

Contactor, 380 V 400 V 110 kW, 2 N/0, 2 NC, RAC 240 : $190-240$ V 50/60 Hz, AC operation, Screw connection

Powering Business Worldwide

Part no.	DILM225A/22(RAC240)
Catalog No.	139547
Alternate Catalog No.	XTCE225H22B
EL-Nummer (Norway)	4134287

Delivery program

Product range
Application
Subrange
Utilization category

Connection technique
Rated operational current

380 V 400 V
AC-1
Conventional free air thermal current, 3 pole, $50-60 \mathrm{~Hz}$ Open at $40^{\circ} \mathrm{C}$
enclosed
Conventional free air thermal current, 1 pole
open
enclosed
Max. rating for three-phase motors, $50-60 \mathrm{~Hz}$ AC-3

220 V 230 V	P	kW	70
380 V 400 V	P	kW	110
660 V 690 V	P	kW	150
1000 V	P	kW	108
AC-4			
220 V 230 V	P	kW	51
380 V 400 V	P	kW	90
660 V 690 V	P	kW	110
1000 V	P	kW	77

Contact sequence

Can be combined with auxiliary contact
Actuating voltage
Voltage AC/DC
Contacts
$\mathrm{N} / \mathrm{O}=$ Normally open

N/C = Normally closed
Auxiliary contacts
possible variants at auxiliary contact module fitting options
Side mounting auxiliary contacts

Contactors

Contactors for Motors
Standard devices greater than 170 A
AC-1: Non-inductive or slightly inductive loads, resistance furnaces NAC-3: Normal AC induction motors: starting, switch off during running AC-4: Normal AC induction motors: starting, plugging, reversing, inching

Screw connection

DILM1000-XHI..
RAC 240: $190-240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
AC operation

2 N/O
2 NC
on the side: $2 \times$ DILM1000-XHI(V)11-SI; $2 \times$ DILM1000-XHI11-SA

Interlocked opposing contacts according to IEC/EN 60947-5-1 Appendix L, inside the auxiliary contact module
integrated suppressor circuit in actuating electronics $660 \mathrm{~V}, 690 \mathrm{~V}$ or 1000 V : not directly reversing

Technical data

General
Standards

Lifespan, mechanical

AC operated

Operating frequency, mechanical
AC operated
Climatic proofing

Ambient temperature
Open
Enclosed

Storage

Mounting position

Mechanical shock resistance (IEC/EN 60068-2-27)
Half-sinusoidal shock, 10 ms
Main contacts
N / O contact
Auxiliary contacts
N / O contact
N/C contact
Degree of Protection
Protection against direct contact when actuated from front (EN 50274)

Altitude

Weight
AC operated

DC operated
Weight
Terminal capacity main cable
Flexible with cable lug
Stranded with cable lug
Solid or stranded
Flat conductor

Busbar

Main cable connection screw/bolt
Tightening torque
Terminal capacity control circuit cables

Solid

Flexible with ferrule

Solid or stranded

Control circuit cable connection screw/bolt
Tightening torque
Tool
Main cable

IEC/EN 60947, VDE 0660, UL, CSA

| Operations $\times 10^{6}$ | 10 |
| :--- | :--- | :--- |
| Operations/h | 3000 |

Damp heat, constant, to IEC 60068-2-78 Damp heat, cyclic, to IEC 60068-2-30

${ }^{\circ} \mathrm{C}$	$-40-+60$
${ }^{\circ} \mathrm{C}$	$-40-+40$

${ }^{\circ} \mathrm{C} \quad-40-+80$

10

10
g $\quad 8$
IPOO
Finger and back-of-hand proof with terminal shroud or terminal block
m Max. 2000
3.54
3.54
3.54
$\mathrm{mm}^{2} \quad 50-185$
$\mathrm{mm}^{2} \quad 70-185$
AWG 2/0-250 MCM
Lamellenzahl mm Fixing with flat cable terminal or cable terminal blocks
x Breite $x \quad$ See terminal capacity for cable terminal blocks

Dicke
Width mm 32

M10
Nm 24
$\mathrm{mm}^{2} \quad 1 \times(0.75-2.5)$
$2 \times(0.75-2.5)$
$\mathrm{mm}^{2} \quad 1 \times(0.75-2.5)$
$2 \times(0.75-2.5)$
AWG 18-14
M3.5
$\mathrm{Nm} \quad 1.2$

Width across flats		mm	16
Control circuit cables			
Pozidriv screwdriver		Size	2
Main conducting paths			
Rated impulse withstand voltage	$\mathrm{U}_{\text {imp }}$	V AC	8000
Overvoltage category/pollution degree			III/3
Rated insulation voltage	U_{i}	V AC	1000
Rated operational voltage	$\mathrm{U}_{\text {e }}$	V AC	1000
Safe isolation to EN 61140			
between coil and contacts		V AC	1000
between the contacts		V AC	1000
Making capacity (p.f. to IEC/EN 60947)		A	2700
Breaking capacity			
220 V 230 V		A	2250
380 V 400 V		A	2250
500 V		A	2250
660 V 690 V		A	2250
1000 V		A	760
Component lifespan			
			AC1: See \rightarrow Engineering, characteristic curves AC3: See \rightarrow Engineering, characteristic curves AC4: See \rightarrow Engineering, characteristic curves
Short-circuit rating			
Short-circuit protection maximum fuse			
Type "2" coordination			
400 V	gG/gL 500 V	A	315
690 V	gG/gL 690 V	A	250
1000 V	gG/gL 1000 V	A	160
Type "1" coordination			
400 V	$\mathrm{gG} / \mathrm{gL} 500 \mathrm{~V}$	A	400
690 V	gG/gL 690 V	A	315
1000 V	gG/gL 1000 V	A	200
AC			
AC-1			
Rated operational current			
Conventional free air thermal current, 3 pole, $50-60 \mathrm{~Hz}$			
Open			
at $40^{\circ} \mathrm{C}$	$\mathrm{l}_{\text {th }}=\mathrm{l}_{\mathrm{e}}$	A	386
at $50{ }^{\circ} \mathrm{C}$	$\mathrm{l}_{\mathrm{th}}=\mathrm{l}_{\mathrm{e}}$	A	345
at $55^{\circ} \mathrm{C}$	$\mathrm{l}_{\text {th }}=\mathrm{l}_{\mathrm{e}}$	A	329
at $60^{\circ} \mathrm{C}$	$l_{\text {th }}=l_{\text {e }}$	A	315
enclosed	$I_{\text {th }}$	A	275
Notes			At maximum permissible ambient air temperature.
Conventional free air thermal current, 1 pole			
Note			at maximum permissible ambient air temperature
open	$\mathrm{Ith}^{\text {b }}$	A	707
enclosed	$\mathrm{I}_{\text {th }}$	A	636
AC-3			
Rated operational current			
Open, 3-pole: $50-60 \mathrm{~Hz}$			
Notes			At maximum permissible ambient temperature (open.)
220 V 230 V	I_{e}	A	225
240 V	I_{e}	A	225
380 V 400 V	I_{e}	A	225
415 V	I_{e}	A	225

440 V	I_{e}	A	225
500 V	I_{e}	A	225
660 V 690 V	I_{e}	A	160
1000 V	I_{e}	A	76
Motor rating	P	kWh	
220 V 230 V	P	kW	70
240 V	P	kW	75
380 V 400 V	P	kW	110
415 V	P	kW	132
440 V	P	kW	138
500 V	P	kW	160
660 V 690 V	P	kW	150
1000 V	P	kW	108
AC-4			
Rated operational current			
Open, 3-pole: $50-60 \mathrm{~Hz}$			
220 V 230 V	I_{e}	A	164
240 V	I_{e}	A	164
380 V 400 V	I_{e}	A	164
415 V	I_{e}	A	164
440 V	I_{e}	A	164
500 V	I_{e}	A	164
660 V 690 V	I_{e}	A	120
1000 V	I_{e}	A	55
Motor rating	P	kWh	
220 V 230 V	P	kW	51
240 V	P	kW	54
380 V 400 V	P	kW	90
415 V	P	kW	96
440 V	P	kW	102
500 V	P	kW	116
660 V 990 V	P	kW	110
1000 V	P	kW	77
Condensor operation			
Individual compensation, rated operational current l_{e} of three-phase capacitors			
Open			
up to 525 V		A	220
690 V		A	133
Max. inrush current peak		$\mathrm{xI}_{\text {e }}$	30
Component lifespan	Operations	$\times 10^{6}$	0.1
Max. operating frequency		Ops/h	200
DC			
Rated operational current, open			
DC-1			
Notes			see DILDC300/DILDC600 or on request
Current heat loss			
3 pole, at $\mathrm{t}_{\text {th }}\left(60^{\circ}\right)$		w	45
Current heat loss at I_{e} to $\mathrm{AC}-3 / 400 \mathrm{~V}$		w	23
Impedance per pole		$\mathrm{m} \Omega$	0.15
Magnet systems			
Voltage tolerance			
U_{S}			190-240 V $50 / 60 \mathrm{~Hz}$
AC operated	Pick-up		$0.8 \times U_{S \text { min }}-1.15 \times U_{S \text { max }}$
AC operated	Drop-out		$0.25 \times U_{\text {S min }}-0.6 \times U_{\text {S max }}$

Power consumption of the coil in a cold state and $1.0 \times \mathrm{U}_{\mathrm{S}}$

Pull-in power	Pick-up	VA	210
Pull-in power	Pick-up	W	180
Sealing power	Sealing	VA	2.6
Sealing power	Sealing	W	2.1
Duty factor		$\%$ DF	100
Changeover time at 100% US (recommended value)			
Main contacts		ms	60
Closing delay	ms	40	
Opening delay			

Electromagnetic compatibility (EMC)
Electromagnetic compatibility

Rating data for approved types

Switching capacity
 Maximum motor rating

Three-phase
200 V
208 V
230 V
240 V
460 V
480 V
575 V
600 V
General use
Auxiliary contacts

Pilot Duty
AC operate
DC operate

General Use

AC
AC
DC
DC
Short Circuit Current Rati

Basic Rating
SCCR
max. Fuse
max. CB
480 V High Fault
SCCR (fuse)
max. Fuse
SCCR (CB)
max. CB
600 V High Fault
SCCR (fuse)
max. Fuse
SCCR (CB)
max. CB
Special Purpose Ratings
Definite Purpose Ratings (100,000 cycles acc. to UL 1995)

LRA 480 V 60 Hz 3 phase	A	2016
FLA 480 V 60 Hz 3 3phase	A	336
LRA 600 V 60 Hz 3phase	A	1680
FLA 600 V 60 Hz 3 3phase	A	280

Design verification as per IEC/EN 61439
Technical data for design verification

Rated operational current for specified heat dissipation	I_{n}	A	225
Heat dissipation per pole, current-dependent	$\mathrm{P}_{\text {vid }}$	W	7.67
Equipment heat dissipation, current-dependent	$P_{\text {vid }}$	W	0
Static heat dissipation, non-current-dependent	P_{vs}	W	2.1
Heat dissipation capacity	$\mathrm{P}_{\text {diss }}$	W	0
Operating ambient temperature min.		${ }^{\circ} \mathrm{C}$	-40
Operating ambient temperature max.		${ }^{\circ} \mathrm{C}$	60
IEC/EN 61439 design verification			
10.2 Strength of materials and parts			
10.2.2 Corrosion resistance			Meets the product standard's requirements.
10.2.3.1 Verification of thermal stability of enclosures			Meets the product standard's requirements.
10.2.3.2 Verification of resistance of insulating materials to normal heat			Meets the product standard's requirements.
10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects			Meets the product standard's requirements.
10.2.4 Resistance to ultra-violet (UV) radiation			Meets the product standard's requirements.
10.2.5 Lifting			Does not apply, since the entire switchgear needs to be evaluated.
10.2.6 Mechanical impact			Does not apply, since the entire switchgear needs to be evaluated.
10.2.7 Inscriptions			Meets the product standard's requirements.
10.3 Degree of protection of ASSEMBLIES			Does not apply, since the entire switchgear needs to be evaluated.
10.4 Clearances and creepage distances			Meets the product standard's requirements.
10.5 Protection against electric shock			Does not apply, since the entire switchgear needs to be evaluated.
10.6 Incorporation of switching devices and components			Does not apply, since the entire switchgear needs to be evaluated.
10.7 Internal electrical circuits and connections			Is the panel builder's responsibility.
10.8 Connections for external conductors			Is the panel builder's responsibility.
10.9 Insulation properties			
10.9.2 Power-frequency electric strength			Is the panel builder's responsibility.
10.9.3 Impulse withstand voltage			Is the panel builder's responsibility.
10.9.4 Testing of enclosures made of insulating material			Is the panel builder's responsibility.
10.10 Temperature rise			The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.
10.11 Short-circuit rating			Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.12 Electromagnetic compatibility			Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.13 Mechanical function			The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.

Technical data ETIM 7.0

Low-voltage industrial components (EG000017) / Power contactor, AC switching (ECO00066)
Electric engineering, automation, process control engineering / Low-voltage switch technology / Contactor (LV) / Power contactor, AC switching (ecl@ss10.0.1-27-37-10-03 [AAB718015])

Rated control supply voltage Us at AC 50 HZ	V	$190-240$
Rated control supply voltage Us at AC 60 HZ	V	$190-240$
Rated control supply voltage Us at DC	V	$0-0$
Voltage type for actuating	A	356
Rated operation current le at AC-1, 400 V	A	225
Rated operation current le at AC-3, 400 V	kW	110
Rated operation power at AC-3, 400 V	A	164
Rated operation current le at AC-4, 400 V	kW	90
Rated operation power at AC-4, 400 V	kW	111
Rated operation power NEMA		No
Modular version	2	
Number of auxiliary contacts as normally open contact	2	
Number of auxiliary contacts as normally closed contact	Rail connection	
Type of electrical connection of main circuit	0	
Number of normally closed contacts as main contact		

Approvals

Product Standards
UL File No.
UL Category Control No.
CSA File No.
CSA Class No.
North America Certification
Specially designed for North America

IEC/EN 60947-4-1; UL 60947-4-1; CSA - C22.2 No. 60947-4-1-14; CE marking E29096

NLDX
2389068
3211-04
UL listed, CSA certified
No

Characteristics

[^0]

Normal switching duty

Normal AC induction motor
Operating characteristics
Switch on: from stop
Switch off: during run
Electrical characteristics:
Switch on: up to $6 \times$ Rated motor current
Switch off: up to $1 \times$ Rated motor current
Utility category
100 \% AC-3
Typical Applications
Compressors
Lifts
Mixers
Pumps
Escalators
Agitators
fan
Conveyor belts
Centrifuges
Hinged flaps
Bucket-elevator
Air-conditioning systems
General drives for manufacturing and processing machines

Extreme switching duty
Squirrel-cage motor
Operating characteristics
Inching, plugging, reversing
Electrical characteristics
Make: up to $6 \times$ rated motor current
Break: up to $6 x$ rated motor current
Utilization category
100 \% AC-4
Typical applications
Printing presses
Wire-drawing machines
Centrifuges
Special drives for manufacturing and processing machines

Switching conditions for 3 pole, non-motor loads
Operating characteristics
Non inductive and slightly inductive loads
Electrical characteristics
Switch on: 1 x rated operational current
Switch off: 1 x rated operational current
Utilization category
100 \% AC-1
Typical examples of application
Electric heat

Short-time loading, 3-pole
Time interval between two loading cycles: 15 minutes

Dimensions

(1) DILM1000-XHI(V) $11-\mathrm{SI}$
(2) DILM1000-XHI11-SA

[^0]: on the side: $2 \times$ DILM1000-XHI(V)11-SI; $2 \times$ DILM1000-XHI11-SA

