EZM-9930 96 x 96 DIN 1/4 Universal Input Programmable Counter

- 6 digits Process (PV) and 6 digits Set (SV) Value Display
- Operation with 1 Set Value
- Reset, Pause and ChA-ChB Counting Inputs
- Operation with Automatic and Manual Reset
- NPN/PNP Type Operation
- INC , DEC , INC / INC , INC / DEC , UP / DOWN , x1 / x2 / x4 Counting with Phase Shifting Property in Counter Function
- Multiplication Coefficient and Decimal Point Position

ABOUT INSTRUCTION MANUAL

Instruction manual of EZM-9930 Programmable Counter consists of two main sections. Explanation of these sections are below. Also, there are other sections which include order information and technical specifications of the device. All titles and page numbers in instruction manual are in "CONTENTS" section. User can reach to any title with section number.

Installation:

In this section, physical dimensions of the device, panel mounting, electrical wiring, module mounting in the device, physical and electrical installation of the device to the system are explained.

Operation and Parameters:

In this section, user interface of the device, how to access to the parameters, description of parameters are explained.

Also in these sections, there are warnings to prevent serious injury while doing the physical and electrical mounting or using the device.

Explanation of the symbols which are used in these sections are given below.

This symbol is used for safety warnings. User must pay attention to these warnings.

This symbol is used to determine the dangerous situations as a result of an electric shock. User must pay attention to these warnings definitely.

This symbol is used to determine the important notes about functions and usage of the device.
CONTENTS
1.PREFACE Page 5
1.1 GENERAL SPECIFICATIONS
1.2 ORDERING INFORMATION
1.3 WARRANTY
1.4 MAINTENANCE
2.INSTALLATION Page 7
2.1 GENERAL DESCRIPTION
2.2 DIMENSIONS
2.3 PANEL CUT-OUT
2.4 ENVIRONMENTAL RATINGS
2.5 PANEL MOUNTING
2.6 INSTALLATION FIXING CLAMP
2.7 REMOVING FROM THE PANEL
3.ELECTRICAL WIRINGS Page 12
3.1 TERMINAL LAYOUT AND CONNECTION INSTRUCTION
3.2 ELECTRICAL WIRING DIAGRAM
3.3 VIEW OF DEVICE LABEL
3.4 CONNECTION OF DEVICE SUPPLY VOLTAGE INPUT
3.5 COUNTING INPUT CONNECTION
3.5.1 PROXIMITY \& SWITCH CONNECTION
3.5.2 INCREMENTAL ENCODER \& SWITCH CONNECTION
3.5.3 SWITCH CONNECTION
3.6 RELAY OUTPUT WIRING DIAGRAM
3.7 GALVANIC ISOLATION TEST VALUES OF EZM-9930 PROGRAMMABLECOUNTER
4.DEFINITION OF FRONT PANEL AND ACCESSING TO THE SET PARAMETERS Page 20
4.1 DEFINITION OF FRONT PANEL
4.2 POWER ON OBSERVATION OF EZM - 9930 PROGRAMMABLECOUNTER AND SOFTWARE REVISION ON THE DISPLAY
4.3 ADJUSTMENT OF SET VALUE
4.4 RESETTING COUNT VALUE
4.5 ACCESSING TO THE PROGRAM PARAMETERS
5.PROGRAM PARAMETERS Page 29
6.FAILURE MESSAGES IN EZM-9930 PROGRAMMABLE COUNTER Page 46
7.SPECIFICATIONS Page 47
8.OTHER INFORMATIONS Page 48

Manufacturer's Name : EMKO ELEKTRONIK A.S.
Manufacturer's Address : DOSAB, Karanfil Sk., No:6, 16369 Bursa, TURKEY

The manufacturer hereby declares that the product:

Product Name	$:$ Programmable Counter
Type Number	$:$ EZM-9930
Product Category	$:$ Electrical equipment for measurement, control and
	laboratory use

Conforms to the following directives :
2006 / 95 / EC The Low Voltage Directive
2004 / 108 / EC The Electromagnetic Compatibility Directive
has been designed and manufactured to the following specifications:
EN 61000-6-4:2007 EMC Generic Emission Standard for Industrial Environments
EN 61000-6-2:2005 EMC Generic Immunity Standard for Industrial Environments
EN 61010-1:2001 Safety Requirements for electrical equipment for measurement, control and laboratory use

When and Where Issued

$16^{\text {th }}$ October 2009
Bursa-TURKEY

Authorized Signature

Name : Serpil YAKIN
Position : Quality Manager

1.Preface

EZM Series Programmable Counter can be used in package machines, production and quality control rollers, in cutting and processing machine of glass, plastic, marble, sheet, iron, fabric all measuring and controlling of dimension, productivity, and can be adapted easily to all mechanical construction and automation system.

Some application fields which they are used are below:

Application Fields

Package machines,
Quality Control rollers,
Filling Systems,
Tool Benchs,
Measuring Dimension and Control Automation,
In Cutting and Processing machine of glass, plastic, marble, sheet, iron and fabric Building Automation.
Production bands
1.1 General Specifications

A Supply Voltage
2 24 24 ~ (-\%15;+\%10) 50/60Hz or $24 \mathrm{~V}=-\mathrm{-}$ ($\% 15 ;+\% 10$)
3 $34 \mathrm{~V} \sim(-\% 15 ;+\% 10) 50 / 60 \mathrm{~Hz}$
$115 \mathrm{~V} \sim(-\% 15 ;+\% 10) 50 / 60 \mathrm{~Hz}$
5 230V ~ (-\%15;+\%10) 50/60Hz
9 Customer (Maximum 240V~ (-\%15;+\%10))50/60Hz

| E | Output-1 |
| :--- | :--- | :--- |

1 Relay Output (5A @ 250 V ~) Rezistive Load

All order information of EZM-9930 Programmable Counter are given on the table at left. User may form appropriate device configuration from information and codes that at the table and convert it to the ordering codes.

Supply voltage must be determined for your system.

Please fill the order code blanks according to your needs.

Please contact us, if your needs are out of the standards.

~Symbol means Vac
=-- Symbol means Vdc
二 Symbol means Vac and Vdc can be applied.

1.3 Warranty

EMKO Elektronik warrants that the equipment delivered is free from defects in material and workmanship. This warranty is provided for a period of two years. The warranty period starts from the delivery date. This warranty is in force if duty and responsibilities which are determined in warranty document and instruction manual performs by the customer completely.

1.4 Maintenance

Repairs should only be performed by trained and specialized personnel. Cut power to the device before accessing internal parts.
Do not clean the case with hydrocarbon-based solvents (Petrol, Trichlorethylene etc.). Use of these solvents can reduce the mechanical reliability of the device. Use a cloth dampened in ethyl alcohol or water to clean the external plastic case.

2.Installation

Before beginning installation of this product, please read the instruction manual and warnings below carefully.

In package,

- One piece unit
- Two pieces mounting clamps
- One piece instruction manual

A visual inspection of this product for possible damage occured during shipment is recommended before installation. It is your responsibility to ensure that qualified mechanical and electrical technicians install this product.

If there is danger of serious accident resulting from a failure or defect in this unit, power off the system and separate the electrical connection of the device from the system.

The unit is normally supplied without a power switch or a fuse. Use power switch and fuse as required.

Be sure to use the rated power supply voltage to protect the unit against damage and to prevent failure.

Keep the power off until all of the wiring is completed so that electric shock and trouble with the unit can be prevented.

Never attempt to disassemble, modify or repair this unit. Tampering with the unit may results in malfunction, electric shock or fire.

Do not use the unit in combustible or explosive gaseous atmospheres.
During the equipment is putted in hole on the metal panel while mechanical installation some metal burrs can cause injury on hands, you must be careful.

Montage of the product on a system must be done with it's fixing clamps. Do not do the montage of the device with inappropriate fixing clamp. Be sure that device will not fall while doing the montage.

It is your responsibility if this equipment is used in a manner not specified in this instruction manual.

2.2 Dimentions

Maximum 15 mm / 0.59 inch

$11.5 \pm 1 \mathrm{~mm} / 0.45$ inch $84 \mathrm{~mm} / 3.31$ inch

92 mm / 3.62 inch

2.4 Environmental Ratings

Operating Conditions

Forbidden Conditions:
Corrosive atmosphere Explosive atmosphere
Home applications (The unit is only for industrial applications)

2.5 Panel Mounting

1-Before mounting the device in your panel, make sure that the cut-out is the right size.

2-Check front panel gasket position

3-Insert the device through the cut-out. If the mounting clamps are on the unit, put out them before inserting the unit to the panel.

During installation into a metal panel, care should be taken to avoid injury from metal burrs which might be present. The equipment can loosen from vibration and become dislodged if installation parts are not properly tightened. These precautions for the safety of the person who does the panel mounting.

The unit is designed for panel mounting.

1-Insert the unit in the panel cut-out from the front side.

2- Insert the mounting clamps to the holes that located top and bottom sides of device and screw up the fixing screws until the unit completely immobile within the panel

Montage of the unit to a system must be done with it's own fixing clamps. Do not do the montage of the device with inappropriate fixing clamps. Be sure that device will not fall while doing the montage.

2.7 Removing from the Panel

Before starting to remove the unit from panel, power off the unit and the related system.

1-Loosen the screws.
2-Pull mounting clamps from top and bottom fixing sockets.

3-Pull the unit through the front side of the panel

You must ensure that the device is correctly configured for your application. Incorrect configuration could result in damage to the process being controlled, and/or personal injury. It is your responsibility, as the installer, to ensure that the configuration is correct.
Parameters of the device has factory default values. These parameters must be set according to the system's needs.

Only qualified personnel and technicians should work on this equipment. This equipment contains internal circuits with voltage dangerous to human life. There is severe danger for human life in the case of unauthorized intervention.

Be sure to use the rated power supply voltage to protect the unit against damage and to prevent failure.

Keep the power off until all of the wiring is completed so that electric shock and trouble with the unit can be prevented.

3.1 Terminal Layout and Connection Instructions

Max. 2.5mm / 0.098 inch

Wire Size:

14AWG/1 mm ${ }^{2}$ Solid /Stranded

Torque $0,5 \mathrm{Nm}$

Screw driver $0,8 \times 3 \mathrm{~mm}$

Electrical wiring of the device must be the same as 'Electrical Wiring Diagram' below to prevent damage to the process being controlled and personnel injury.

NOTE-1 : Sensor supply voltage: $12 \mathrm{~V} \overline{--} \pm 10 \%, 50 \mathrm{~mA}$ maximum with short circuit protection

P/N : EZM-9930

230 V~ $\pm 15 \%$ $50 / 60 \mathrm{~Hz}-2.3 \mathrm{VA}$

3.4 Connection of Device Supply Voltage Input

Connection of Universal
Supply Voltage Input

Supply Voltage
115 V ~, 230 V ~
(-\%15;+\%10) $50 / 60 \mathrm{~Hz}$

Connection of Universal
Supply Voltage Input

Supply Voltage
24 V ~ (-\%15;+\%10) $50 / 60 \mathrm{~Hz}$
or $24 \mathrm{~V}=-\mathrm{-}$ ($\% 15 ;+\% 10$)

Note-1:
There is internal $33 R \Omega$ fusible flameproof resistor in $115 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$ and $230 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$ There is internal $4 R 7 \Omega$ fusible flameproof resistor in $24 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$

Note-2 : " L " is " + ", " N " is " - " for $24 V=-$ supply voltage.
Note-3 : External fuse is recommended
Make sure that the power supply voltage is the same indicated on the instrument.

Switch on the power supply only after that all the electrical connections have been completed.

Supply voltage range must be determined in order. While installing the unit, supply voltage range must be controlled and appropriate supply voltage must be applied to the unit. Controlling prevents damages in unit and system and possible accidents as a result of incorrect supply voltage.

There is no power supply switch on the device. So a power supply switch must be added to the supply voltage input. In accordance with the safety regulations, the power supply switch shall bring the identification of the relevant instrument.Power supply switch shall be easily accessible by the user.
Power switch must be two poled for seperating phase and neutral. On/Off condition of power switch is very important in electrical connection. On/Off condition of power switch must be signed for preventing the wrong connection.

If an external fuse is used, it must be on phase connection in ~supply input.

3.5.1 Proximity \& Switch Connection

NOTE-1 : Sensor supply voltage: $12 \mathrm{~V} \overline{--} \pm 10 \%, 50 \mathrm{~mA}$ maximum with short circuit protection

$\square P \cap P \cap P=000000$ NPN type operation

NOTE-1 : Sensor supply voltage: $12 \mathrm{~V} \overline{--} \pm 10 \%, 50 \mathrm{~mA}$ maximum with short circuit protection

NOTE-1 : Sensor supply voltage: $12 \mathrm{~V} \overline{--} \pm 10 \%, 50 \mathrm{~mA}$ maximum with short circuit protection

Fuses must be selected according to the applications.

3.7 Galvanic Isolation Test Results of EZM-9930 Programmable Counter

4.1 Definition of Front Panel

ENTER Button is used for saving all changes to memory and accessing to the parameters.

RESET and INCREMENT Button is used to Reset the Actual Value or increment the digit value that is selected by SHIFTING Button.

4.2 Power On Observation of EZM - 9930 Programmable Counter and Software

 Revision on the DisplayWhen power is applied to the device, software revision number of the controller is momentarily illuminated on actual value display. Then operation screen is observed.

When power on, view of the screen is shown below:

If there is an unexpected situation while opening the device, power off the device and inform a qualified personnel.

4.3 Adjustment of SET Value

Changing SET Value

When shift button is pressed, 6th digit of SET value starts to flash.

Save the value as SET value by pressing Enter button.
4.4 Resetting the Count Value

When RESET button is pressed, Actual Value becomes the Reset-Offset Value.

RESET operation can be realized by Reset button or applying signal to the RESET input. These two operations are named MANUAL RESET in parameters section.
At the end of MANUAL RESET operation, if d ir $E c t=0 \mathcal{D C D O}$ then Count Value becomes Reset Offset Value.

 value becomes Reset Offset Value.

4.5 Accessing to the Program Parameters

In this section Accessing to the Program parameters process is shown.
For details on parameters refer to PROGRAM PARAMETERS section.

Input types and functions

The most significant digit of the parameter (1st digit for this parameter) flashes.

Press Enter Button to confirm password

Press Enter Button

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

The most significant digit of the parameter (2nd digit for this parameter) flashes.

Filter time for Ch-A and Ch-B Input

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press Enter Button

The most significant digit of the parameter (2nd digit for this parameter) flashes.

Press PROG button to exit from programming section without doing any changes.

The most significant digit of the parameter (1st digit for this parameter) flashes.

Press PROG button to exit from programming section without doing any changes.

The most significant digit of the parameter (1st digit for this parameter) flashes.

Direction of the counting

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press Enter Button

Sensor type selection

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press Enter Button

Output Functions

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press Enter Button

The most significant digit of the parameter (1st digit for this parameter) flashes.

Press PROG button to exit from programming section without doing any changes.

The most significant digit of the parameter (4th digit for this parameter) flashes.

Press PROG button to exit from programming section without doing any changes.

The most significant digit of the parameter (1st digit for this parameter) flashes.

Press PROG button to exit from programming section without doing any changes.

The most significant digit of the parameter (1st digit for this parameter) flashes.

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press Enter Button

Reset and Set Protection

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press Enter Button

Multiplication Coefficient

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press Enter Button

Reset Offset

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press Enter Button

Program Password

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press Enter Button

ロ．\because ロIーII Input types and Functions

0 ODOD 1 Downcounton rising edge of Ch－Ainput．

凡凡凡凡凡コ Upcount on rising edge of Ch－A input．

Downcount on rising edge of Ch－B input．

ムППППヨ Upcount on rising edge of Ch－A input Upcount on rising edge of Ch－B input

ҺППППム Upcount on rising edge of Ch－A input when Ch－B is at 0
 Downcount on rising edge of $\mathrm{Ch}-\mathrm{A}$ when $\mathrm{Ch}-\mathrm{B}$ is at 1

000005

x1 Phase Shifting（for incremental encoders）
Upcount on rising edge of Ch－A input when Ch－B is at 0
Downcount on rising edge of $\mathrm{Ch}-\mathrm{A}$ input when $\mathrm{Ch}-\mathrm{B}$ is at 1

x2 Phase Shifting (for incremental encoders)
Upcount on rising edge of Ch-A when Ch-B is at 0 Downcount on rising edge of Ch-A when Ch-B is at 1 Upcount on falling edge of Ch-A when Ch-B is at 1 Downcount on falling edge of Ch-A when Ch-B is at 0

x4 Phase Shifting (for incremental encoders)
Upcount on rising edge of Ch-A when Ch-B is at 0 Downcount on falling edge of Ch-A when Ch-B is at 0 Downcount on rising edge of $\mathrm{Ch}-\mathrm{A}$ when $\mathrm{Ch}-\mathrm{B}$ is at 1 Upcount on falling edge of Ch-A when Ch-B is at 1

Downcount on rising edge of Ch-B when Ch-A is at 0 Upcount on falling edge of $\mathrm{Ch}-\mathrm{B}$ when $\mathrm{Ch}-\mathrm{A}$ is at 0 Upcount on rising edge of Ch-B when Ch-A is at 1 Downcount on falling edge of $\mathrm{Ch}-\mathrm{B}$ when $\mathrm{Ch}-\mathrm{A}$ is at 1

Encoder is travelling in the Reverse Direction

Encoder is travelling in the Forward Direction

It is used to protect against the electrical contact debounce or the signal that is less than the determined pulse time. It can be adjusted from $\square \square$ to $\quad 50$ millisecond. If Input types and Functions parameter; is entered 020055 , 000055 or ODD 7 then, pulse time for $\mathrm{Ch}-\mathrm{A}$ and $\mathrm{Ch}-\mathrm{B}$ Input parameter P.inFLL can not be accessed

■ ■I

It is used to protect against the electrical contact debounce or the signal that is less than the determined pulse time.
It can be adjusted from \qquad ㄹ to \qquad 50 millisecond.

■ $\because \boxed{\square}$ ロ Direction of Counting

ロПППП i Downcount. (Prese t-->0) then Direction of Counting parameter $\quad-1 r E \subset \hbar$ can not be accessed.

When count value reaches the Set Value, Output Position is changed. Counting process continues over the SET value. Output Pulse Time is not considered. Process counts, until manual reset happens. When Manual Reset happens, count value becomes Reset Offset value.

When count value reaches the 0 , Output Position is changed.
Counting process continues under the 0 value. Output Pulse Time is not considered. Process counts, until manual reset happens. When Manual Resethappens; if r.oFSEE DODODD count value becomes SET value, if r.oF5EL \neq DODSDO then count value becomes Reset Offset value.

Manual Reset-2.
(Output pulse Time םuL.PL is not considered)

When count value reaches the Set Value, Output Position is changed. Counting process is not continue over the SET value. Output Pulse Time is not considered. Process counts, until manual reset happens. When Manual Reset happens, count value becomes Reset Offset value.

When count value reaches the 0 , Output Position is changed. Counting process is not continue under the 0 value. Output Pulse Time is not considered. Process counts, until manual reset happens. When Manual Reset happens; if r.oF5Et $=$ ODSODS , then count value becomes SET value, if r.oF5EL $\neq 020000$, then count value becomes Reset Offset value.

Manual Reset-3.

Device continues to count till manual reset is applied. (Output Pulse Time aut.PL is considered.)

Counting direction : 0 --> P (Upcounting) dirEct $=0$

When count value reaches the Set Value, Output Position is changed. If Output Pulse time ouL.PL is not 0 , then Output Position is changed at the end of the Pulse time. If OuL.PL $=000000$ then Output Position has not change until Manual Reset happens. Counting process continues over the SET value.
When Manual Reset happens, count value becomes Reset Offset value.

When count value reaches the 0 Value, Output Position is changed. If Output Pulse time quL.PL is not 0 , then Output Position is changed at the end of the Pulse time. If $\square u t \cdot P L=000000$, then Output Position has not change until Manual Reset happens. Counting process continues under the 0 value.
When Manual Reset happens; if r.oF5EL $=$ ODODOD , then count value becomes SETvalue, if r.aFSEL $\neq \mathrm{BDODOD}$, then count value becomes Reset Offset value.

When count value reaches the Set Value, Output Position is changed. Actual value is reset automatically. Counting starts upcounting from 0 value. If Output Pulse time out.PL is not 0 , then Output Position is changed at the end of the Pulse time. If Pulse time ロuL.PL $=000000$ then Output Position has not changed until Manuel Reset happens. When Manual Reset happens, count value becomes Reset Offset value.

When count value reaches the 0 Value, Output Position is changed. Actual value is reset automatically. Counting starts downcounting from Set value. If Output Pulse time quL.PL, is not 0 , then Output Position is changed at the end of the Pulse time. If Pulse time $\square u L . P L=\square 00000 ~$ then Output Position has not changed until Manuel Reset happens.
When Manual Reset happens; if r.oF5EE = DODODD , then count value becomes SETvalue, if r.oFSEt $\neq 0$ ODOD, then count value becomes Reset Offset value.

When count value reaches the 0 Value, Output Position is changed. If Output Pulse time auL.PL 1 is not 0 , then Output Position is changed the old position at the end of the Pulse time. Actual value is reset and counting starts from SET value at the end of the Output Pulse time.
If output pulse time out.PL $=00000 \mathrm{D}$, then output position has not change until Manual Reset happens. Actual counting value stops at SET value. Counting process is not continue under the 0 value.
When Manual Reset happens, if roF5Et = OUODOD, then count value becomes SET value. If r.aF5EL $\neq 0$ ODODO , then count value becomes Reset Offset value.

When count value reaches the SET Value, Output Position is changed. If Output Pulse time ouL.PL is not 0 , then Output Position is changed the old position at the end of the Pulse time. Count value starts counting from 0 value. But SET value is observed in actual value display. Real counting value is shown on Actual value screen at the end of the Output
 until Manual Reset happens. Counting process has not continue over SET value.
When Manual Reset happens, count value becomes Reset Offset value.

When count value reaches the 0 Value, Output Position is changed. If Output Pulse time qut.PL, is not 0 , then Output Position is changed the old position at the end of the Pulse time. Count value starts counting from SET value. But 0 value is observed in actual value display. Real counting value is shown on Actual value screen at the end of the Output pulse time. If $\square u t . P L_{1}=000000$,then output position has not changed until Manual Reset happens. Counting process has not continue over 0 value.
When Manual Resethappens, if r.oF5EL = ODODOD, then count value becomes SET value. If r.oF5EL \neq DODSDC , then count value becomes Reset Offset value.

When count value reaches the SET Value, Output Position is changed. If Output Pulse time quL.PL is not 0 , then Output Position is changed at the end of the Pulse time. Counting continue over SET value. Counting value becomes 0 and output position becomes old position. If outputpulse time QuL.PL $=$ OUODOD , then output position has not change until Manual Reset happens.
When Manual Reset happens, count value becomes Reset Offset value.

When count value reaches the 0 Value, Output Position is changed. If Output Pulse time out.PL is not 0 , then Output Position is changed at the end of the Pulse time. Counting continue under 0 value. Counting value becomes SET and output position becomes old position. If output pulse time out.PL $=\square 00000$,then output position has not change until Manual Resethappens.
When Manual Reset happens, if r.oF5Et $=$ ODODED, then count value becomes SET value. If r.oF5EE $\neq 00000 \mathrm{D}$, then count value becomes Reset Offset value.

If output functions parameter $\square u t \cdot F_{n g}$ is selected Automatic Reset (000003
 for realizing Automatic Reset.

If count value equal or greater than SET value, then output becomes active. If count value less than SET value, then output becomes inactive. QuL.PL \quad is not considered. Counting process continues over the Set value.
When Manual Reset happens, count value becomes Reset Offset value.

If count value is equal or less than vODND value, then output becomes active. If count value greater than 020000 value, then output becomes inactive. Output Pulse time qut.PL , is not considered.
When Manual Resethappens; if roF5EE = OUODOD, then count value becomes SETvalue, if r.oFSEL $\neq \triangle$ DODDD, then count value becomes Reset Offset value.
(i) It is preferred if upcount and downcount is performed at the same time.

Output Run Type

ดПППП i Output Normally energised

■レIローロ Output Pulse Time

It determines how long Output will be active． It can be adjusted from 00.00 to 99.99 seconds． If it is 00.00 second，then it operates indefinitely．
For details，refer to the section where output functions quL．Fnc are defined

Point Position for Display

ИПППП i Between first and second digits 000000
ดППППป Between second and third digits
OПППП3 Between third and fourth digits 000000
ロПППП4 Between fourth and fifth digits

000000

000000

ローIロッロェ Data Record

GRMRMR Count value is saved to memory when power is disconnected and restored on power up．

ППППП C Count value is not saved to memory when power is disconnected．When power up，if the direction is upcounting， 0 value is shown on the screen．If the direction is down counting then SET value is shown on the screen．

Multiplication Coefficient

It can be adjusted from 00000 it to 939393 . Changes in this parameter is evaluated when counting starts.
If it is displayed without having any changes.

r.OF5EL Resetoltsot

It can be adjusted from 000000 to 500000.
For details, refer to the section where output functions םut.Fnc are defined

$\square \square \square \square \square \square \square$

It is used for accessing to the program parameters. It can be adjusted from DODODO to DO3933.
If it is DODODS , there is no password protection while accessing to the parameters.
When programming button is pressed, Prous will appear on the display.
If program password is not " 0 " while accessing to the program parameters;
1-If user does not enter the Puurd value correctly ; operation screen will appear without entering to operator parameters.

2- When PSuur in top display and ODODO in bottom display, if user presses ENTER button without entering password (for observing the parameters):
User can see all parameters except Program Password but device does not allow to do any changes with parameters.

6. Failure Messages in EZM-9930 Programmable Counter

1-If the password is not 0 , user can access to the parameters without entering the password and by pressing ENTER button.
User can see all parameters except for programming password parameter ProL.PS but user can not do any changes in parameters. If password is entered for accessing to the parameters correctly, most significant digit of the parameter flashes. But if the password is not entered, flashing of the most significant digit is not realised.

When PROG button is pressed, password entering screen will appear.

Password Screen

The most significant digit of the parameter (4th digit for this parameter) flashes.

Press ENTER button without entering the password.

By pressing ENTER button, user can see all parameters except for

Continue to press ENTER button for scanning the parameters.

Input Types and Functions
No digit flashes
program password

Reset Offset Parameter
Reset Offet Parameter

Press PROG button to exit from programming mode.

Operation Screen

Input Types and Functions

7. Specifications

Device Type
Housing \& Mounting

Protection Class
Weight
Environmental Ratings
: Programmable Counter
: $96 \mathrm{~mm} \times 96 \mathrm{~mm} \times 87.51 / 4$ DIN 43700 plastic housing for panel mounting. Panel cut-out is $92 \times 92 \mathrm{~mm}$
: IP65 at front, IP20 at rear.
: Approximately 0.34 Kg .
: Standard, indoor at an altitude of less than 2000 meters with none condensing humidity
Storage / Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} / 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage / Operating Humidity : 90% max. (None condensing)
Installation
: Fixed installation
Over Voltage Category
Pollution Degree
Operating Conditions

2-If Actual Value is flashing and counting is stopped; It appears if any of the count value is greater than the maximum count value.
To remove this warning and reset the count value press RESET button.

3-If Actual Value is flashing and counting is stopped ; It appears if any of the count value is lower than the minimum count value.
To remove this warning and reset the count value press RESET button.

Supply Voltage and Power	: $230 \mathrm{~V} \sim(-\% 15 /+\% 10) 50 / 60 \mathrm{~Hz} .2 .3 \mathrm{VA}$
	$115 \mathrm{~V} \sim(-\% 15 /+\% 10) 50 / 60 \mathrm{~Hz} .2 .3 \mathrm{VA}$
	$24 \mathrm{~V} \sim(-\% 15 /+\% 10) 50 / 60 \mathrm{~Hz} .2 .3 \mathrm{VA}$
	$24 \mathrm{~V}=-\mathrm{C}$ ($\% 15 /+\% 10)-4 \mathrm{~W}$
Digital Inputs	
Electrical Characteristics	Rated voltage : $16 \mathrm{~V} \overline{-\mathrm{-}}$ @ 5mA
	Maximum continuous permissible voltage : $30 \mathrm{~V}=-$
	Logic 1 minimum level : $3 \mathrm{~V}=-$
	Logic 0 maximum level : $2 \mathrm{~V} \overline{=-}$
Sensor Supply Voltage	: 12V $=- \pm$ \% 10 max .50 mA
Maximum Input Frequency	P., inPut $=0,1,2$ with 20000 Hz
	P, ¢P Pb $=3,4$ with 20000 Hz
	P, in Put $=5,6$ with 12000 Hz
	P.inPut $=7$ with 10000 Hz
Output Type	: Relay Output on Resistive Load 5A@250V~ 100.000 operation (Full Load)
Actual Value Display	: $13,2 \mathrm{~mm}$ Red 6 digit LED Display
Set Display	: 8 mm Green 6 digit LED Display
LED Displays	: SV (Set value), OP (Control output) LEDs
Approvals	: ERE, (6

8. Other Informations

Manufacturer Information:

Emko Elektronik Sanayi ve Ticaret A.Ş.
Demirtaş Organize Sanayi Bölgesi Karanfil Sk. No:6 16369
BURSA/TURKEY
Phone : +90 2242611900
Fax : +90 2242611912
Repair and Maintenance Service Information:
Emko Elektronik Sanayi ve Ticaret A.Ş.
Demirtaş Organize Sanayi Bölgesi Karanfil Sk. No:6 16369
BURSA/TURKEY

