seven-segment display . 28
The trick with afterglow . 28
The program . 28
How it works . 29

11th day . 30
Today in the Advent calendar . 30
Show arbitrary numbers . 30
The program . 30
How it works . 31

12th day . 33
Today in the Advent calendar . 33
Countdown to Christmas . 33
The program . 33
How it works . 33

13th day . 34
Today in the Advent calendar . 34
Connecting a push-button to a GPIO pin . 34
Christmas countdown with button . 34
The program . 34
How it works . 36

14th day . 37
Today in the Advent calendar . 37
Connecting push-buttons without external pull-down resistors 37
Christmas countdown with two buttons . 37
The program . 37
How it works . 39

15th day . 40
Today in the Advent calendar . 40
Digits with Scratch on the seven-segment display 40
The program . 40

16th day . 42
Today in the Advent calendar . 42
Digital clock . 42
The program . 42
How it works . 43
Start digital clock automatically . 44

17th day . 45
Today in the Advent calendar . 45
Show IP address of Raspberry Pi . 45
The program . 45
How it works . 46

18th day . 48
Today in the Advent calendar . 48
Stopwatch . 48
The program . 48
How it works . 49

19th day .51
Today in the Advent calendar . 51
Touch sensor from plasticine . 51
Stopwatch with sensor contact . 51
The program . 52
How it works . 53

20th day . 54
Today in the Advent calendar . 54
Counter with sensor contacts . 54
The program . 54
How it works . 55
The counter counts too fast . . 56

21th day . 57
Today in the Advent calendar . 57
The Raspberry Pi produces tones . 57
The program . 57

22th day . 60
Today in the Advent calendar .60
Traffic light with countdown .60
The program .60

23th day . 64
Today in the Advent calendar . 64
Number rates with three keys . 64
The program . 64
How it works . 65

24th day . 68
Today in the Advent calendar .68
Christmas carols on the Raspberry Pi .68
The program .68
How it works . 70

Overview of all experiments

3

Raspberry Pi Advent Calendar 2019
This Advent calendar contains a hardware experiment with the Raspberry Pi for every day . The experi-
ments are programmed using Scratch and Python . Both programming languages are pre-installed on the
Raspberry Pi . All experiments work with Raspberry Pi 3, Raspberry Pi 3 B+ and Raspberry Pi 4 with the
current version of the Raspbian operating system .

Controlling simple electronics using a normal PC or even a notebook - even if only for a few LEDs - can
be quite a challenge for any hobby programmer . A PC simply lacks the necessary interfaces for this . In
addition, the Windows operating system is unthinkably unsuitable for communicating with electronics .

The Raspberry Pi is – although it doesn't look like it at first – is a full-fledged computer . Many things work
a little slower than you are used to from modern PCs, but the Raspberry Pi is also much smaller and
cheaper than a PC .

Programs to download
The programs used in the Advent calendar can be downloaded here: www.buch.cd . Enter the code
15045-5 for this product in the input field .

4

1 . Day

1st day

Today in the Advent calendar
• 1 pinboard

• 1 LED red

• 1 resistor 220 ohms

• 2 GPIO connection cable

Preparing the Raspberry Pi
To put the Raspberry Pi into operation you need:

• USB keyboard and mouse

• HDMI cable for monitor

• Network cable or WLAN

• MicroSD card with Raspbian operating system

• Micro-USB mobile phone charger as power supply
unit (at least 1,500 mA)

• Audio cable for speakers (optional)

The power supply must be connected last, so that
the Raspberry Pi switches on automatically . There is
no separate on/off switch .

The Raspberry Pi 4
In June 2019, the Raspberry Pi 4 appeared with significantly more powerful hardware . For the first time,
the Raspberry Pi with three different memory sizes: 1 GB, 2 GB and 4 GB . Further features in short are:

• Processor: Broadcom BCM2711, Quad core Cortex-A72 64-bit SoC 1 .5 GHz

• Network: Gigabit Ethernet and Dual-Band IEEE 802 .11ac WLAN

• USB ports: 2x USB 3 .0, 2x USB 2 .0 (distinguishable by colour)

• HDMI connections: 2x Micro HDMI . For the first time two monitors are supported .
Micro HDMI cables or adapters are required for connection .

• Power supply: USB type C port, 3A minimum required .

The slot for MicroSD cards, the 40-pin GPIO pin header and the jack socket for stereo audio and compos-
ite video are the same as the previous model .
Use the USB 2 .0 ports for keyboard and mouse . The USB 3 .0 ports are better used for USB sticks and
external hard drives .

Operating system installation in a nutshell
For all those who do not yet have their Raspberry Pi ready for operation with the current Raspbian ver-
sion, here is the system installation in ten steps:

1 . Download NOOBS (at least version 3 .0 .0) of www.raspberrypi.org/downloads to your PC and unzip
the zip archive to your hard disk .

2 . If the SD card has already been used, reformat with the SD formatter in the PC: www.sdcard.org/
downloads/formatter_4 . Switch on Format Size Adjustment (the SD card must be at least 8 GB in size) .

The Connections on the Raspberry Pi (Graphics: Raspberry Pi Foundation - Creative Commons Licence)

5

3 . Copy all files and subdirectories from NOOBS to the SD card .

4 . Remove the SD card from the PC, insert it into Raspberry Pi and boot . Select English as the
installation language at the bottom . This automatically selects the English keyboard as well .

5 . Check the preselected Raspbian operating system and click Install at the top left . After
confirming a security prompt that the memory card is being completely overwritten, the
installation starts, which takes a few minutes .

6 . Once the installation is complete, the Raspberry Pi reboots .

7 . On the Raspbian desktop, the Configuration Wizard starts and displays the IP address of
the Raspberry Pi . In the first dialog box, click Next and select Language and Time Zone if they
are not automatically set to English .

8 . In the next step, it is recommended to change the default password, which is not abso-
lutely necessary for the experiments in this learning pack . The default user pi is automatically
logged in when booting, so you will rarely need the password .

9 . For WLAN connection, select network and enter the password, for Ethernet connection
simply click on Skip .

10 . Finally, automatically download updates and restart the Raspberry Pi .

Num Lock key
As with almost all Linux systems, the numeric keypad is switched off by default when
Raspbian is started . Press the Num-Lock key on the keyboard to activate it .

Programs to download
The programs used in the Advent calendar can be downloaded here: www.buch.cd .
Enter the code 15045-5 for this product in the input field .

Open the website directly using the pre-installed browser on the Raspberry Pi and
download the zip file into the home directory /home/pi .

 Start the file manager on the Raspberry Pi . This automatically displays the home
directory at start-up . Right-click on the downloaded zip file and select Unzip here

from the context menu .

You will find this manual in the download archive of the Advent calendar as a colour PDF, so
you can easily recognise the individual lines .

The most important components briefly explained

Pinboard
The Advent calendar contains a plug-in board for assembling electronic circuits
quickly, without soldering . Here electronic components can be inserted directly into
a hole grid .

With this plug-in board, all outer longitudinal rows are connected to each other via
contacts (X and Y) . These contact rows are often used as positive and negative poles
for the power supply of the circuits . In the other contact rows, five contacts (A to E
and F to J) are connected crosswise, with a gap in the middle of the circuit board .
This allows larger components to be inserted and wired to the outside .

The connections on the pinboard .

6

LEDs
LEDs (short for light emission diodes) light up when a current flows through them in the direction of
flow . LEDs are represented in circuits with an arrow-shaped triangle symbol, which indicates the flow
direction from the positive pole to the negative pole or to the ground line . An LED lets almost any current
through in the direction of flow; it has a very low resistance . To limit the flow current and thus prevent
the LED from burning out, a 220 ohm series resistor is usually installed between the GPIO pin used and
the anode of the LED or between the cathode and ground pin . This resistor also protects the GPIO output
of the Raspberry Pi from high currents .

Circuit diagram of an LED with series resistor .

Connect LED in which direction?
The two connecting wires of an LED have different lengths . The longer wire is the positive pole, the
anode, the shorter one the cathode . Easy to remember: The plus sign has one stroke more than the
minus sign, making the wire a little longer . In addition, most LEDs are flattened on the minus side,
comparable to a minus sign . Also easy to remember: Cathode = short = flat edge .

Resistor
Resistors are used for limiting current on sensitive electronic components and as series resistors for
LEDs . The unit of measurement for resistors is Ohm . 1,000 ohms correspond to one kilo-ohm, abbrevi-
ated kOhm . 1,000 kOhm corresponds to a megohm, abbreviated MOhm . The omega character Ω is often
used for the unit ohm .

The coloured rings on the resistors indicate the resistance value . With a little practice, these are much
easier to recognise than tiny numbers that can only be found on old resistors .

Most resistors have four such colour rings . The first two colour rings denote the digits, the third a mul-
tiplier and the fourth the tolerance . This tolerance ring is mostly gold or silver coloured - colours that
do not appear on the first rings . Thus the reading direction is always unambiguous . The tolerance value
itself hardly plays a role in digital electronics . Since the tolerance ring is almost always golden, it helps
determining the reading direction for the rings . The table shows the meaning of the coloured rings on
resistors . The 220 Ohm resistors for the LEDs have the colour code red-red-brown .

It does not matter in which direction a resistor is
installed . With LEDs, on the other hand, the instal-
lation direction is very important .

Even easier than using these tables you calculate
the resistance value from a colour code using
the freeware Resistance Calculator from www.
ab-tools.com/de/software/widerstandsrechner .
Conversely, you can also use it to display the col-
our code for any resistance value .

Colour Resistance value in ohm

1 . Ring
(tens)

2 . Ring
(ones)

3 . Ring
(multiplier)

4 . Ring
(tolerance)

silver 10−2 = 0,01 ±10 %

gold 10−1 = 0,1 ±5 %

black 0 100 = 1

brown 1 1 101 = 10 ±1 %

red 2 2 102 = 100 ±2 %

orange 3 3 103 = 1 .000

yellow 4 4 104 = 10 .000

green 5 5 105 = 100 .000 ±0,5 %

blue 6 6 106 = 1 .000 .000 ±0,25 %

violet 7 7 107 = 10 .000 .000 ±0,1 %

grey 8 8 108 = 100 .000 .000 ±0,05 %

white 9 9 109 = 1 .000 .000 .000

7

GPIO connection cable
The coloured connection cables all have a plug on one side and a socket on the other side, which fits
on a GPIO pin of the Raspberry Pi . The LEDs are also plugged directly into these sockets . The plugs are
plugged into the plug-in board . The programmable GPIO pins on the Raspberry Pi have numbers, the
ground pins are marked by GND in the figure .

Assignment of the GPIO pins .

This picture is included in the downloads for the Advent calendar . Save it on the Raspberry Pi to have
access to it at any time, as only very few people can remember the pin numbers .

You can also simply set the image as your desktop background to keep it in view at all times . To do this,
right-click on the desktop and in the next dialog box, click on the default image road.jpg . Select the file
gpio.png from the folder pi . For Layout , select Fit image onto screen .

The Raspbian Desktop with the new background

8

Precautions
You should under no circumstances connect any GPIO pins to each other and wait and see what hap-
pens .
Not all GPIO pins can be programmed freely . A few are fixed for power supply and other purposes .
Some GPIO pins are directly connected to the processor terminals, a short circuit can completely
destroy the Raspberry Pi . If two pins are connected to each other via a switch or an LED, a protective
resistor must always be connected in between . LEDs with built-in series resistors are an exception .
For logic signals, always use pin 1, which supplies +3 .3 V and can be loaded up to 50 mA . Pin 6 is the
ground line for logic signals .
Pin 2 and 4 provide +5 V for power supply of external hardware . Here you can take as much power as
the USB power supply of the Raspberry Pi supplies . However, these pins must not be connected to a
GPIO input .

LED lights up
No program is needed for the first experiment . The Raspberry Pi serves here only as power supply for the
LED . The experiment shows how LEDs are connected . Make sure that the LEDs are installed in the right
direction . The flat side is in the picture to the right .

The most circuit configurations make use of the contact strip on one long side of the plug-in board as a
ground contact . Inside, the cathodes of all LEDs are plugged in and connected by a cable to a GND pin
on the Raspberry Pi .

Components: 1 plug-in board SYB-46, 1 LED red, 1 220-Ohm resistor (red-red-brown), 2 GPIO connec-
tion cables

The first LED lights up on the Raspberry Pi .

9

2rd day

Today in the Advent calendar
• 1 LED green

• 1 resistor 220 ohms

• 1 GPIO connection cable

Two LEDs flash alternately
The experiment of the second day causes two LEDs to light up alter-
nating between red and green . The whole thing is controlled via an
endless loop in Scratch .

Components: 1 plug-in board SYB-46, 1 LED red, 1 LED green, 2 220-
Ohm resistors (red-red-brown), 3 GPIO connection cables

This time the LED does not light up permanently, but is switched on by
a program in the Scratch programming language for half a second .

Scratch is pre-installed on the Raspberry Pi in the menu - by clicking on
the Raspberry logo in the top left corner - under Development and is
considered one of the easiest to learn programming languages .

The new Scratch 2
The Scratch programming language has been pre-installed in version
1 .x ever since the first Raspbian version was released . The new ver-
sion, Scratch 2, offers significantly more possibilities . Among other
things, it allows you to create your own function blocks .
Scratch 2 runs online on the PC in the browser . However, this
requires more computing power than a Raspberry Pi can currently
offer . Since version NOOBS 2 .4 .0, a version of Scratch 2 is pre-in-
stalled in the Raspbian operating system, which runs offline without
a browser and thus runs smoothly with the capabilities of a Rasp-
berry Pi 3 . With Scratch 2, hardware control via the GPIO interface
has become much easier . For the Scratch projects in this Advent
calendar we use the new Scratch 2 version from the menu Develop-
ment.

Basic settings for Scratch
Click on the globe at the top left of the Scratch logo and select English .
The selected language remains saved, so you don't have to select it
every time .

Two LEDs flash on the Raspberry Pi .

2 . Day

10

Switching Scratch 2 to English

Scratch 2 offers support for various hardware components on the GPIO port, which must be activated
once via an add-on module . To do this, click More blocks on the block palette, and then click Add
extension . Select the extension Pi GPIO here and install by double clicking .

Install Scratch 2 Pi-GPIO extension

The program
In Scratch you don't have to type any program code when programming . The blocks are simply attached
to each other by dragging and dropping . The block palette in the middle of the Scratch window contains
the available blocks sorted by type .

This Scratch program 02led02 flashes two LEDs alternately .

11

You can assemble the program on screen or use the program 02led02 from the download to the Advent
calendar . To do this, from the File/Load Project menu, select the pi button in the next dialog box to
select the personal home directory where the downloaded programs are located .

To assemble the program yourself, click on the yellow Control icon at the top of the block palette in the
middle of the Scratch window . The blocks for Control are then shown in the block palette .

Drag the blocks you need from the block palette into the Scripts window on the right the Scratch screen .

The block When (green flag) is clicked is used to start a program . The block is round at the top, so it
does not fit under any other block . It must always be set first .

The following script elements are executed when you click on the green flag in the upper right corner of
the scratch background . The Scratch background is the part of the window on the top left with the cat .
Interactive programs also play here .

A forever loop ensures that the two LEDs continue to flash endlessly until the user clicks on the red stop
icon in the upper right corner of the Scratch background .

First, the red LED at pin 18 should be switched on and the green LED at pin 23 switched off . To do this,
drag a block set gpio ... to . . . from the PI-GPIO extension into the program and select pin 18 in the left
list field . Select output high in the right list box to define this pin as output and switch it on .

In the next step, a further Scratch block set gpio ... to . . . the green LED connected to GPIO pin 23 is
switched off . To do this, select output low in the right list field of the block .

After the red LED on pin 18 is switched on and the green LED on pin 23 is switched off, the program waits
half a second . For this, Scratch offers its own block wait...secs . Like many American programs, Scratch 2
uses the dot as decimal separator, not the comma used in other countries . So, half a second is entered
as 0.5 and not as 0.5 .

The green LED at pin 18 is then switched on in the same way and the red LED at pin 8 is switched off .
After another half a second, the cycle repeats from the beginning .

The program starts when you click on the green flag and ends when you click on the red stop symbol .

12

3rd day

Today in the Advent calendar
• 1 LED yellow

• 1 resistor 220 ohms

• 1 GPIO connection cable

Traffic light circuit with Python
A traffic light with its typical light cycle from green to yellow to red and
then back to green via a light combination red-yellow is easy to set up
with three LEDs and shows how to control the GPIO pins on the Rasp-
berry Pi in the popular programming language Python .

Components: 1 plug-in board SYB-46, 1 LED red, 1 LED yellow, 1 LED
green, 3 220-Ohm resistors (red-red-brown), 4 GPIO connection
cables

The programming language Python is pre-installed on the Raspberry Pi
for an introduction to programming . Python is ideal because of its clear
structure, which allows an easy introduction to programming, but is
also an ideal language to automate "times fast" something that would
otherwise be done by hand . Since there are no variable declarations,
types, classes or complicated rules to consider, programming is really
fun .

Python 3 with the code editor Mu
Since the operating system version NOOBS 3 .1 .1, which was specially
developed for the Raspberry Pi 4, the new code editor Mu in the
menu Development has been pre-installed instead of the classic
Python development environment IDLE . Mu is a complete develop-
ment environment . No additional components are required to start
programming .

When Mu starts for the first time, select Python 3mode . Via the symbol
mode you can change to another programming language at any time .

Python Flashcards
Python is the ideal programming language for learning the basics
of programming . Only the syntax and the layout rules need some
getting used to . The most important syntax elements of the Python
language are briefly described in the form of small "cheat sheets"
to help in everyday programming . These are based on the Python
flashcards by David Whale . What this is all about can be found at bit.
ly/pythonflashcards3 . These flashcards do not explain the technical
background, but only describe the syntax, i .e . how something is done,
using very short examples .

A simple traffic light .

3 . Day

The cide editor Mu in the menu .

13

The first launch of Mu .

Extract from the Python flashcards

The program
Instead of slowing down with programming theory, algo-
rithms and data types, we write the first small program
in Python .

In Mu's main window, type in the program code shown .
You can see interactive help texts as you type . Mu rec-
ognises the words and standard functions of the Python
programming language and displays tips for use .

The line:

Write your code here :-)

is, like all lines beginning with a #character, only a com-
ment and can be deleted easily .

Save the file with the symbol Save as 03ampel.py . Or
you can use File/Open to open the finished program file
from the download in the Python shell . The colour cod-
ing in the source code appears automatically and helps
to find typos .

Das erste Programm in Python 3

14

Start the program with the symbol
Execute .

How it works
It is easy to test whether the program
works . Now, of course, some ques-
tions will arise: What happens in the
background? What do the individual
program lines mean?

This first project shows the basic
elements of Python and the RPi.GPIO
library .

#!/usr/bin/python

Python programs that are started from
the command line must always start
with the top line . This is not necessary
for programs that are only started via
the Python shell . For compatibility
reasons, however, you should get used
to entering this line at the beginning of
every Python program .

import RPi.GPIO as GPIO

The library RPi.GPIO must be imported into every Python program in which it is to be used . Using this
notation, all functions of the library can be addressed via the prefix GPIO .

import time

The frequently used Python library time has nothing to do with GPIO programming . It contains functions
for time and date calculation, and among other things also a function time.sleep(), with which waiting
times can be easily realised in a program .

GPIO.setmode(GPIO.BCM)

At the start of each program, you must define how the GPIO ports are designated . Usually the standard
numbering BCM is used .

Numbering of GPIO pins
 The library RPi.GPIO supports two different methods for pin identification . In mode BCM the known
GPIO port numbers are used, which are also used on command line level or in scratch . In the alterna-
tive, largely unused mode BOARD, the designations correspond to the pin numbers from 1 to 40 on the
Raspberry Pi board, counted sequentially .

red = 18
yellow = 23
green = 24

These three lines define variables with the GPIO pins to which the three LEDs are connected . This makes
the program clearer, and it is easier to adapt to a different circuit design, since the pin numbers only
have to be changed at one point in the program .

GPIO.setup(red, GPIO.OUT, initial=0)
GPIO.setup(yellow, GPIO.OUT, initial=0)
GPIO.setup(green, GPIO.OUT, initial=1)

The three GPIO pins used are initialised one after the other as outputs . We do not use GPIO port num-
bers, but the previously defined variables .

The GPIO.setup() instruction may contain an optional parameter initial which assigns a logical state
to the GPIO pin at initialisation . With this we switch on the green LED in this program right from the
start . The other two LEDs start the program when it is switched off .

The first program in Python 3

15

print("Ctrl+C ends the program")

Now a short operating manual is displayed on the screen . The program runs automatically . The key com-
bination [Ctrl]+[C] should end it .

To query whether the user quits the program with [Ctrl]+[C], we use a try...except query . The program
code entered under try: is initially executed normally . If during this time a system exception occurs - it
could be an error or the key combination [Ctrl]+[C] - it is aborted and the except instruction at the end of
the program is executed .

except KeyboardInterrupt:
 GPIO.cleanup()

This key combination triggers a KeyboardInterrupt and automatically exits the loop . The last line closes
the used GPIO ports and switches off all LEDs . The program is then terminated .

By closing the GPIO ports in a controlled manner, there are no system warnings or abort messages that
could confuse the user .

The actual traffic light cycle runs in an endless loop:

 while True:

Such endless loops always require a termination condition, otherwise the program would never be ter-
minated .

 time.sleep(2)

The green LED lights up for 2 seconds at the beginning of the program and also at each new start of the
loop .

 GPIO.output(green,0)
 GPIO.output(yellow,1)
 time.sleep(0.6)

Now the green LED is switched off and the yellow LED is switched on . This then lights up alone for 0 .6
seconds .

 GPIO.output(yellow,0)
 GPIO.output(red,1)
 time.sleep(2)

Now the yellow LED is switched off again and the red LED is switched on . This then lights up alone for 2
seconds . The red phase of a traffic light is usually much longer than the yellow phase .

 GPIO.output(yellow,1)
 time.sleep(0.6)

At the start of the red-yellow phase, the yellow LED is additionally switched on without another LED
being switched off . This phase lasts 0 .6 seconds .

 GPIO.output(red,0)
 GPIO.output(yellow,0)
 GPIO.output(green,1)

At the end of the loop the traffic light jumps back to green . The red and yellow LEDs are then switched
off, and the green LED is switched on . The loop starts again in the green phase of the traffic light with
a waiting time of 2 seconds . Of course you can adjust all times as you like . In reality, the traffic light
phases depend on the dimensions of the intersection and the traffic flows . The yellow and red-yellow
phases are usually 2 seconds long each .

This loop is repeated until the user presses [Ctrl]+[C] .

16

4th day

Today in the Advent calendar
• Seven-segment display

Today, the Advent calendar contains a four-digit seven-segment display with which numbers and simple
symbols can be displayed . Such seven-segment displays are often used in digital clocks, and previ-
ously also in pocket calculators . Petrol stations use this display technology in a large format . However,

mechanical display elements are often used here
instead of LEDs . Not all letters of the alphabet can be
displayed clearly on these displays, but the letters A to
F, which are necessary to display hexadecimal num-
bers, do work . Most seven-segment displays still have
an eighth LED for the decimal point .

With a single-digit seven-segment display, each LED
can be controlled individually via its anode . All LEDs
use a common cathode or vice versa . Accordingly, the
display modules are referred to as "Common Cathode"
or "Common Anode" .

In the four-digit seven-segment display supplied with
the Advent calendar, the cathodes of the eight LEDs of a digit are con-
nected together according to the common cathode circuit diagram .
In addition, the four anodes of the same LED position are connected
together in all four digits . This means that the entire display for a total
of 32 LEDs only needs 12 connections instead of 64 .

The connections of the anodes are marked with the four digits 1 to 4,
the connections of the cathodes after the seven segments with A to G as
well as DP for the decimal point .

The connections on the seven-segment display . The names of the segments

To illuminate a single LED on the display, the cathode of the corre-
sponding digit must be connected to the ground line and the anode of
the segment must be connected to a +3 .3 V signal . As usual, a 220 ohm
series resistor must be connected in front of each LED .

Three segments of the seven-segment display will flash
alternately
As a first simple example, the three horizontal segments of the sev-
en-segment display will flash alternately .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 3 220-ohm resistor (red-red-
brown), 4 GPIO connection cables

Circuit diagram of the seven-segment display .

3 segments of the seven-segment display flash alternately .

4 . Day

17

Wiring diagram of the seven-segment display
Once the seven-segment display is installed, the connections are difficult to see . It
is installed on the plug-in board in rows 5 to 10 in all experiments in this Advent
calendar .

The following table shows which pins of the seven-segment display are connected
to which GPIO pins . The grey pins are not used in this program .

In this program only the three horizontal segments A, G and D are connected to
GPIO pins via resistors . The digit 1 is connected to GND to let the segments of the
first digit flash .

The program
The program 04seg7.py causes the three LEDs of the horizontal segments A, G and
D to flash alternately one after the other .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

seg=[21, 13, 26]
for s in range(3):
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

print("Ctrl+C ends the program")
try:
 while True:
 for i in range(3):
 GPIO.output(seg[i], 1)
 time.sleep(0.2)
 GPIO.output(seg[i], 0)

except KeyboardInterrupt:
 GPIO.cleanup()

How it works
The first lines are already known, they import the libraries RPi.GPIO for controlling the GPIO ports and
time for time delays . The numbering of the GPIO ports is then set to BCM as in the previous example .

seg=[21, 13, 26]

A list containing the GPIO numbers of the pins used is set up to control the three LEDs .

for s in range(3):
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

The three GPIO ports used are initialised one after the other as outputs . We do not use GPIO port num-
bers, but the previously defined list . Within a list, the single elements are indexed by numbers starting
with 0 . seg[0] is therefore the first element, in this case 21 . The parameter range() in the for loop
specifies how often the loop is run . More precisely, it denotes the first value that is no longer reached .

Each for loop requires a loop counter, a variable that takes a new value each time it passes through
the loop . This value can be queried like any other variable within the loop . In the three loop passes, the
variable s assumes the values 0, 1 and 2 and thus initialises the three elements of the list . For endless
flashing, like in the last program, we use a try: ... except-construction with an endless loop, which is
terminated by the key combination [Ctrl]+[C] .

 while True:
 for i in range(3):
 GPIO.output(seg[i], 1)
 time.sleep(0.2)
 GPIO.output(seg[i], 0)

Within the infinite loop, another loop runs three times and switches on one of the segments in each
pass, waits 0 .2 seconds and switches it off again . The next segment in the list then follows .

Seven-segment display with connection numbers on the plug-in

board

Pin seven-segment display Pinboard Segment / digit GPIO pin
1 5 F-J E -
2 6 F-J D 26
3 7 F-J DP -
4 8 F-J C -
5 9 F-J G 13
6 10 F-J 4 -
7 10 A-E B -
8 9 A-E 3 -
9 8 A-E 2 -
10 7 A-E F -
11 6 A-E A 21
12 5 A-E 1 GND

18

5th day

Today in the Advent calendar
• 1 GPIO connection cable

Running light on the seven-segment display
The experiment of the 5th day causes the middle segment of all four
digits of the seven-segment display to light up as a running light . For
this purpose, the program switches the cathodes of the digits alternately,
while the anode for the segment always remains switched on .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 1 220-
ohm resistor (red-red-brown), 5 GPIO connection cables

This circuit uses only a single series resistor connected to the common
cathode . It does not matter whether the series resistor is connected to
the anode in front of the LED or to the cathode behind the LED . Make
sure, however, that each LED has its own series resistor . In this example,
only one LED lights up at a time, so there is no problem here .

Wiring diagram of the seven-segment display
The following table shows which pins of the seven-segment display are
connected to which GPIO pins . The grey pins are not used in this pro-
gram .

The program
The program 05seg7.py switches on the G-segments of all four digits one
after the other in an endless loop and switches them off again after 0 .2
seconds each, resulting in a chaser effect .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

seg=13
digit=[16, 12, 7, 6]

GPIO.setup(seg, GPIO.OUT, initial=1)
for z in range(4):
 GPIO.setup(digit[z], GPIO.OUT, initial=1)

print("Ctrl+C terminates the program")
try:
 while True:
 for i in range(4):
 GPIO.output(digit[i], 0)
 time.sleep(0.2)
 GPIO.output(digit[i], 1)

except KeyboardInterrupt:
 GPIO.cleanup()

How it works
The program works with some small differences like the program of day 4 .

Segment G at pin 13 is permanently switched on . The cathodes of the four digits are defined in the list
num[] and are briefly set to 0 one after the other in the infinite loop . In state 0 the cathode is connected
to ground; the segment lights up . The cathodes of the other three segments are set to 1 for as long as they
are connected to +3 .3 V . The respective segments do not light up .

One segment and four digits of the seven-segment display connected .

Pin seven-segment display Pinboard Segment / digit GPIO pin
1 5 F-J E -
2 6 F-J D -
3 7 F-J DP -
4 8 F-J C -
5 9 F-J G 13
6 10 F-J 4 6
7 10 A-E B -
8 9 A-E 3 7
9 8 A-E 2 12
10 7 A-E F -
11 6 A-E A -
12 5 A-E 1 16

5 . Day

19

6th day

Today in the Advent calendar
• 3 GPIO connection cable

Another running light on the seven-segment display
The experiment of the 6th day causes all segments of the first digit of
the seven-segment display to light up as a running light . This is possible
with only one series resistor by means of a circuit trick .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 1
220-ohm resistor (red-red-brown), 8 GPIO connection cables

This circuit also uses only a single series resistor connected to the com-
mon cathode .

Wiring diagram of the seven-segment display
The following table shows which pins of the seven-segment display are
connected to which GPIO pins . The grey pins are not used in this pro-
gram .

Pin seven-segment display Pinboard Segment / digit GPIO pin
1 5 F-J E 19
2 6 F-J D 26
3 7 F-J DP -
4 8 F-J C 11
5 9 F-J G 13
6 10 F-J 4 -
7 10 A-E B 8
8 9 A-E 3 -
9 8 A-E 2 -
10 7 A-E F 20
11 6 A-E A 21
12 5 A-E 1 16

The program
The program 06seg7.py switches the segments of a digit on one after
the other and off again after 0 .1 seconds . The running light effect looks
like an 8 . The segment G in the middle is switched on twice in each
pass .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20, 'g':13}
for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

digit=16
GPIO.setup(num, GPIO.OUT, initial=0)

print("Strg+C ends the program")
try:
 while True:
 for s in "abgedcgf":
 GPIO.output(seg[s], 1)
 time.sleep(0.1)
 GPIO.output(seg[s], 0)

Seven segments and one digit connected to the seven-segment display .

6 . Day

20

except KeyboardInterrupt:
 GPIO.cleanup()

How it works
A variable of type dictionary, a special form of the list, is used for the seven segments of the display . In
a dictionary , the individual elements are not selected by their number, but by any word, the so-called
key, which can also consist of a single letter . In contrast to a simple list, a dictionary is enclosed in
brackets . It can contain any number of pairs of key and value .

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20, 'g':13}

In our case, the key is the respective code letter for the segment, the value behind it is the GPIO pin
used .

for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

The GPIO pins of all seven segments are defined as outputs and set to 0, which means switched off for
an anode . The loop processes all letters of the specified string one after the other, instead of increment-
ing them within a certain number range, as is usually the case .

digit=16
GPIO.setup(num, GPIO.OUT, initial=0)

The cathode of the digit used is set to 0 to switch on the digit .

 for s in "abgedcgf":
 GPIO.output(seg[s], 1)
 time.sleep(0.1)
 GPIO.output(seg[s], 0)

Each time the endless loop is run, an inner loop processes the entered character string, sets the corre-
sponding segments of the display to 1 one after the other and switches them on for 0 .1 seconds .

If the user presses the key combination [Ctrl]+[C], the infinite loop is terminated as in previous experi-
ments, and the GPIO ports are closed .

21

7th day

Today in the Advent calendar
• 1 resistor 220 ohms

• Jumper wire

Jumper wire
Today, jumper wire is included in the Advent calendar . The jumper
wire is used to create short connection bridges, which are used to con-
nect rows of contacts on the plug-in board . Depending on the experi-
ment, cut the wire to the appropriate length using a small wire cutter .
To be able to insert the wires easier into the plug-in board, it is advisa-
ble to cut the wires slightly diagonally to create a kind of wedge .

Four digits show the same flashing pattern
The program of the 7th day shows a blinking pattern with four seg-
ments on all four digits . The program shows you how to achieve a
different effect with minimal changes based on an earlier - general -
program .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 4
220-ohm resistor (red-red-brown), 5 GPIO connection cables, 4 wire
jumpers (different lengths)

The four cathodes of the digits are connected via jumper wires to the
upper contact strip of the plug-in board shown in the illustration . This
is connected to a GND pin of the Raspberry Pi .

Wiring diagram of the seven-segment display
The following table shows which pins of the seven-segment display
are connected to which GPIO pins . The grey pins are not used in this
program .

Pin seven-segment
display

Pinboard Segment / digit GPIO pin

1 5 F-J E 19
2 6 F-J D 26
3 7 F-J DP
4 8 F-J C 11
5 9 F-J G 13
6 10 F-J 4 GND
7 10 A-E B
8 9 A-E 3 GND
9 8 A-E 2 GND
10 7 A-E F
11 6 A-E A
12 5 A-E 1 GND

Four segments of the seven-segment display connected . The digits are connected

to ground .

7 . Day

22

The program
The program 07seg7.py runs a running light on all four digits over the lower four segments (C, D, E, G) .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20, 'g':13}
for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

digit=16
GPIO.setup(num, GPIO.OUT, initial=0)

print("Strg+C ends the program")
try:
 while True:
 for s in "cdeg":
 GPIO.output(seg[s], 1)
 time.sleep(0.1)
 GPIO.output(seg[s], 0)

except KeyboardInterrupt:
 GPIO.cleanup()

How it works
The program differs from the previous one only in a single line:

 for s in "cdeg":

This line indicates which segments should light up in the loop . All definitions and the program logic
remain the same . Owing to the parallel connection of the digits, no further GPIO pins need to be initial-
ised .

For this special circuit, the general program can be simplified by omitting unneeded definitions, as the
program 07seg7_02.py shows .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

seg={'c':11, 'd':26, 'e':19, 'g':13}
for s in "cdeg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

print("Strg+C ends the program")
try:
 while True:
 for s in "cdeg":
 GPIO.output(seg[s], 1)
 time.sleep(0.1)
 GPIO.output(seg[s], 0)

except KeyboardInterrupt:
 GPIO.cleanup()

23

8th day

Today in the Advent calendar
• 3 resistors 220 ohms

Controlling a seven-segment display with Scratch
The program of the 8th day controls the segments of the seven-seg-
ment display interactively and individually with Scratch . New program-
ming techniques from Scratch that have not yet been described are
presented .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 7 220-
ohm resistors (red-red-brown), 8 GPIO connection cables, 4 wire jump-
ers (different lengths)

Wiring diagram of the seven-segment display
The following table shows which pins of the seven-segment display
are connected to which GPIO pins . The grey pin is not used in this
program .

Pin seven-segment
display

Pinboard Segment / digit GPIO pin

1 5 F-J E 19
2 6 F-J D 26
3 7 F-J DP
4 8 F-J C 11
5 9 F-J G 13
6 10 F-J 4 GND
7 10 A-E B 8
8 9 A-E 3 GND
9 8 A-E 2 GND
10 7 A-E F 20
11 6 A-E A 21
12 5 A-E 1 GND

The program
The Scratch-2 program 08seg7.sb2 offers a graphical interface to inter-
actively switch the seven segments on or off individually .

First delete the cat, the Scratch symbol figure, which is not used in this
program . To do this, right-click on the cat in the lower right object/figure
window and select Delete from the context menu .

In the program rectangular figures in the arrangement of the seven seg-
ments should switch the LEDs . You can paint this figure directly in Scratch .
Click on the symbol Draw new figure in the figure window .

Scratch contains a simple paint program that you can use to paint figures .
First finish one figure completely, you can duplicate the others later includ-
ing all settings and script blocks and only adjust slightly .

Switch the painting program to vector mode in the lower right corner . Then
use the Rectangle tool in the toolbar on the right to draw a rectangle about the size shown . This is to
represent the upper horizontal segment of the seven-segment display .

All seven segments of the seven-segment display connected . The digits are con-

nected to ground .

The empty figure window in Scratch 2

8 . Day

24

Each figure in Scratch can change its appearance using so-called costumes . Copy the existing costume . To
do this, right-click it in the list of costumes and select Duplicate from the context menu . Rename the two
costumes: out for the turned off LED and on for the turned on LED .

Edit costume one using the paint program . Fill the coloured area with the colour bucket icon with red to
indicate the LED is on .

Costume for a switched off LED

in the paint program .

Rename the figure in the figure palette at the bottom left to A because it represents the A segment of the
seven-segment display . Click on the blue info symbol . A window then appears for renaming the current
figure .

Next, create the program for this figure . Since the programs of all seven segments are very similar, you
can duplicate them immediately using the figures and later only adjust them slightly .

Each figure gets its own script blocks . If the green flag is clicked, the GPIO pin 21 is set as output and
switched off . To do this, attach the When green flag block while clicking a block set gpio... to

If the figure itself is clicked, this segment will switch on, both on the screen and on the seven-segment
display and switch off the next time it is clicked .

Use block If LED1 is clicked from the registration card controller .

In this case, the costume is first changed to the next one . This way the segment on the screen will switch
with every click . Attach a block next costume from the block palette Appearance .

Then check a if ... then ... otherwise query, the costume of which is currently displayed . The costumes
have the numbers 1 and 2 . Depending on the active costume, the segment is switched on or off at GPIO
pin 21 .

The first segment in Scratch 2‘s painting

program

The two costumes of the first figure .

Scratch blocks for segment A of the

seven-segment display

25

After all script blocks are finished, duplicate the figure A by right
clicking the figure window . Rename the new figure to B .

Rotate the new figure by 90°, as it represents the vertical seg-
ment B . Don't turn the costumes, turn the whole figure . Switch
to the Scripts tab and enter 90 degrees on the Movement block
palette in the Rotate clockwise ... on the block pallet . You do
not need to drag the block into the program . Simply double click
on it, it will be executed, and the figure rotated . Then slide the
figure to the appropriate position next to segment A .

In all three set gpio... to ...-blocks select the GPIO pin 8 to
which segment B of the seven-segment display is connected .

Duplicate the other figures in the same way, rename them, move
them to the appropriate positions
and change the GPIO pins .

Start the program by clicking on
the green flag . If you click on one
of the figures, it will change colour
and the corresponding LED of the
seven-segment display is switched
on or off .

The finished program in action

Duplicate and rotate segment

Selecting GPIO Pins for Segment B

26

9th day

Today in the Advent calendar
• 1 GPIO connection cable

Digits on the seven-segment display
The actual purpose of a seven-segment display in most cases is not graphic gimmickry, but to display
numbers . The program of the 9th day shows how this works .

The circuit design is the same as on the 8th day, but this time we use Python instead of Scratch .

The program
The program 09zahl.py displays a counter, which
counts all digits one after the other on the display .
All four digits of the display always show the same
number .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20, 'g':13}
for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

number=[
 "abcdef", #0
 "bc", #1
 "abdeg", #2
 "abcdg", #3
 "bcfg", #4
 "acdfg", #5
 "acdefg," #6
 "abc", #7
 "abcdefg", #8
 "abcdfg", #9
]

print("Strg+C ends the program")
try:
 while True:
 for i in range(10):
 for s in number[i]:
 GPIO.output(seg[s], 1)
 time.sleep(0.5)
 for s in "abcdefg":
 GPIO.output(seg[s], 0)

except KeyboardInterrupt:
 GPIO.cleanup()

The ten digit images of a seven-segment display .

9 . Day

27

How it works
In this program, the GPIO pins for the seven segments are also initialised using a dictionary .

number=[
 "abcdef", #0
 "bc", #1
 "abdeg", #2
 "abcdg", #3

 "bcfg", #4
 "acdfg", #5
 "acdefg," #6
 "abc", #7
 "abcdefg", #8
 "abcdfg", #9
]

The list number defines the segments to be switched on for the individual digits from 0 to 9 . This is a
normal list, of which the elements are only written below each other for the sake of clarity . The digits
themselves are not part of the list . Like everything behind a # in a line, they are considered a comment
by Python and are ignored during program execution .

The program runs again in an endless loop, which can be terminated by the user at any time with the
key combination [Ctrl]+[C] .

 for i in range(10):

A loop counts continuously from 0 to 9 to display the digits one after the other .

 for s in number[i]:
 GPIO.output(seg[s], 1)

Each time the endless loop passes, an inner loop processes string entered in the list for that number, sets
the corresponding segments of the display to 1 and switches them on for 0 .1 seconds .

 time.sleep(0.5)
 for s in "abcdefg":
 GPIO.output(seg[s], 0)

After the loop for a digit has completed a loop, it remains displayed for 0 .5 seconds, then all seven seg-
ments are set to 0 regardless of their current status and are thus switched off . Then the display of the
next number starts .

except KeyboardInterrupt:
 GPIO.cleanup()

If the user presses the key combination [Ctrl]+[C], the infinite loop is terminated as in previous experi-
ments, and the GPIO ports are closed .

28

10th day

Today in the Advent calendar
• 1 GPIO connection cable

Multiple digits on the seven-segment display
The previous experiment used all four digits of the seven-segment dis-
play simultaneously . It is much more interesting to use all four digits
independently to represent different digits .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 7
220-ohm resistors (red-red-brown), 11 GPIO connection cables

Wiring diagram of the seven-segment display
The following table shows which pins of the seven-segment display are
connected to which GPIO pins . The grey pin is not used in this program .

Pin seven-segment display Pinboard Segment / digit GPIO pin
1 5 F-J E 19
2 6 F-J D 26
3 7 F-J DP 5
4 8 F-J C 11
5 9 F-J G 13
6 10 F-J 4 6
7 10 A-E B 8
8 9 A-E 3 7
9 8 A-E 2 12
10 7 A-E F 20
11 6 A-E A 21
12 5 A-E 1 16

The trick with afterglow
Since each segment always has the same signal for all digits, individual
digits can be switched on and off, but they cannot display different
numbers . In order to display a different number on each number of
the display, you have to use a trick . A light source is perceived by the
human eye as still glowing for a short time, although it is actually
already switched off .

The so-called time-division multiplexing procedure switches very quickly from one digit to the next and
simultaneously displays a different number for each change . The trick is to find the right time interval . If
the numbers change too quickly, they seem to blur when looking at it, if they change too slowly, a clear
flickering can be seen .

Many such experiments found on the Internet also use an ATmega microcontroller, such as the Arduino,
or a shift register module to control the seven-segment display . There are now also seven-segment dis-
plays in which such electronics are already installed . The program of the 10th day shows that control by
time division multiplex is also possible without additional electronics besides the Raspberry Pi .

The program
The program 10zahl.py displays the sequence of numbers 1234 on the seven-segment display .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20, 'g':13}
for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

All seven segments of the seven-segment display connected . The digits are

individually connected to GPIO pins .

10 . Day

29

digit=[16, 12, 7, 6]
for z in digit:
 GPIO.setup(z, GPIO.OUT, initial=1)

number=[
 "abcdef", #0
 "bc", #1
 "abdeg", #2
 "abcdg", #3
 "bcfg", #4
 "acdfg", #5
 "acdefg," #6
 "abc", #7
 "abcdefg", #8
 "abcdfg", #9
]

print("Strg+C ends the program")
try:
 while True:
 for i in range(4):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 GPIO.output(digit[i], 0)
 for s in number[i+1]:
 GPIO.output(seg[s], 1)
 time.sleep(0.001)
 GPIO.output(digit[i], 1)

except KeyboardInterrupt:
 GPIO.cleanup()

How it works
The initialisation of the GPIO ports, the list variables for the LEDs and the representation of the numbers
were taken from the last experiment . The main loop that displays the numbers is new .

 for i in range(4):

Within the infinite loop, another loop runs four times to quickly display the four digits one after the
other .

 for s in "abcdefg":
 GPIO.output(seg[s], 0)

A loop sets the anodes of all seven segments to 0, thus switching them off . At this moment all LEDs are
off .

 GPIO.output(digit[i], 0)

The cathode of the current digit is set to 0 so that this digit can then display the corresponding number .

 for s in number[i+1]:
 GPIO.output(seg[s], 1)

The next loop switches all segments of the number to be displayed to 1 and therefore on . This number is
one higher than the loop counter, which counts from 0 to 3 . The digits 1 to 4 will be displayed .

 time.sleep(0.001)

This line lets the program wait 1 millisecond . The LEDs of one digit in reality light up for exactly the same
duration before switching to the next digit . Experiment with different waiting times to adjust the time
division multiplex so that the display flickers as little as possible but does not blur .

 GPIO.output(digit[i], 1)

At the end of the loop, the cathode of the current digit is set to 1 and thus switched off . In the next loop
pass, the next digit is displayed .

30

11th day

Today in the Advent calendar
• 1 GPIO connection cable

The circuit design is the same as on the 10th day .

Show arbitrary numbers
In the last program, the number 1234 was fixed in the program . The next program offers the possibility to
enter and display arbitrary numbers . The options for correcting user input errors are also shown .

The program
The program 11zahl.py requires a four-digit number, but this does not mean that the user actually
enters it . Therefore, the program must intercept all erroneous inputs or convert them to valid numbers .
For example, if the user accidentally or intentionally enters a longer or shorter number or even letters
and special characters, the program must not terminate because of the errors .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20, 'g':13}
for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

digit=[16, 12, 7, 6]
for z in digit:
 GPIO.setup(z, GPIO.OUT, initial=1)

number=[
 "abcdef", #0
 "bc", #1
 "abdeg", #2
 "abcdg", #3
 "bcfg", #4
 "acdfg", #5
 "acdefg," #6
 "abc", #7
 "abcdefg", #8
 "abcdfg", #9
]

z = [0,0,0,0]
print("Ctrl+C ends the program")

def za():
 for i in range(4):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 GPIO.output(digit[i], 0)
 for s in number[z[i]]:
 GPIO.output(seg[s], 1)
 time.sleep(0.001)
 GPIO.output(digit[i], 1)

try:
 while True:
 s = input("Please enter four-digit number:")
 s = s.zfill(4)
 for i in range(4):
 if s[i].isdigit():
 z[i] = int(s[i])

11 . Day

31

 else:
 z[i] = 0
 sek = time.time()
 while time.time() <= sec + 2:
 za()

except KeyboardInterrupt:
 GPIO.cleanup()

How it works
Large parts of the program are known from the 10th day . Everything concerning the initialisation of the
GPIO ports and the list for displaying the digits on the seven segments of the display is taken from the
last program .

z = [0,0,0,0]

The list z[] contains four digits to be displayed in the course of the program . This list is initialised once at
the beginning and filled with four zeros .

def za():
 for i in range(4):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 GPIO.output(digit[i], 0)
 for s in number[z[i]]:
 GPIO.output(seg[s], 1)
 time.sleep(0.001)
 GPIO.output(digit[i], 1)

The number display is now stored in a function za() , which is as general as possible and can therefore
be used for other programs . It no longer displays the digits 1 to 4 one after the other, as in the last pro-
gram, but the four digits from the list z[] .

The main part of the program is completely new and runs again as an endless loop . The user is
prompted to enter a four-digit number . Whatever the user actually enters is converted into a valid four-
digit number, which is then displayed for about 2 seconds . Then the prompt for entering a number
appears again .

The program must not simply abort even if the input is invalid .

try:
 while True:
 s = input("Please enter four-digit number:")

The infinite loop is not used in this program to display the digits, but for user input . It therefore does not
run many times per second, but only once for each number entered .

The user is prompted to enter a four-digit number . The function input() accepts the input in plain text
without evaluating it and saves it as a string in the variable s . This character string can be of any length
and can contain any other character besides digits . Invalid or missing numbers should simply be dis-
played as 0 .

32

 s = s.zfill(4)

To mitigate the problem that the user may enter fewer than four characters or even simply press the
[Enter] key, the string is filled in with zeros down to four digits at the beginning . The character string s is
therefore always at least four characters long .

 for i in range(4):

Now a loop begins which determines a valid digit for each of the four digits of the display and writes it to
the list z[] . The first four characters of the character string s are evaluated . Starting with the fifth charac-
ter, all characters are ignored .

 if s[i].isdigit():
 z[i] = int(s[i])

If the character read from the string is actually a digit, its numerical value is stored at the corresponding
position in the list z[] . To check this, use the isdigit() method, which is automatically available for
each string variable . It returns True if all characters of the string - which in this case consists of only one
character - are digits .

The function int() converts a character or a floating point number into an integer . In this case, the char-
acter just read from the string is converted into the corresponding digit .

 else:
 z[i] = 0

In the other case, if there is another character at the position of the character string just read because the
user did not adhere to the rules during input, a 0 is entered at the corresponding position in the list z[] .

The number defined in this way, the digits of which are now individually in four elements of the list z[] ,
shall be displayed for 2 seconds . Then the loop starts anew and prompts the user for input .

Since to display the number on the four-digit seven-segment display a separate program function must
run permanently in quick succession, you cannot simply use time.sleep() for the waiting time . A while
loop repeatedly runs the function za() for 2 seconds to display numbers and then ends the main loop .

 sek = time.time()
 while time.time() <= sec + 2:
 za()

In the variable sek the current time is stored in seconds, which the function time.time() outputs at any
time to the nearest hundredth of a second .

When calculating time data in programs, it is best to always refer to the system time of the Raspberry Pi
and not, for example, try to calculate the duration of a loop yourself and determine time periods from it .
The background processes of a multitasking operating system can quickly falsify these results . The differ-
ence between two absolute times, on the other hand, is unambiguous .

The while loop queries whether two or more seconds have passed since the time was saved . As long as
this is not the case, the function za() is called again and again to display numbers .

After the 2 seconds, this loop ends, and with it also the superior while loop ends . The display disap-
pears, and the user is prompted to enter a new number .

33

12th day

Today in the Advent calendar
• 1 GPIO connection cable

The circuit design is the same as on the last days .

Countdown to Christmas
The program for the 12th day indicates how many days there are left until Christmas on the seven-seg-
ment display .

The program
The program 12countdown.py uses some new Python elements for date calculation .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time, datetime

GPIO.setmode(GPIO.BCM)

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20,
'g':13}
for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

digit=[16, 12, 7, 6]
for z in digit:
 GPIO.setup(z, GPIO.OUT, initial=1)

number=[
 "abcdef", #0
 "bc", #1
 "abdeg", #2
 "abcdg", #3
 "bcfg", #4
 "acdfg", #5
 "acdefg," #6
 "abc", #7
 "abcdefg", #8

 "abcdfg", #9
]

z=[0,0,0,0]
t=datetime.date(2019, 12, 24) - datetime.date.today()
z[0]=int(t.days/1000)
z[1]=int(t.days%1000/100)
z[0]=int(t.days/1000)
z[0]=int(t.days/1000)
print(z)
print("Ctrl+C terminates the program")

try:
 while True:
 for i in range(4):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 GPIO.output(digit[i], 0)
 for s in number[z[i]]:
 GPIO.output(seg[s], 1)
 time.sleep(0.001)
 GPIO.output(digit[i], 1)

except KeyboardInterrupt:
 GPIO.cleanup()

How it works
The initialisation of the GPIO pins and the list for displaying the digits on the seven segments of the display is taken from the last program .

import time, datetime

At the beginning, the library datetime for date calculations is imported additionally .

t=datetime.date(2019, 12, 24) - datetime.date.today()

The function datetime.date() creates a date object with a specific date . This line calculates the difference between two date objects, the
period between 24 .12 .2019 and today . The object with the result is stored in the variable t .

z[0]=int(t.days/1000)
z[1]=int(t.days%1000/100)
z[0]=int(t.days/1000)
z[0]=int(t.days/1000)

Then the four digits to be displayed are stored in the four elements of the list z[] . t.days returns the days in the date object . The function
int() stores only the integer part of the calculation results .

• The first digit z[0] results from dividing the days by 1000 .

• The second digit z[1] is calculated using the modulo operator% . It gives the indivisible remainder for an integer division . The result is divided
by 100 and gives the second digit of the number to be displayed .

• The third digit z[2] is calculated in the same way .

• The fourth digit z[3] is the indivisible remainder of the division by 10 .
print(z)

This line displays the four digits in the Python shell . It is not necessary for the calculation and can also be omitted . The number is then dis-
played on the seven-segment display using the known endless loop .

12 . Day

34

13th day

Today in the Advent calendar
• 1 button

• 1 resistor 10 kOhm

The connection diagram of the seven-segment display is the same as for the last days .

Connecting a push-button to a GPIO pin
Not only can GPIO pins output data, for example via LEDs, they can also be used for data input . For this
they must be defined as inputs in the program . In the next project, we will use a button for input, which
is plugged directly into the plug-in board . The pushbutton has four connection pins, whereby two oppo-
site (large distance) pins are connected to each other . As long as the key is pressed, all four connections
are connected . In contrast to a switch, a push-button does not engage . The connection is immediately
disconnected again once released .

If a +3 .3 V signal is present on a GPIO pin defined as
input, it is evaluated as logical True or 1 . This way
you can connect the respective GPIO pin to the +3 .3
V connector of the Raspberry Pi via a push button,
which you must not do with older Raspberry Pi mod-
els! This would overload the GPIO pin . The Raspberry
Pi 3 and Raspberry Pi 3 B+ have built-in protective
resistors and therefore no externally connected pro-
tective resistors are required .

In most cases, this simple circuit already works, but
the GPIO pin would not have a clearly defined state
when the button is open . If a program queries this
port, random results may occur . To prevent this, a
comparatively very high resistance - usually 10 kOhm
- is connected to ground . This so-called pull-down
resistor pulls the status of the GPIO pin down to 0 V
again when the push-button is open . As the resist-
ance is very high, there is no danger of a short circuit
as long as the button is pressed . When the button is
pressed, +3 .3 V and the ground line are connected
directly via this resistor .

Christmas countdown with button
The program for the 13th day indicates how many days there are left until Christmas . Pressing the button
starts a countdown which counts down to 0 .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 7 220-ohm resistors (red-red-brown), 1
10 kOhm resistor (brown-black-orange), 1 push button, 14 GPIO connection cables

The contact strip on the left in the figure is connected to the GPIO pin 18 and via a 10 kOhm pull-down
resistor (brown-black-orange) to the ground line on the lower contact rail of the plug-in board . The con-
tact strip on the right in the illustration is connected to the +3 .3 V line of the Raspberry Pi .

The circuit design of the seven-segment display is the same as for the previous days .

The program
The program 13countdown.py again shows the number of days until Christmas . When the button is
pressed, a countdown will run down to 0 .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time, datetime

GPIO.setmode(GPIO.BCM)

Push-button at a GPIO input

Push-button with pull-down resistor at a GPIO input .

13 . Day

35

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20, 'g':13}
for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

digit=[16, 12, 7, 6]
for z in digit:
 GPIO.setup(z, GPIO.OUT, initial=1)

number=[
 "abcdef", #0
 "bc", #1
 "abdeg", #2
 "abcdg", #3
 "bcfg", #4
 "acdfg", #5
 "acdefg," #6
 "abc", #7
 "abcdefg", #8
 "abcdfg", #9
]

button=18
GPIO.setup(button, GPIO.IN, GPIO.PUD_DOWN)

z=[0,0,0,0]

def za():
 for i in range(4):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 GPIO.output(digit[i], 0)
 for s in number[z[i]]:
 GPIO.output(seg[s], 1)
 time.sleep(0.001)
 GPIO.output(digit[i], 1)

t=datetime.date(2019, 12, 24) - datetime.date.today()
x=t.days
z[0]=int(x/1000)
z[1]=int(x%1000/100)
z[2]=int(x%100/10)
z[3]=int(x%10)

print("Press button to start countdown")
while GPIO.input(button)==0:
 za()

while x>=0:
 z[0]=int(x/1000)
 z[1]=int(x%1000/100)
 z[2]=int(x%100/10)
 z[3]=int(x%10)
 for j in range(100):
 za()
 x-=1

GPIO.cleanup()

Push-button with pull-down resistor .

36

How it works
The button at pin 18 is defined as GPIO input . The pin number is stored in the variable button .

button=18
GPIO.setup(button, GPIO.IN, GPIO.PUD_DOWN)

The program again uses the function za() known from an earlier program to display a four-digit number
on the seven-segment display .

t=datetime.date(2019, 12, 24) - datetime.date.today()
x=t.days
z[0]=int(x/1000)
z[1]=int(x%1000/100)
z[2]=int(x%100/10)
z[3]=int(x%10)

The number of days until Christmas is first stored in a new variable x and then as single digits in the four
fields of the list z[] .

while GPIO.input(button)==0:
 za()

An endless loop calls the function za() again and again to display this number as long as the button is
not pressed .

while x>=0:
 z[0]=int(x/1000)
 z[1]=int(x%1000/100)
 z[2]=int(x%100/10)
 z[3]=int(x%10)
 for j in range(100):
 za()
 x-=1

If the button has been pressed, a new loop will start, which counts down the value x by 1 in each pass .
The values for the list z[] are recalculated each time . Then, an inner loop calls the function za() a
hundred times in a row, causing each number to glow for a tenth of a second before the next number is
displayed .

If 0 is reached by counting down, it still appears on the display . The GPIO ports are then closed and the
program ends .

37

14th day

Today in the Advent calendar
• 1 button

The connection diagram of the seven-segment display is the same as
for the last days .

Connecting push-buttons without external pull-down resistors
Current Raspberry Pi models have built-in pull-down resistors that can
be switched on and off on the software side . This saves the external
resistor . The button can be connected directly between +3 .3V and the
GPIO pin, as explained in the experiment of the 14th day .

Christmas countdown with two buttons
The program for the 14th day also indicates how many days there are
left until Christmas . Pressing the button starts a countdown which
counts down to 0 . At the end, the countdown can be restarted using
the same button . The second button ends the program . It must be
pressed a little longer because, depending on where the program is at
the moment, several loops have to be aborted one after the other .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 7
220-ohm resistors (red-red-brown), 2 buttons, 14 GPIO connection
cables, 2 jumpers

The program
The program 14countdown.py is based on the program of the 13th day
and contains more loops and break instructions to abort the loops .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time, datetime

GPIO.setmode(GPIO.BCM)

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20, 'g':13}
for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

digit=[16, 12, 7, 6]
for z in digit:
 GPIO.setup(z, GPIO.OUT, initial=1)

number=[
 "abcdef", #0
 "bc", #1
 "abdeg", #2
 "abcdg", #3
 "bcfg", #4
 "acdfg", #5
 "acdefg," #6
 "abc", #7
 "abcdefg", #8
 "abcdfg", #9
]

button1=18
GPIO.setup(button1, GPIO.IN, GPIO.PUD_DOWN)
button2=4

Two push-buttons without external pull-down resistors

14 . Day

38

GPIO.setup(button2, GPIO.IN, GPIO.PUD_DOWN)

z=[0,0,0,0]

def za():
 for i in range(4):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 GPIO.output(digit[i], 0)
 for s in number[z[i]]:
 GPIO.output(seg[s], 1)
 time.sleep(0.001)
 GPIO.output(digit[i], 1)

print("Press button 1 to start countdown and restart")
print("Press 2 to quit")
while True:
 t=datetime.date(2019, 12, 24) - datetime.date.today()
 x=t.days
 z[0]=int(x/1000)
 z[1]=int(x%1000/100)
 z[2]=int(x%100/10)
 z[3]=int(x%10)
 if GPIO.input(taste2)==1:
 break

 while GPIO.input(taste1)==0:
 za()
 if GPIO.input(taste2)==1:
 break

 while x>=0:
 z[0]=int(x/1000)
 z[1]=int(x%1000/100)
 z[2]=int(x%100/10)
 z[3]=int(x%10)
 for j in range(100):
 za()
 x-=1
 if GPIO.input(taste2)==1:
 break

 while GPIO.input(taste1)==0:
 za()
 if GPIO.input(taste2)==1:
 break

GPIO.cleanup()

39

How it works
The initialisation of the GPIO pins and the list for displaying the digits on the seven segments of the dis-
play is taken from the last program .

button1=18
GPIO.setup(button1, GPIO.IN, GPIO.PUD_DOWN)
button2=4
GPIO.setup(button2, GPIO.IN, GPIO.PUD_DOWN)

The GPIO pins of the two buttons are then initialised . The parameter GPIO.PUD_DOWN at the initialisation
of the GPIO pins for the push buttons turns on the built-in pull-down resistor . This eliminates the need
for an external pull-down resistor .

The whole program now runs in an endless loop, because the countdown can be repeated again and
again by pressing one of the
buttons .

while True:
 t=datetime.date(2019, 12, 24) - datetime.date.today()
 x=t.days
 z[0]=int(x/1000)
 z[1]=int(x%1000/100)
 z[2]=int(x%100/10)
 z[3]=int(x%10)
 if GPIO.input(taste2)==1:
 break

The infinite loop and also all subordinate loops check in each pass whether key 2 is pressed . If this is the
case, the loop is aborted with a break statement .

 while GPIO.input(taste1)==0:
 za()
 if GPIO.input(taste2)==1:
 break

After calculating the number of days until Christmas, this number is displayed on the seven-segment
display as long as button 1 is not pressed . This loop also queries button 2 . If this is pressed, the loop is
aborted . But then the next loop will follow . To cancel all loops up to and including the outer endless
loop, press the button for a few milliseconds, similar to a reset button .

 while x>=0:
 z[0]=int(x/1000)
 z[1]=int(x%1000/100)
 z[2]=int(x%100/10)
 z[3]=int(x%10)
 for j in range(100):
 za()
 x-=1
 if GPIO.input(taste2)==1:
 break

If button 1 is pressed, the loop will end regularly, and the next loop will follow, counting down the count-
down to 0 . It can now also be aborted by pressing button 2 .

 while GPIO.input(taste1)==0:
 za()
 if GPIO.input(taste2)==1:
 break

Finally, all four digits are set to 0 . Another loop will display this number until button 1 is pressed . In this
case, the endless loop starts again from the beginning and calculates the number of days remaining until
Christmas .

40

15th day

Today in the Advent calendar
• 1 GPIO connection cable

The connection diagram of the seven-segment display is the same as
for the last days .

Digits with Scratch on the seven-segment display
The program of the 15th day shows how Scratch numbers can be dis-
played on a seven-segment display . Scratch is unfortunately not fast
enough to control all four digits of the display by time division multi-
plex, even in turbo mode . The program therefore only displays a single
digit at a time .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 7
220-ohm resistors (red-red-brown), 11 GPIO connection cables

Wiring diagram of the seven-segment display
The following table shows which pins of the seven-segment display
are connected to which GPIO pins . The grey pin is not used in this pro-
gram .

Pin seven-segment
display

Pinboard Segment / digit GPIO pin

1 5 F-J E 19
2 6 F-J D 26
3 7 F-J DP 5
4 8 F-J C 11
5 9 F-J G 13
6 10 F-J 4 6
7 10 A-E B 8
8 9 A-E 3 7
9 8 A-E 2 12
10 7 A-E F 20
11 6 A-E A 21
12 5 A-E 1 16

The program
The Scratch 2 program 15number.sb2 expects a digit from the user, which is then displayed on the sev-
en-segment display .

The program uses the same circuit structure as the programs of the previous days . To avoid having to
wire the cathodes of the individual segments to ground or +3 .3V depending on their use, the program
initially switches off the first three digits at GPIO pins 16, 12 and 7 to High and thus off and the right digit
at GPIO pin 6 to Low and thus on .

The anodes of the seven segments do not need to be initialised in advance . They are automatically ini-
tialised when a digit is displayed .

Next, an infinite loop will start, which first expects input from the user .

The block asks ... and wait from the block palette Feel displays an input field on the Scratch back-
ground . The current figure, in the example, the cat, shows the question . The program does not continue
until the user has entered something .

Ten blocks now ask for this input one after the other . The block characters are used to ... from ... from
the block palette Operators in combination with the block . . . = . . . only considers the first character, since
only one character can be displayed at a time .

The block Answer from the block palette Feel automatically contains the entered character string .

All seven segments of the seven-segment display connected . The digits are individ-

ually connected to GPIO pins .

Initialising GPIO pins for the digits

The infinite loop expects a user input at the

beginning .

15 . Day

41

If the user has entered a 0 . . .

If the first digit is 0, GPIO pins 21, 8, 11, 26, 19, 20 will be switched on and GPIO
pin 13 will be set to Low and switched off .

Similar queries will follow for all other digits . All seven segments are always
switched, not just the required ones, so that none of the last digits displayed remains .

Duplicate blocks
When building a Scratch program, you do not need to create similar block combinations every time .
Right-click on the first block you want to duplicate . Then select Duplicate from the menu . All blocks
hanging below are automatically duplicated . The duplicated blocks can then be inserted once more in
the appropriate place in the program .

If the user does not enter a digit, but other characters, the last number displayed on the display will not
change .

State of the GPIO pins if the user has entered a 0 .

The whole program at a glance

The Scratch cat asks for a number

42

16th day

Today in the Advent calendar
• 1 resistor 220 ohms

Digital clock
In the experiment of the 16th day, we build a working digital clock that
displays the current time on the seven-segment display . The digital clock
can run automatically on the Raspberry Pi without the monitor and
keyboard being connected .

In contrast to a PC, the Raspberry Pi does not have a built-in bat-
tery-buffered clock, but always fetches its time from a time server on
the Internet, which provides the current time for every time zone in the
world at all times with the highest precision .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 8 220-
ohm resistors (red-red-brown), 12 GPIO connection cables

Wiring diagram of the seven-segment display
The following table shows which pins of the seven-segment display are
connected to which GPIO pins . This time, all segments, including the
decimal point, are used .

Pin seven-segment
display

Pinboard Segment / digit GPIO pin

1 5 F-J E 19
2 6 F-J D 26
3 7 F-J DP 5
4 8 F-J C 11
5 9 F-J G 13
6 10 F-J 4 6
7 10 A-E B 8
8 9 A-E 3 7
9 8 A-E 2 12
10 7 A-E F 20
11 6 A-E A 21
12 5 A-E 1 16

The program
The program 16uhr.py is based on the Python programs of the last days
with a few additions .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20, 'g':13}
for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

digit=[16, 12, 7, 6]
for z in digit:
 GPIO.setup(z, GPIO.OUT, initial=1)

dp = 5
GPIO.setup(dp, GPIO.OUT, initial=0)

number=[
 "abcdef", #0
 "bc", #1

All seven segments and the decimal point of the seven-segment display are con-

nected . The digits are individually connected to GPIO pins .

16 . Day

43

 "abdeg", #2
 "abcdg", #3
 "bcfg", #4
 "acdfg", #5
 "acdefg," #6
 "abc", #7
 "abcdefg", #8
 "abcdfg", #9
]

z = [0,0,0,0]
print("Strg+C ends the program")

def za():
 for i in range(4):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 GPIO.output(digit[i], 0)
 for s in number[z[i]]:
 GPIO.output(seg[s], 1)
 if i == 1:
 GPIO.output(dp, 1)
 else:
 GPIO.output(dp, 0)
 time.sleep(0.001)
 GPIO.output(digit[i], 1)

try:
 while True:
 time = time.localtime()
 h = time.tm_hour
 m = time.tm_min
 z[0] = int(h / 10)
 z[1] = h % 10
 z[2] = int(m / 10)
 z[3] = m % 10
 while time.localtime().tm_min == m:
 za()

except KeyboardInterrupt:
 GPIO.cleanup()

How it works
Large parts of the program will seem familiar to you . Most things regarding the initialisation of the GPIO
ports and the list for displaying the digits on the seven segments of the display is taken from previous
programs . To represent the decimal point between the second and third digit, additions are necessary .

dp = 5
GPIO.setup(dp, GPIO.OUT, initial=0)

After defining the GPIO pins for segments and digits, the GPIO pin 5 is set for the decimal point . Since,
like the segments, it is a common anode for all four digits, it is set to 0 at the beginning to deactivate the
decimal points .

After the segments of a digit are switched on, within the function za(), when the second digit is currently
lit, the decimal point is also added .

 if i == 1:
 GPIO.output(dp, 1)
 else:
 GPIO.output(dp, 0)

If the loop counter is set to 1 - the first digit has the number 0 - the GPIO output for the decimal point is
set to 1 and thus switched on . For all other digits it is set to 0 and thus switched off .

An endless loop will then start, which will determine the current time and write the digits into the list
z[] , to show them with the function za() .

Decimal point to separate hours and

minutes .

44

try:
 while True:
 time = time.localtime()

In each run, the current time is written to object time, regardless of how long it lasts . The function time.
localtime() from the time library is used for this purpose . The result is a data structure that consists of
different single values .

 h = time.tm_hour
 m = time.tm_min

The two values relevant for the digital clock, hours and minutes, are written from the structure into the
variables h and m .

The following lines determine the individual digits for the display from the time specification and write
them to the list z[], from which they are then read by the function za() .

 z[0] = int(h / 10)

The first digit of the display shows the tens digit of the hours . For this purpose, the current hour specifica-
tion from the variable h is divided by 10 and the integer value is determined . The result can be 0, 1 or 2 .

 z[1] = h % 10

The second digit of the display shows the ones digit of the hours . This is calculated with the modulo
operator % . Modulo determines the indivisible remainder of an integer division . When dividing by 10, the
modulo operator always gives the last digit of the dividend . Since integer values are always calculated,
no int() function is necessary .

 z[2] = int(m / 10)
 z[3] = m % 10

In the same way, the third and fourth digits of the list z[] are written using the two digits of the current
minute specification .

 while time.localtime().tm_min == m:
 za()

As long as the current minute is still equal to the stored minute, the function za() is constantly repeated
to output numbers . If the minutes are changed to the next minute, the main loop starts anew, deter-
mines the digits of the current time and displays them again until the next minute .

Start digital clock automatically
This program can turn the Raspberry Pi into a digital clock that starts automati-
cally without the Raspberry Pi requiring a keyboard or monitor .

Without keyboard and monitor the program must be started automatically,
because the user can call neither Python shell nor command line .

In the file manager, in the directory /etc/xdg/lxsession/LXDE-pi open
the text file autostart in the text editor . Since this file can only be edited

with superuser rights, use the file manager to change to the directory and then
select Tools / Execute a command in the current folder in the menu ... Enter
the command sequence shown here .
At the end of the file, add the line shown to call the program with the Python

command line interpreter and place an @ character before the line
point-rpi .

This automatically displays the current time on the seven-segment
display shortly after booting the Raspberry Pi .

To disable the automatic start, delete the line again, or enter a
#character at the very beginning of the line:

@python3 16uhr.py

The automatically started clock cannot be terminated with the key
combination [Ctrl]+[C], since no Python shell window exists .

Edit the autostart file with superuser rights

The autostart call for the clock

45

17th day

Today in the Advent calendar
• 1 GPIO connection cable

The connection diagram of the seven-segment display is the same as
on the previous day, although the number on the far right is not used .

Show IP address of Raspberry Pi
The person operating a Raspberry Pi without keyboard and monitor
only over the network, requires its IP address in order to establish the
SSH connection . This address can be found using network scanner
software . It can also be displayed via the network icon on the desktop .
It is much more interesting to display the IP address with a seven-seg-
ment display directly on the Raspberry Pi .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 8
220-ohm resistors (red-red-brown), 12 GPIO connection cables

The program
The program 17ip-adresse.py displays the IP address on the sev-
en-segment display .

The seven-segment display can display four digits simultaneously .
However, an IP address consists of four blocks with three digits each .
To display these, we display each number block one after the other
for about 1 second . To clearly mark the end of the IP address and the
beginning of the next display loop, three decimal points of the display
should flash briefly after the fourth number block . The display of the
IP address then starts again at the first number block .

Number blocks consisting of only one or two digits are also displayed
in three digits for a uniform appearance and are supplemented with
zeros at the beginning . This spelling is also valid when IP addresses
are specified .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time, os

GPIO.setmode(GPIO.BCM)

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20, 'g':13}
for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

digit=[16, 12, 7, 6]
for z in digit:
 GPIO.setup(z, GPIO.OUT, initial=1)

dp = 5
GPIO.setup(dp, GPIO.OUT, initial=0)

number=[
 "abcdef", #0
 "bc", #1
 "abdeg", #2
 "abcdg", #3
 "bcfg", #4
 "acdfg", #5
 "acdefg," #6

All seven segments and the decimal point of the seven-segment display are con-

nected . The digits are individually connected to GPIO pins .

Display sequence of an IP address on the seven-segment display .

17 . Day

46

 "abc", #7
 "abcdefg", #8
 "abcdfg", #9
]

z = [0,0,0]
ip = os.popen("hostname -I").readline()[:-2].split(".")

print("Ctrl+C ends the program")

def za():
 for i in range(3):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 GPIO.output(digit[i], 0)
 for s in number[z[i]]:
 GPIO.output(seg[s], 1)
 time.sleep(0.001)
 GPIO.output(digit[i], 1)

def blink():

 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 for k in range(3):
 GPIO.output(digit[k], 0)
 GPIO.output(dp, 1)
 time.sleep(0.5)
 GPIO.output(dp, 0)

try:
 while True:
 for j in ip:
 for k in range(3):
 z[k] = int(j.zfill(3)[k])
 sek = time.time()
 while time.time() <= sec + 1:
 za()
 blink()

except KeyboardInterrupt:
 GPIO.cleanup()

How it works
Large parts of the program will seem familiar to you . Much is based on the earlier Python programs with
the seven-segment display . The functions for reading the IP address as well as some methods of string
processing are new .

import time, os

When importing the libraries at the beginning, the module os for operating system functions is addition-
ally imported .

digit=[16, 12, 7, 6]
for z in digit:
 GPIO.setup(z, GPIO.OUT, initial=1)

The list of GPIO ports for the four digits remains unchanged . As the fourth unused position of the display
in the program cannot have an undefined status, it is initially initialised and switched off .

z = [0,0,0]

The list z[], in which the digits to be displayed are stored during program execution, contains only three
elements .

ip = os.popen("hostname -I").readline()[:-2].split(".")

This line first determines the IP address as a character string . The function os.popen() executes any
command line command . The method readline() reads a line as a string from this result .

The four-part IP address is separated at the points into four blocks, which are stored as four individual
character strings in the list ip[] . The method split() is used, which is available in every string . As a
parameter, it requires the separator character at which the character string is to be split; in this case the
period . This separator itself does not appear in any of the resulting character strings .

For example, if the IP address is

"192.168.2.124"

it will result in this list ip[]:

('192', '168', '2', '124')

The four elements of the list are still character strings and not numbers .

The function za() for number output corresponds to the last programs . Only the lines for displaying the
decimal point between the second and third digit of the clock are omitted .

47

def blink():
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 for k in range(3):
 GPIO.output(digit[k], 0)
 GPIO.output(dp, 1)
 time.sleep(0.5)
 GPIO.output(dp, 0)

In addition, a function blink() is defined, which flashes the three decimal points of the digits used for
0 .5 seconds . First all seven segments are set to 0 and thus switched off . The cathodes of the first three
digits are then set to 0 and the decimal point to 1 .

Now the three decimal points will light up . After a waiting time of 0 .5 seconds, the GPIO pin of the deci-
mal point is reset to 0 , and the LEDs are switched off again . The main program again consists of an end-
less loop, which cyclically displays the four number blocks of the IP address .

 for j in ip:

To do this, a loop runs over the four elements of the list ip[] in which these number blocks are stored .

 for k in range(3):

In each block, an inner loop runs three times to represent three digits each . These are stored in the three
elements of the list z[], which the function za() later reads out .

 z[k] = int(j.zfill(3)[k])

This line writes the numerical value of a digit into the current element of the list z[] in each pass . This is
read with the function int() from a digit stored as a character .

From the outer loop the counter j takes over a numeric block of the IP address . The method zfill(),
which is available in every character string and has already been used in an earlier program, supple-
ments a character string to a certain length specified in the parameter (here 3), with the original char-
acter string on the right in the result . On the left, any missing areas are filled with zeros . This way, three
digits are always stored in the list z[], even if a numeric keypad of the IP address consists of only one or
two digits .

Thus, ip[] is used from the field as an example above .

('192', '168', '2', '124')

in four runs, these fields z[]:

(1, 9, 2)
(1, 6, 8)
(0, 0, 2)
(1, 2, 4)

The function za() later reads the field z[] and displays the three digits on the seven-segment display . A
while loop repeatedly runs the function za() for 1 second to display numbers and then ends the main
loop .

 sek = time.time()
 while time.time() <= sec + 1:
 za()

In the variable sek the current time is stored in seconds, which the function time.time() outputs at any
time to the nearest hundredth of a second . The while loop queries whether one or more seconds have
passed since the time was saved . As long as this is not the case, the function za() is called again and
again to display numbers . After the second has lapsed, the outer loop starts again using the next number
block of the IP address .

After this loop has passed four times, the function blink() is called, which flashes the decimal points
once to indicate the end of the IP address . The loop then starts all over again . This is repeated until the
user terminates using [Ctrl]+[C] . This program, similar to the 16th day clock program, can be started
automatically when the Raspberry Pi is started, to display the IP address, even if no screen is connected .

48

18th day

Today in the Advent calendar
• 1 button

The connection diagram of the seven-segment display is the same as for the previous days .

Stopwatch
The experiment of the 18th day is a stopwatch with three buttons . The
first button starts the stopwatch, the second stops to the nearest tenth
of a second and the third resets the measured time to 0 .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 8
220-ohm resistors (red-red-brown), 3 buttons, 16 GPIO connection
cables, 3 wire jumpers (different lengths)

The program
Program 18stoppuhr.py runs a stopwatch on the seven-segment dis-
play . The watch measures the time in tenths of a second, therefore the
decimal point lights up behind the third digit . The buttons are con-
nected to GPIO pins 22, 27 and 17 .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20, 'g':13}
for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

digit=[16, 12, 7, 6]
for z in digit:
 GPIO.setup(z, GPIO.OUT, initial=1)

dp = 5
GPIO.setup(dp, GPIO.OUT, initial=0)

t1=22
t2=27
t3=17
GPIO.setup(t1, GPIO.IN, GPIO.PUD_DOWN)
GPIO.setup(t2, GPIO.IN, GPIO.PUD_DOWN)
GPIO.setup(t3, GPIO.IN, GPIO.PUD_DOWN)

number=[
 "abcdef", #0
 "bc", #1
 "abdeg", #2
 "abcdg", #3
 "bcfg", #4
 "acdfg", #5
 "acdefg," #6
 "abc", #7
 "abcdefg", #8
 "abcdfg", #9
]

print("Start: Button 1")
print("Stop: Button 2")
print("Reset: Button 3")
print("Ctrl+C ends the program")

Seven-segment display and three buttons .

18 . Day

49

def za():
 for i in range(4):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 GPIO.output(digit[i], 0)
 for s in number[z[i]]:
 GPIO.output(seg[s], 1)
 if i == 2:
 GPIO.output(dp, 1)
 else:
 GPIO.output(dp, 0)
 time.sleep(0.001)
 GPIO.output(digit[i], 1)

try:
 while True:
 z = [0,0,0,0]
 while GPIO.input(t1)==0:
 za()
 start = time.time()
 while GPIO.input(t2)==0:
 time = time.time() - start
 z[0] = int(time % 1000 / 100)
 z[1] = int(time % 100 / 10)
 z[2] = int(time % 10)
 z[3] = int(time * 10 % 10)
 while int((time.time() - start) * 10 % 10) == z[3]:
 za()
 while GPIO.input(t3)==0:
 za()

except KeyboardInterrupt:
 GPIO.cleanup()

How it works
The program is based on known elements'; the initialisation of the GPIO pins for the seven-segment dis-
play is also the same as for the previous days .

t1=22
t2=27
t3=17
GPIO.setup(t1, GPIO.IN, GPIO.PUD_DOWN)
GPIO.setup(t2, GPIO.IN, GPIO.PUD_DOWN)
GPIO.setup(t3, GPIO.IN, GPIO.PUD_DOWN)

In addition to the GPIO pins of the seven-segment display, three pins are initialised as inputs with pull-
down resistors for the buttons .

print("Start: Button 1")
print("Stop: Button 2")
print("Reset: Button 3")
print("Ctrl+C ends the program")

A short explanation of the buttons appears before the actual start of the program .

try:
 while True:
 z = [0,0,0,0]

The main loop of the program sets the stopwatch to 0 at the start of each cycle . The four digits in the list
z[] are set to 0 .

 while GPIO.input(t1)==0:
 za()

As long as button 1 is not pressed, function za() displays four zeros on the seven-segment display .

50

 if i == 2:
 GPIO.output(dp, 1)
 else:
 GPIO.output(dp, 0)

This function is slightly changed . Whenever the third digit lights up, the decimal point is also turned on .
For the other digits it won't light up .

 start = time.time()

When the user presses button 1, the first while loop ends . The current time in seconds is stored in the
variable start . From this time, the current time of the stopwatch is always calculated, which was started
by pressing button 1 .

The function time.time() specifies the current time as Unix timestamp .

What is the Unix Timestamp?
The Unix timestamp, also known as the Unix epoch, is a time format commonly used in Unix and
Linux that specifies the number of seconds that have lapsed since 01 .01 .1970 00:00 UTC . This is a ten-
digit number . Fractions of a second follow the comma . The Unix timestamp on 01 .12 .2019 00:00 UTC is
1575158400 .

 while GPIO.input(t2)==0:
 time = time.time() - start
 z[0] = int(time % 1000 / 100)
 z[1] = int(time % 100 / 10)
 z[2] = int(time % 10)
 z[3] = int(time * 10 % 10)

The next loop runs until the user presses the stop button 2 . In the variable time the time elapsed since
the start of the stop timer is calculated in each run by subtracting the stored start time from the current
time .

In the four elements of the list z[] whole seconds are calculated and stored as a three-digit number and
tenths of a second at the fourth position .

 while int((time.time() - start) * 10 % 10) == z[3]:
 za()

A loop will now start, displaying along with the function za() the digits stored in the list z[] until one
tenth of a second has lapsed since the last displayed time . Only once a tenth of a second has lapsed the
superior while loop will start the next run . Now new values are determined for the digits in the list z[] -
provided the stop key 2 has not yet been pressed .

 while GPIO.input(t3)==0:
 za()

If stop button 2 is pressed, the loop ends and another while loop starts waiting for the user to press rest
button 3 . As long as this is not the case, the last stored digits are displayed in the list z[] with the func-
tion za() .

When the 3 key is pressed, this loop also ends, and the main loop starts its next cycle by first resetting
the four digits to 0 .

51

19th day

Today in the Advent calendar
• 1 resistor 20 MOhm (red-black-blue)

• 1 plasticine

The connection diagram of the seven-segment display is the same as for the previous days .

Touch sensor from plasticine
Today traffic lights, door openers, light switches and machines are often controlled with sensor contacts
that you only have to touch . Pushbuttons that really need to be pressed are becoming increasingly rare .

The GPIO pin switched as input is connected to +3 .3 V via an extremely high-impedance resistor (20
MOhm), so that there is a weak but clearly defined high signal present . A person who is not floating
freely in the air is always earthed and delivers a low level current through his electrically conductive
skin . If this person touches a sensor contact, the weak high signal is overcome by the significantly
stronger low signal of the hand and pulls the GPIO pin to the low sig-
nal . The built-in pull-down resistor at the GPIO input must be switched
off .

Sensor contact at a GPIO input

The level of resistance between the hand and the other material
depends on many things, including shoes and floors . Barefoot in wet
grass is the best connection to the earth's ground, but it also works
well on stone floors . Wooden floors insulate more strongly, plastic
floor coverings are often even positively charged . If the sensor contact
does not work, there is another plasticine contact for the circuit which
can be connected to the ground rail of the plug-in board . If you touch
this and the actual sensor at the same time, the ground connection is
established in any case .

Plasticine conducts electricity almost as well as human skin . It is easily
moulded into any shape, and a plasticine contact is much easier to
handle than a simple piece of wire . The surface with which the hand
touches the contact, is clearly larger . So it is not so easy as with a
"loose contact" . Insert a piece of stripped wire into a piece of plasti-
cine . Insert the other end of the wire into the clipboard .

Stopwatch with sensor contact
The experiment of the 19th day controls a stopwatch via a simple sen-
sor contact .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 8 220-
ohm resistors (red-red-brown), 1 20-MOhm resistor (red-black-blue), 2
plasticine contacts, 15 GPIO connection cables

Seven-segment display and sensor contacts .

19 . Day

52

The program
The program 19stoppuhr.py is similar to the program of the 18th day, with the difference that only one
sensor contact is used for start, stop and reset .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20, 'g':13}
for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

digit=[16, 12, 7, 6]
for z in digit:
 GPIO.setup(z, GPIO.OUT, initial=1)

dp = 5
GPIO.setup(dp, GPIO.OUT, initial=0)

k1=4
GPIO.setup(k1, GPIO.IN)

number=[
 "abcdef", #0
 "bc", #1
 "abdeg", #2
 "abcdg", #3
 "bcfg", #4
 "acdfg", #5
 "acdefg," #6
 "abc", #7
 "abcdefg", #8
 "abcdfg", #9
]

print("Start, Stop, Reset: Touch sensor contact")
print("Ctrl+C ends the program")

def za():
 for i in range(4):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 GPIO.output(digit[i], 0)
 for s in number[z[i]]:
 GPIO.output(seg[s], 1)
 if i == 2:
 GPIO.output(dp, 1)
 else:
 GPIO.output(dp, 0)
 time.sleep(0.001)
 GPIO.output(digit[i], 1)

try:
 while True:
 z = [0,0,0,0]
 while GPIO.input(k1)==1:
 za()
 while GPIO.input(k1)==0:
 pass
 start = time.time()
 while GPIO.input(k1)==1:
 time = time.time() - start
 z[0] = int(time % 1000 / 100)

53

 z[1] = int(time % 100 / 10)
 z[2] = int(time % 10)
 z[3] = int(time * 10 % 10)
 while int((time.time() - start) * 10 % 10) == z[3]:
 za()
 while GPIO.input(k1)==0:
 pass
 while GPIO.input(k1)==1:
 za()
 while GPIO.input(k1)==0:
 pass

except KeyboardInterrupt:
 GPIO.cleanup()

How it works
The program is based on known elements; the initialisation of the GPIO pins for the seven-segment dis-
play is also the same as for the previous days .

k1=4
GPIO.setup(k1, GPIO.IN)

In addition to the GPIO pins of the seven-segment display, a pin is initialised as input without pull-down
resistor for the sensor contact .

try:
 while True:
 z = [0,0,0,0]
 while GPIO.input(k1)==1:
 za()

Since a sensor contact jumps to low level when touched, this time the first while loop runs within the
infinite loop as long as the input k1 delivers high level .

Since this program version does not use three different buttons for start, stop and reset, but only one
sensor, it must be prevented that a longer touch triggers several actions in succession .

 while GPIO.input(k1)==0:
 pass

A further loop runs as long as the input k1 delivers low level, i .e . the sensor contact is touched . Nothing
happens inside the loop . Python uses the pass statement, which simply does nothing . This makes it easy
to implement such holding patterns . The next action in the program only takes place after the user has
released the sensor contact again . As a conspicuous sign, the display switches off when the sensor con-
tact is touched, as it only lights up while function za() is running .

Once the user has released the sensor contact again, the program continues to run, and the stopwatch
starts to run .

 while GPIO.input(k1)==1:
 time = time.time() - start

Here too a while loop runs as long as the input k1 delivers high level, i .e . the sensor contact is not
touched . After this loop and also after the reset to 0, the program will wait each time until the user
releases the sensor contact .

54

20th day

Today in the Advent calendar
• 1 resistor 20 MOhm (red-black-blue)

The connection diagram of the seven-segment display is the same as for the previous days .

Counter with sensor contacts
The experiment of the 20th day is a simple counter on the seven-seg-
ment display controlled by two sensor contacts . One sensor contact
counts up; the other counts down . The sensor contacts are connected
to GPIO pins 17 and 4 .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 8
220-ohm resistors (red-red-brown), 2 20-MOhm resistors (red-black-
blue), 3 plasticine contacts, 16 GPIO connection cables

The program
The program 20zaehler.py counts from 0 upwards to a maximum
of 9999 or downwards again to 0 on the seven-segment display . This
time there is no waiting until the user releases the sensor contact
again . The counting should continue automatically after a longer touch .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20, 'g':13}
for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

digit=[16, 12, 7, 6]
for z in digit:
 GPIO.setup(z, GPIO.OUT, initial=1)

dp = 5
GPIO.setup(dp, GPIO.OUT, initial=0)

k1=17
k2=4
GPIO.setup(k1, GPIO.IN)
GPIO.setup(k2, GPIO.IN)

number=[
 "abcdef", #0
 "bc", #1
 "abdeg", #2
 "abcdg", #3
 "bcfg", #4
 "acdfg", #5
 "acdefg," #6
 "abc", #7
 "abcdefg", #8
 "abcdfg", #9
]

z=[0,0,0,0]
x=0

print("Sensor contact 1 increases the number")
print("Sensor contact 2 reduces the number")
print("Ctrl+C terminates the program")

Seven-segment display and sensor contacts .

20 . Day

55

def za(n):
 z[0] = int(n / 1000)
 z[1] = int(n % 1000 / 100)
 z[2] = int(n % 100 / 10)
 z[3] = int(n % 10)
 for i in range(4):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 GPIO.output(digit[i], 0)
 for s in number[z[i]]:
 GPIO.output(seg[s], 1)
 time.sleep(0.001)
 GPIO.output(digit[i], 1)

try:
 while True:
 za(x)
 if GPIO.input(k1)==0 and x>0:
 x-=1
 if GPIO.input(k2)==0 and x<9999:
 x+=1

except KeyboardInterrupt:
 GPIO.cleanup()

How it works
This program is also largely based on earlier programs . The functions for initialising the seven-segment
display are the same .

k1=17
k2=4
GPIO.setup(k1, GPIO.IN)
GPIO.setup(k2, GPIO.IN)

For the two sensor contacts, two GPIO pins are initialised as inputs without pull-down resistors .

x=0

A new variable x is set to 0 in the definitions . Later in the program, it contains the value of the counter
that is displayed .

In this program, the calculation of the four digits is stored in the function za() , which simplifies the
main program . This function contains a parameter that is passed when the function is called .

def za(n):
 z[0] = int(n / 1000)
 z[1] = int(n % 1000 / 100)
 z[2] = int(n % 100 / 10)
 z[3] = int(n % 10)
 for i in range(4):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 GPIO.output(digit[i], 0)
 for s in number[z[i]]:
 GPIO.output(seg[s], 1)
 time.sleep(0.001)
 GPIO.output(digit[i], 1)

The parameter n in the function definition is a four-digit number that will be displayed . The first four
lines of the function determine the individual digits from the number . The function then runs as in previ-
ous programs and displays these four digits on the seven-segment display .

try:
 while True:
 za(x)

56

The main loop of the program displays the current value of the counter x on the seven-segment display
in each pass via function za(x) .

 if GPIO.input(k1)==0 and x>0:
 x-=1

If the sensor contact k1 is touched and the counter is still greater than 0, it is reduced by 1 . This ensures
that the counter does not reach any negative values .

 if GPIO.input(k2)==0 and x<9999:
 x+=1

If the sensor contact k1 is touched and the counter is still smaller than 9999, it is increased by 1 . This
ensures that the counter does not reach five-digit values that can no longer be displayed .

The main loop then restarts and displays the current value of the counter again .

The counter counts too fast .
If you try the program, you will notice that the counter already reacts to the shortest touch and it is very
difficult to count individual steps .

Of course, as with the previous program, you could wait for the user to release the sensor contact every
time . But then it would not be possible to quickly count quickly by touching for a long time .

The program 20zaehler02.py contains a short waiting time after each change of the counter, in order to
also count individual steps with short touch .

try:
 while True:
 za(x)
 if GPIO.input(k1)==0 and x>0:
 x-=1
 time.sleep(0.04)
 if GPIO.input(k2)==0 and x<9999:
 x+=1
 time.sleep(0.04)

Change these waiting times as required to be able to count easily .

57

21th day

Today in the Advent calendar
• Download code

The connection diagram of the seven-segment display is the same as
for the previous days .

The Raspberry Pi produces tones
The Raspberry Pi can play music through an HDMI monitor, external
speaker or headphones on the 3 .5 mm analogue jack . For computer
monitors with a DVI connector connected to the HDMI output, a
speaker must be connected to the analogue output because the audio
signal is not transmitted via the DVI cable . Right-click the speaker icon
in the upper right corner to select the audio output .

Select audio output

Components: 1 plug-in board SYB-46, 1 seven-segment display, 8
220-ohm resistors (red-red-brown), 12 GPIO connection cables

The program
The Scratch-2 program 21musik.sb2 displays a simple keyboard . When
you click a button, you will hear the corresponding sound and the sev-
en-segment display will display the sound as a letter .

Start a new project in Scratch and first delete the cat . In this project,
we need various other objects, more precisely, one object for each
keyboard key, but not the cat .

Draw the first white keyboard key . To do this, switch to vector graphics
in the graphics area at the bottom right . Draw a narrow unfilled black
rectangle .

Then select the white colour, click on the colour bucket icon and fill in
the rectangle .

Give the key another name . With all the many objects in a program, one
can easily get confused . Click on the blue i symbol of this key in the figure
list and change the name in the name field to C . This is the tone that should sound when clicking the first key .

The first keyboard key

Seven-segment display without additional components .

21 . Day

58

Each key now gets its own program blocks . These are similar for all keys and play a specific tone when
the key is clicked . If you are assembling the program for the first key, you can duplicate it for the other
keys and only need to change it slightly .

The program blocks do not start when the green flag is clicked, but each time the corresponding key is
clicked . Select the key C in the figure list and drag When I am clicked into the script window from the
block palette Events .

All blocks below are always executed when the figure - here the key C - is clicked . To see that a key is
clicked, it should appear a little darker for a moment . To do this, from the block palette Appearance
append the block . . .- Effect to . . . to the program, select in the list box Brightness and enter in the num-
ber field -10 . The figure will darken .

The seven segments of the seven-segment display are then switched to display the name of the sound
as letters . Seven-segment displays are only conditionally suitable for displaying letters . But with a little
imagination you can recognise the letters needed for the keyboard .

The letters of the tones used on the seven-segment display

To create the right sound, build the block play sound... for... beats from the block palette Sound into
the program .

Simply click once on this block in the program window and the first tone will sound . Then click in
the number field behind tone . A keyboard appears on which you can select the desired tone . The
first piano key C will play the tone C(60) .

All seven segments of the seven-segment display are then switched off . The key should also return
back to the normal display and not be darkened . To do this, hang another block set brightness
effect on... to the program and set the value back to 0 .

Our keyboard should have seven white keys and five black keys . You can
easily duplicate the next six white keys from the first one . To do this, right-
click on the figure C in the figure list and select Duplicate from the menu .

Rename the duplicated button to D and move it a tiny distance to the right
of the first button . Duplicate other buttons in the same way and call them
E, F, G, A and B .

After duplicating, change the blocks for all keys to display the segments in
such a way that the respective letter is displayed . Also select the appropriate
tones for the buttons . Which key should play which tone is clearly visible in
the piano key image of the block play sound ... for ... beats . The names of
the sounds in Scratch sometimes differ slightly from the German names .

German
name

Key colour Number Scratch

c white 60 Middle C
cis black 61 C#
d white 62 D
dis black 63 Eb
e white 64 E
f white 65 F
fis black 66 F#
g white 67 G
gis black 68 G#
a white 69 A
b black 70 Bb
h white 71 B

The scratch blocks for the C key

Keyboard for the selection of tones

The white keys of the keyboard

59

Draw the first black key as a filled rectangle, slightly smaller than the white keys . Also use the mode
Vector graphic . Slide this button between the first two white buttons so that the top edges are flush
with each other .

The program blocks of the black keys are largely the same as those of the white keys . The black
keyboard keys must become a little brighter and not darker when you click on them, so that they
are easy to recognise . Set the brightness to 40 instead of -10 . As letters for the sounds, we use the
letter of the white key to the left of it and turn on the decimal point for differentiation .

Duplicate four more black keys . Insert them as shown between the white buttons and call them D#,
F#, D# and Bb .

The white and black keys of the keyboard

Then adjust the program blocks of the keys accordingly . Now you can play music on the keyboard .

You can download sheet music for a Christmas song using the download code in the Advent calendar
today .

The Scratch blocks for the black C# key

60

22th day

Today in the Advent calendar
• 2 resistors 220 ohms

The connection diagram of the seven-segment display is the same as
for the previous days . The decimal point is not used .

Traffic light with countdown
The experiment of the 22nd day simulates a traffic light with three
LEDs . During the green phase, a countdown shows how much time you
have left .

Components: 1 plug-in board SYB-46, 1 seven-segment display1
LED red, 1 LED yellow, 1 LED green, 10 220-Ohm resistors (red-red-
brown), 15 GPIO connection cables

Wiring diagram of the seven-segment display
The following table shows which pins of the seven-segment display
are connected to which GPIO pins . The grey pin is not used in this
program .

Pin seven-segment
display

Pinboard Segment / digit GPIO pin

1 5 F-J E 19
2 6 F-J D 26
3 7 F-J DP 5
4 8 F-J C 11
5 9 F-J G 13
6 10 F-J 4 6
7 10 A-E B 8
8 9 A-E 3 7
9 8 A-E 2 12
10 7 A-E F 20
11 6 A-E A 21
12 5 A-E 1 16

The LEDs of the traffic light are connected to the GPIO pins 24, 23 and
18 .

The program
The Scratch-2 program 22ampel.sb2 runs the traffic light cycle by click-
ing on the green flag . A self-defined block is used for the countdown .

This can also be used at any time in other programs to display a digit .

The beginning of the program contains known elements . GPIO pins are initialised one after the other:

• The pins 16, 12, 7 for the cathodes of the first three digits are set high and these digits are turned off, the
cathode of the fourth digit on pin 6 is set to low to turn on this digit .

• The anodes of the seven segments: 21, 8, 11, 26, 19, 20, 13 are set to Low and all segments are switched
off .

• The red LED at pin 24 is then switched on, the yellow and green LED at pin 23 and are switched off .

• After half a second, the yellow LED at pin 23 is also switched on .

• After another half second, the red and yellow LEDs are switched off and the green LED at pin 18 is
switched on .

After that, it gets interesting .

Seven-segment display and three LEDs .

22 . Day

61

A variable z is counted down in a countdown loop . It contains the number to be displayed in each run .

Variables in Scratch
Variables are small memory locations where a program remembers a number or something else . When
the program is closed, these variable memories are automatically emptied . Variables have to be created
in Scratch on the block palette Data by clicking on New variable before they can be used . You can then
drag the symbol of the newly created variable from the block palette to a designated field of a block in
the program . The block palette also contains various blocks for reading and changing variables .

Create a variable z for the counter .

The new variable z

For the representation of a digit on the seven-seg-
ment display, we use our own, self-made block .
Actually this would not be necessary for this pro-
gram, in which each digit is represented only once .
However, the program shows how you can use this
technique in other programs . Self-built blocks in Scratch are comparable to functions in Python that can
be defined once and then called again .

Click on the button New Block on the block palette Additional Blocks . Every new block needs a name .
In the example we call the block digit . Put a number field in this block . It should later contain the digit
that the block will be displaying on the seven-segment display .

After clicking OK a new block define digit number1 will appear, which is round at the top, so it is always
the beginning of a sequence of blocks . The blue block number1 later contains the number that is given
to the block when it is called .

Hang ten if ... then queries under this block that check whether the number number1 equals 0, 1, 2, 3,
etc . . In each case, the seven segments of the seven-segment display are switched so that they represent
the corresponding digit . The blocks for switching the segments correspond to the program of the 15th day .

You can simply insert the block number1 from the block definition into the fields of the . . . = . . . query
blocks .

A block Additional blocks a block named digit . . .will appear . You can use this like any standard block in
the program .

Initialisation of the GPIO pins

Defining new block

Defining self-built block

62

The new block on the block pallet

In the main program, the countdown counter z is first set to 9 after the green LED of the traffic light has
been turned on . A loop then starts, which runs until the counter z is smaller than 0 .

In each loop pass, the block digit . . . is generated and the with the current number z of the countdown
so that this number is displayed . After a waiting time of 0 .2 seconds, the variable z is counted down by 1
and the loop starts the next pass .

The counting loop in the program

After the countdown has reached 0, the yellow LED of the traffic light is switched on and the green LED is
switched off . After a further waiting period of 0 .5 seconds, the red LED of the traffic light is switched on
and the yellow LED is switched off .

The program is now finished and can be restarted by clicking on the green flag .

63

The whole program at a glance

64

23th day

Today in the Advent calendar
• 3 GPIO connection cable

The connection diagram of the seven-segment display is the same as for the previous days . The decimal
point is also used .

Number rates with three keys
This is a simple guessing game in which a random number chosen by
the computer should be guessed by the player in as few steps as pos-
sible . The LEDs are connected to the GPIO pins 24 and 23, the buttons
to the GPIO pins 18, 17 and 4 .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 1
LED red, 1 LED green, 9 220-ohm resistors (red-red-brown), 3 but-
tons, 18 GPIO connection cables, 3 wire jumpers (different lengths)

The LEDs are connected to the GPIO pins 23 and 24, the buttons to
the GPIO pins 18, 17 and 4 .

The program
The program 23spiel.py generates a random number between 0 and
100, which the player has to guess with as few tips as possible . With
two buttons the player sets a tip and delivers it with the third button .

The two left digits of the display show the typed number, the two
right digits show how many attempts the player has already made .
The two LEDs indicate whether the number searched for is smaller or
larger than the last tip .

How are random numbers generated?
It is commonly thought that nothing can happen randomly in a
program - so how can a program be able to generate random
numbers? If you divide a large prime number by any value, you get
numbers from the umpteenth decimal place that are very difficult
to predict . If you increase the divisor regularly the number also
change randomly . Although the result may seem random, it can be
reproduced at any time by an identical program or by running the
same program several times . But if we take a number assembled
from some of these digits and divide it again by a number that
results from the current seconds of time or the contents of any
memory location of the computer, we get a result that cannot be
reproduced and is therefore called a random number .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time, random

GPIO.setmode(GPIO.BCM)

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20, 'g':13}
for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

digit=[16, 12, 7, 6]
for z in digit:
 GPIO.setup(z, GPIO.OUT, initial=1)

dp = 5
GPIO.setup(dp, GPIO.OUT, initial=0)

Seven-segment display, two LEDs and three buttons .

23 . Day

65

LED1=24
GPIO.setup(LED1, GPIO.OUT, initial=0)
LED2=23
GPIO.setup(LED2, GPIO.OUT, initial=0)

t1=18
t2=17
t3=4
GPIO.setup(t1, GPIO.IN, GPIO.PUD_DOWN)
GPIO.setup(t2, GPIO.IN, GPIO.PUD_DOWN)
GPIO.setup(t3, GPIO.IN, GPIO.PUD_DOWN)

number=[
 "abcdef", #0
 "bc", #1
 "abdeg", #2
 "abcdg", #3
 "bcfg", #4
 "acdfg", #5
 "acdefg," #6
 "abc", #7
 "abcdefg", #8
 "abcdfg", #9
]

z=[0,0,0,0]
x=0

print("Button 1 reduces the tip")
print("Button 2 increases the tip")
print ("Button 3 returns the tip")
print("Ctrl+C ends the program")

def za(n):
 z[0] = int(n / 1000)
 z[1] = int(n % 1000 / 100)
 z[2] = int(n % 100 / 10)
 z[3] = int(n % 10)
 for i in range(4):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 GPIO.output(digit[i], 0)
 for s in zahl[z[i]]:

 GPIO.output(seg[s], 1)
 if i == 1:
 GPIO.output(dp, 1)
 else:
 GPIO.output(dp, 0)
 time.sleep(0.001)
 GPIO.output(digit[i], 1)

try:
 while True:
 y=random.randrange(100)
 t=0
 while True:
 za(x * 100 + t)
 if GPIO.input(t1)==1 and x>0:
 x-=1
 time.sleep(0.08)
 if GPIO.input(t2)==1 and x<99:
 x+=1
 time.sleep(0.08)
 if GPIO.input(t3)==1:
 t+=1
 if y<x:
 GPIO.output(LED1, 1)
 time.sleep(0.5)
 GPIO.output(LED1, 0)
 if y>x:
 GPIO.output(LED2, 1)
 time.sleep(0.5)
 GPIO.output(LED2, 0)
 if y==x:
 for i in range(5):
 GPIO.output(LED1, 1)
 GPIO.output(LED2, 1)
 for j in range(100):
 za(x * 100 + t)
 GPIO.output(LED1, 0)
 GPIO.output(LED2, 0)
 for j in range(100):
 za(x * 100 + t)
 break

except KeyboardInterrupt:
 GPIO.cleanup()

How it works
At the start, the random library is imported, which contains functions for generating random numbers .
The GPIO pins for the seven-segment display are initialised according to a known scheme . The decimal
point is used to visually separate the two digits to the left from the two digits to the right . In addition,
GPIO outputs for the two LEDs and inputs with pull-down resistors for the three push-buttons are set up .

x=0

print("Button 1 reduces the tip")
print("Button 2 increases the tip")
print ("Button 3 returns the tip")
print("Ctrl+C terminates the program")

Before the program starts, the variable x, which later contains the number typed by the player, is set to
0 . A short explanation of the keys will then appear on the screen .

66

def za(n):
 z[0] = int(n / 1000)
 z[1] = int(n % 1000 / 100)
 z[2] = int(n % 100 / 10)
 z[3] = int(n % 10)
 for i in range(4):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 GPIO.output(digit[i], 0)
 for s in number[z[i]]:
 GPIO.output(seg[s], 1)
 if i == 1:
 GPIO.output(dp, 1)
 else:
 GPIO.output(dp, 0)
 time.sleep(0.001)
 GPIO.output(digit[i], 1)

The function za(n) for displaying a four-digit number has a similar structure to the program of the 20th
day . In addition, the decimal point behind the second digit lights up .

try:
 while True:
 y=random.randrange(100)
 t=0

The main program is an endless loop in which an integer random number smaller than 100 is stored in
the variable y at the beginning of each cycle . The player must guess this number . In addition, the varia-
ble t is set to 0, in which the number of tips is later stored .

 while True:
 za(x * 100 + t)

Within the loop running once through each game, there is also another endless loop . This displays the
last set number and the number of tips in each pass . To do this, multiply the number x by 100 and add
the tips in the variable t . The two-digit number now appears before the decimal point, followed by the
number of attempts the player has already made .

 if GPIO.input(t1)==1 and x>0:
 x-=1
 time.sleep(0.08)

If the user presses key 1 and the set number is still greater than 0, the number is reduced by 1 . The pro-
gram then waits 0 .08 seconds to intercept multiple actions caused by accidentally pressing the key too
long . If necessary, you can adjust this waiting time .

 if GPIO.input(t2)==1 and x<99:
 x+=1
 time.sleep(0.08)

In the same way, pressing the second key increases the number if it is less than 99 .

 if GPIO.input(t3)==1:
 t+=1

If the player presses the third button, the number of bets is first increased by 1 . Then there are three pos-
sibilities:

 if y<x:
 GPIO.output(LED1, 1)
 time.sleep(0.5)
 GPIO.output(LED1, 0)

67

• If the searched numbery is smaller than the given tip, both left LEDs illuminate for half a second .

 if y>x:
 GPIO.output(LED2, 1)
 time.sleep(0.5)
 GPIO.output(LED2, 0)

• If the searched numbery is greater than the given tip, both right LEDs illuminate for half a second .

 if y==x:
 for i in range(5):
 GPIO.output(LED1, 1)
 GPIO.output(LED2, 1)
 for j in range(100):
 za(x * 100 + t)
 GPIO.output(LED1, 0)
 GPIO.output(LED2, 0)
 for j in range(100):
 za(x * 100 + t)

• If the searched number y and the given tip are the same, a loop causes both LEDs to flash five times .
During the time that the LEDs are lit or switched off, the function za(n) is not simply waited for, but
called one hundred times in a row to display the correctly typed number and the number of tips . 100
calls of this function take about 0 .1 seconds .

 break

Then, the inner loop of the two loops is aborted because the game has been solved . The outer loop
starts a new game, where the last tip is immediately used as the start for the next pass . You therefore
don't have to count up from 0 to the desired number anymore .

68

24th day

Today in the Advent calendar
• 1 button

• Download code

The connection diagram of the seven-segment display is the same as
for the previous days . The decimal point is not used .

Christmas carols on the Raspberry Pi
The experiment of the 24th day plays a Christmas carol when a button
is pressed . There are four different carols to choose from . You can
download Christmas carols in mp3 format using the download code in
the Advent calendar today . The buttons are connected to GPIO pins 22,
27 and 17 .

Components: 1 plug-in board SYB-46, 1 seven-segment display, 7
220-ohm resistors (red-red-brown), 4 buttons, 18 GPIO connection
cables, 4 wire jumpers (different lengths)

Wiring diagram of the seven-segment display
The following table shows which pins of the seven-segment display
are connected to which GPIO pins . The grey pin is not used in this
program .

Pin seven-segment
display

Pinboard Segment / digit GPIO pin

1 5 F-J E 19
2 6 F-J D 26
3 7 F-J DP 5
4 8 F-J C 11
5 9 F-J G 13
6 10 F-J 4 6
7 10 A-E B 8
8 9 A-E 3 7
9 8 A-E 2 12
10 7 A-E F 20
11 6 A-E A 21
12 5 A-E 1 16

The program
The program 24lieder.py plays four different Christmas carols,
depending on which button the user presses .

#!/usr/bin/python
import RPi.GPIO as GPIO
import time, subprocess

GPIO.setmode(GPIO.BCM)

seg={'a':21, 'b':8, 'c':11, 'd':26, 'e':19, 'f':20, 'g':13}
for s in "abcdefg":
 GPIO.setup(seg[s], GPIO.OUT, initial=0)

digit=[16, 12, 7, 6]
for z in digit:
 GPIO.setup(z, GPIO.OUT, initial=1)

t1=23
t2=22

Seven-segment display and four buttons .

24 . Day

69

t3=27
t4=17
GPIO.setup(t1, GPIO.IN, GPIO.PUD_DOWN)
GPIO.setup(t2, GPIO.IN, GPIO.PUD_DOWN)
GPIO.setup(t3, GPIO.IN, GPIO.PUD_DOWN)
GPIO.setup(t4, GPIO.IN, GPIO.PUD_DOWN)

number=[
 "abcdef", #0
 "bc", #1
 "abdeg", #2
 "abcdg", #3
 "bcfg", #4
 "acdfg", #5
 "acdefg," #6
 "abc", #7
 "abcdefg", #8
 "abcdfg", #9
]

print("Ctrl+C ends the program")

def za(n):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 for i in range(4):
 GPIO.output(digit[i], 1)
 if n!=0:
 for s in number[n]:
 GPIO.output(seg[s], 1)
 GPIO.output(digit[n-1], 0)

try:
 while True:
 if GPIO.input(t1)==1:
 za(1)
 subprocess.Popen(["omxplayer", "lied1.mp3"])
 time.sleep(4)
 za(0)
 if GPIO.input(t2)==1:
 za(2)
 subprocess.Popen(["omxplayer", "lied2.mp3"])
 time.sleep(4)
 za(0)
 if GPIO.input(t3)==1:
 za(3)
 subprocess.Popen(["omxplayer", "lied3.mp3"])
 time.sleep(4)
 za(0)
 if GPIO.input(t4)==1:
 za(4)
 subprocess.Popen(["omxplayer", "lied4.mp3"])
 time.sleep(4)
 za(0)

except KeyboardInterrupt:
 GPIO.cleanup()

70

How it works
In addition to the already known libraries, the library subprocess is imported . This makes it possible to
start Linux command line programs from a Python program .

def za(n):
 for s in "abcdefg":
 GPIO.output(seg[s], 0)
 for i in range(4):
 GPIO.output(digit[i], 1)
 if n!=0:
 for s in number[n]:
 GPIO.output(seg[s], 1)
 GPIO.output(digit[n-1], 0)

The seven-segment display should display the number of the carol . The used function za(n) is changed
so that the 1 is displayed on the first digit, the 2 on the second, etc . This is not absolutely necessary, but
only a graphic effect . To switch off the display completely, a 0 is passed when the function is called .

try:
 while True:
 if GPIO.input(t1)==1:
 za(1)
 subprocess.Popen(["omxplayer", "lied1.mp3"])
 time.sleep(4)
 za(0)

The main loop of the program asks for all four keys one after the other . If key 1 is pressed, the display
shows number 1 . Then the song lied1.mp3 is played . The function subprocess.Popen() is used for this,
which in this case calls the command line based media player omxplayer .

The display switches off after four seconds . The media player runs in its own process . The carol can
therefore run even longer . The program doesn't wait . The other carols can be played in the same way .

By renaming the files you can also play other songs . The download contains more than just four Christ-
mas carols .

Merry Christmas!

Liebe Kunden!

Dieses Produkt wurde in Übereinstimmung mit den geltenden europäischen Richtlinien hergestellt und trägt daher das CE-Zeichen . Der bestimmungsgemäße Gebrauch ist in der beiliegenden Anleitung

beschrieben .

Bei jeder anderen Nutzung oder Veränderung des Produktes sind allein Sie für die Einhaltung der geltenden Regeln verantwortlich . Bauen Sie die Schaltungen deshalb genau so auf, wie es in der Anlei-

tung beschrieben wird . Das Produkt darf nur zusammen mit dieser Anleitung weitergegeben werden .

Das Symbol der durchkreuzten Mülltonne bedeutet, dass dieses Produkt getrennt vom Hausmüll als Elektroschrott dem Recycling zugeführt werden muss . Wo Sie die nächstgelegene kostenlose Annah-

mestelle finden, sagt Ihnen Ihre kommunale Verwaltung .

MAKERFACTORY
distributed by Conrad Electronic SE
Klaus-Conrad-Str . 1, 92240 Hirschau
www .makerfactory .com

© 2019 Franzis Verlag GmbH, Richard-Reitzner-Allee 2, 85540 Haar

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien . Das Erstellen und Verbreiten von Kopien auf Papier, auf Datenträgern oder im Inter-

net, insbesondere als PDF, ist nur mit ausdrücklicher Genehmigung des Verlags gestattet und wird widrigenfalls strafrechtlich verfolgt .

Die meisten Produktbezeichnungen von Hard- und Software sowie Firmennamen und Firmenlogos, die in diesem Werk genannt werden, sind in der Regel gleichzeitig auch eingetragene Warenzeichen

und sollten als solche betrachtet werden . Der Verlag folgt bei den Produktbezeichnungen im Wesentlichen den Schreibweisen der Hersteller .

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte Daten sind im Internet über http://dnb .ddb .de abrufbar .

Alle in diesem Buch vorgestellten Schaltungen und Programme wurden mit der größtmöglichen Sorgfalt entwickelt, geprüft und getestet . Trotzdem können Fehler im Buch und in der Software nicht

vollständig ausgeschlossen werden . Verlag und Autor haften in Fällen des Vorsatzes oder der groben Fahrlässigkeit nach den gesetzlichen Bestimmungen . Im Übrigen haften Verlag und Autor nur nach

dem Produkthaftungsgesetz wegen der Verletzung des Lebens, des Körpers oder der Gesundheit oder wegen der schuldhaften Verletzung wesentlicher Vertragspflichten . Der Schadensersatzanspruch für

die Verletzung wesentlicher Vertragspflichten ist auf den vertragstypischen, vorhersehbaren Schaden begrenzt, soweit nicht ein Fall der zwingenden Haftung nach dem Produkthaftungsgesetz gegeben ist .

Vorsichtsmaßnahmen
Auf keinen Fall irgendwelche GPIO-Pins miteinander verbinden und abwarten, was passiert .
Nicht alle GPIO-Pins lassen sich frei programmieren . Einige sind für die Stromversorgung und andere Zwecke fest eingerichtet .
Einige GPIO-Pins sind direkt mit Anschlüssen des Prozessors verbunden, ein Kurzschluss kann den Raspberry Pi komplett zerstören .
Verbindet man über einen Schalter oder eine LED zwei Pins miteinander, muss immer ein Schutzwiderstand dazwischengeschaltet werden .
Für Logiksignale immer Pin 1 verwenden, der +3,3 V liefert und bis 50 mA belastet werden kann . Pin 6 ist die Masseleitung für Logiksignale .
Pin 2 liefert +5 V zur Stromversorgung externer Hardware . Hier kann so viel Strom entnommen werden, wie das USB-Netzteil des Rasp-
berry Pi liefert . Dieser Pin darf aber nicht mit einem GPIO-Eingang verbunden werden .

Warnung! Augenschutz und LEDs:
Blicken Sie nicht aus geringer Entfernung direkt in eine LED, denn ein direkter Blick kann Netzhautschäden verursachen! Dies gilt
besonders für helle LEDs im klaren Gehäuse sowie in besonderem Maße für Power-LEDs . Bei weißen, blauen, violetten und ultravioletten
LEDs gibt die scheinbare Helligkeit einen falschen Eindruck von der tatsächlichen Gefahr für Ihre Augen . Besondere Vorsicht ist bei der
Verwendung von Sammellinsen geboten . Betreiben Sie die LEDs so, wie in der Anleitung vorgesehen, nicht aber mit größeren Strömen .

	Raspberry Pi Advent Calendar 2019
	1st day
	Today in the Advent calendar
	Preparing the Raspberry Pi
	Operating system installation in a nutshell
	The most important components briefly explained
	LED lights up

	2. day
	Today in the Advent calendar
	Two LEDs flash alternately
	Basic settings for Scratch
	The program

	3rd day
	Today in the Advent calendar
	Traffic light circuit with Python
	The program
	How it works

	4th day
	Today in the Advent calendar
	Three segments of the seven-segment display will flash alternately
	The program
	How it works

	5th day
	Today in the Advent calendar
	Running light on the seven-segment display
	The program
	How it works

	6th day
	Today in the Advent calendar
	Another running light on the seven-segment display
	The program
	How it works

	7th day
	Today in the Advent calendar
	Jumper wire
	Four digits show the same flashing pattern
	The program
	How it works

	8th day
	Today in the Advent calendar
	Controlling a seven-segment display with Scratch
	The program

	9th day
	Today in the Advent calendar
	Digits on the seven-segment display
	The program
	How it works

	10th day
	Today in the Advent calendar
	Multiple digits on the seven-segment display
	The trick with afterglow
	The program
	How it works

	11th day
	Today in the Advent calendar
	Show arbitrary numbers
	The program
	How it works

	12th day
	Today in the Advent calendar
	Countdown to Christmas
	The program
	How it works

	13th day
	Today in the Advent calendar
	Connecting a push-button to a GPIO pin
	Christmas countdown with button
	The program
	How it works

	14th day
	Today in the Advent calendar
	Connecting push-buttons without external pull-down resistors
	Christmas countdown with two buttons
	The program
	How it works

	15th day
	Today in the Advent calendar
	Digits with Scratch on the seven-segment display
	The program

	16th day
	Today in the Advent calendar
	Digital clock
	The program
	How it works
	Start digital clock automatically

	17th day
	Today in the Advent calendar
	Show IP address of Raspberry Pi
	The program
	How it works

	18th day
	Today in the Advent calendar
	Stopwatch
	The program
	How it works

	19th day
	Today in the Advent calendar
	Touch sensor from plasticine
	Stopwatch with sensor contact
	The program
	How it works

	20th day
	Today in the Advent calendar
	Counter with sensor contacts
	The program
	How it works
	The counter counts too fast.

	21th day
	Today in the Advent calendar
	The Raspberry Pi produces tones
	The program

	22th day
	Today in the Advent calendar
	Traffic light with countdown
	The program

	23th day
	Today in the Advent calendar
	Number rates with three keys
	The program
	How it works

	24th day
	Today in the Advent calendar
	Christmas carols on the Raspberry Pi
	The program
	How it works

