Read this document carefully before using this device. The guarantee will be expired by device demages if you don't attend to the directions in the user manual. Also we don't accept any compensations for personal injury, material damage or capital disadvantages.

ENDA EI7041 PROGRAMMABLE INDICATOR

Thank you for choosing ENDA EI7041 INDICATOR.
$72 \times 72 \mathrm{~mm}$ sized.
4 digits display.
$>$ Display scale can be adjusted between -1999 and 4000.
Decimal point can be adjusted between 1st. and 3rd. digits.
\rightarrow Measurement unit can be displayed.
Selectable four different standard input types (0-20mA, 4-20mA, 0-1V, 0-10V).
User can calibrate the device according to specified input type.
Sampling time can be adjusted in four steps.
Stores maximum and minimum measurement values.
Maximum and minimum values can be stored and displayed.
\rightarrow Two relay output for control and alarm (Optional).
Control option below and above set value.
Selectable independent, deviation and band alarm.
Sensor supply output (Optional).
RS485 Modbus RTU communication protocol feature (Optional)
\rightarrow CE marked according to European standards.

TECHNICAL SPECIFICATIONS

ENVIRONMENTAL CONDITIONS

Ambient/storage temperature	$0 \ldots+50^{\circ} \mathrm{C} /-25 \ldots+70^{\circ} \mathrm{C}$ (with no icing).

Max. relative humidity $\quad 80 \%$ Relative humidity for temperatures up to $31^{\circ} \mathrm{C}$, decreasing linearly to 50% at $40^{\circ} \mathrm{C}$.
Rated pollution degree According to EN 60529 Front panel : IP65

Rear panel : IP20
Height
Max. 2000m.
KEEP AWAY device from exposed to corrosive, volatile and flammable gases or liquids and DO NOT USE the device in similar hazardous locations.
ELECTRICAL CHARACTERISTICS

Supply	$230 \mathrm{~V} \mathrm{AC} 110 \mathrm{~V} \mathrm{AC}+\% 10-\% 20,12 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} \mathrm{AC} \pm \% 10,50 / 60 \mathrm{~Hz}$ or $10-30 \mathrm{~V} \mathrm{DC} \mathrm{/} \mathrm{8-24V} \mathrm{AC} \pm \% 10$ SMPS optional.
Power consumption	Max. 7VA.
Wiring	$2.5 \mathrm{~mm}^{2}$ screw-terminal connections.
Date retention	EEPROM (Min. 10 years).
EMC	EN 61326-1: 2013.

Input type	Measurement range		Measurement accuracy	Input empedance
$0-1 V$ DC voltage $0-10 \mathrm{~V}$ DC voltage 0-20mA DC current 4-20mA DC current	Min.	Max.	$\pm 0,5 \%$ (of full scale) $\pm 0,5 \%$ (of full scale) $\pm 0,5 \%$ (of full scale) $\pm 0,5 \%$ (of full scale)	Approx. 100k Ω Approx. 100k Ω Approx. 10Ω Approx. 10Ω
	OV	1.1 V		
	OV	12 V		
	0 mA	25 mA		
	0 mA	25 mA		
While the current measuring mode, input impedance becomes 10Ω. Therefore, in current mode, the device must not be connected any voltage input. Otherwise, the device is broken. While the device is running in the voltage measurement mode and if required to change to current measurement mode, then firstly the voltage inputs must be removed and after that, input type must be changed to one of the current measurement modes.				
OUTPUTS				
Sensor power supply	All sensor supply outputs maximum 50 mA . (Regulated and isolated).			
Out	Relay: 250V AC, 8 A (for resistive load), NO; 1/2 HP 240V AC CosF $=0.4$ (for inductive load).			
Alarm	Relay: 250 V AC, 8 A (for resistive load), NO; 1/2 HP 240V AC CosF $=0.4$ (for inductive load).			
Life expectancy for relay	Mechanical 30.000.000 operation; 100.000 operation at 250 V AC, 8 A resistive load.			
CONTROL				
Control type	Double set-point and alarm control.			
Control algorithm	On-Off control.			
Hysteresis	Adjustable between $1 . . .200$.			
HOUSING				
Housing type	Suitable for flush-panel mounting according to DIN 43700.			
Dimentions	W72xH72xD97mm.			
Weight	Approx. 400 g (after packaging)			
Enclosure material	Self extinguishing plastics.			

DIMENSIONS

CONNECTION DIAGRAM

ENDA EI7041 is intended for installation in control panels. Make sure that the device is used only for intended purpose. The shielding must be grounded on the instrument side. During an installation, all of the cables that are connected to the device must be free of energy. The device must be protected against inadmissible humidity, vibrations, severe soiling. Make sure that the operation temperature is not exceeded. All input and output lines that are not connected to the supply network must be laid out as shielded and twisted cables. These cables should not be close to the power cables or components. The installation and electrical connections must be carried on by a qualified staff and must be according to the relevant locally applicable regulations.

Note : 1) Mains supply cords shall meet the requirements of IEC 60227 or IEC 60245 2) In accordance with the safety regulations, the power supply switch shall bring the identification of the relevant instrument and it should be easily accessible by the operator.

Displaying the Measurement Unit

In "Running Mode", if SET\& keys are pressed together for 3 seconds, measurement unit appears. See UUn it parameter for programming.

Resetting Maximum and Minimum Measurement Values

| 571 |
| :--- | :--- | :--- |
| Measurement |
| Value |

Setting Up User Calibration Values

No calibration required if the standard inputs ($0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, 0-1 \mathrm{~V}$ and $0-10 \mathrm{~V}$) are used. LRL. L Parameter should be set as i. in P if no standardinput used. In user menu, if \triangle key is pressed for 7 seconds, $L . \mathrm{mP}$ message appears on display and calibration menu is entered.
Voltage or current which are corresponds to $L S L L$ parameter is applied to device input and SETI key is pressed. If operation is success, Succ message appears on display and proceeding to the next step.
In this step, while H inf message displayed, voltage or current which are corresponds to $L S[L$ parameter is applied to device input and SEl key is pressed. If operation is success, Succ then $\subset . E \cap d$ message appears on display, calibration process is completed and the device will start running according to the new calibration values.

ERROR MESSAGES \& DESCRIPTIONS !

Error conditions and descriptions are listed below.

* If voltage or current is difference and lower than half of full scale between $H ., \wedge \rho P$ and L. in P voltage or current.
* If excessive high-low input current or voltage is applied.
* If an error occurs during $\mathrm{L} .1 \cap P$ calibration, $E r r i$ message appears on display.
* If an error occurs during H. $ı \cap P$ calibration, $\varepsilon r r \mathcal{Z}$ and $\mathcal{L} \cdot \mathcal{E}_{r r}$ message appears on display.
* If user calibration is not applied before and an error occurs during calibration process, device runs according to standard calibration values.
* If user calibration is applied before and an error occurs during calibration process, device runs according to previous user calibration values.

Changing Parameters

keys are pressed together for 2 seconds, P, message appears and user menu entered. Then in user menu, first parameter's is displayed.
When a parameter selected, if SET key is pressed selected parameter value appears and displayed parameter can be changed by \triangle keys. If no operation is performed for 3 seconds after the parameter value is being displayed or sEr key is pressed, parameter name will be shown again. While parameter name displayed, \triangle keys are pressed together, returned to "Running Mode" without waiting period.

Programming Mode

Hidden Menu

If key is pressed for 7 seconds $P 己$ message appears on the display and hidden menu is entered. Selected parameter values can be displayed with SET key and canged with \square keys. Accessing to the parameters and storing functions are as in the user menu. All parameters can be accessed from this menu.

If SET\& \square keys are pressed together for 2 seconds, parameter transferred to user menu. In this way up to 12 parameters can be transferred to the user menu.
In user menu, if SEI \& keys are pressed together for 2 seconds, parameter is removed from user menu. When a parameter is displayed in the user menu, mA LED lights up in the hidden menu.

Setting Up Measurement Unit (U'́n , t) Parameters
If pressed SEIT key in U' it parameter, related digit blinks on display. For desired number, letter or symbol is adjusted by pressing the \square key for related digit. For setting up other digits \triangle key is pressed. When parameter setting process is completed, by pressing sEi key or no key is pressed for 3 seconds without pressing any key, parameters can be saved.

PARAMETER LIST

CONFIGURATION PARAMETERS		Initial Value
$1.64 P$	Input type selection. ($0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, ~ 5-i \mathrm{~V}, ~ 5-10 \mathrm{~V})$	0-10
dSP.L	Indicator configuration. (PrcS : Process value, Pr.ín : 4 Seconds process value, 2 Seconds \dot{U} ín it value.)	Pre 5
rRtE	Measurement ranges. FR5t : Average of 1 measurement value is gathered in 200 msec . SLo. : : Average of 4 measurement value is gathered in 200 msec . $5 L O \mathcal{L}$: Average of 8 measurement value is gathered in 200 msec . SLo3 : Average of 16 measurement value is gathered in 200 msec .	SLo. 1
HoLd	Indicator holding parameter. (nonE : instant measurement value, Lo. : minimum value, H, : maximum value is displayed.)	none
Un t	Measurement value. (Desired measurement value for unit selection).	nonE
[RL.L		5. $1 \mathrm{IP}^{\mathrm{P}}$
d.Pnt	Decimal point selection. (Adjustable between the 1th. and 3rd digits).	0
L.5LL	Lower scale value. (Adjustable between - 1999 and H.5CL value).	0
H.5CL	Upper scale value. (Adjustable between L.5LL and 4080 value).	2000
OUTPUT CONTROL PARAMETERS		Initial Value
o. $5 E t$	Output set value. (Adjustable between L.5CL and H.5CL).	2000
0.445	Output hysteresis value. (Adjustable between ' and 200).	2
$0.5 t 8$	Output status. (oFF: Output not active, Lo: Becomes active below the setpoint output value, $\boldsymbol{H} \boldsymbol{l}$:Becomes active above the setpoint output value).	of F
o.Pon	Required relay-on delay time in order to set output to active state after power-up. (Adjustable between 0 and 99 minutes).	01:00
oton	Output relay-on delay time. (Adjustable between 0 and 99 minutes).	$01: 00$
obof	Output relay-off delay time. (Adjustable between 0 and 99 minutes).	$01: 00$
ALARM CONTROL PARAMETERS		Initial Value
R.5Et	Alarm set value. (Adjustable between L .5 LL and H .5 CL) .	2000
RHYS	Alarm hysteresis value. (Adjustable between i and 200).	2
R.t $3 P$	Alarm type. ($\cap \mathrm{D} E$: Independent alarm, $d E$: Deviation alarm, b R \cap d': Band alarm)	ind E
R.5tR	Alarm condition. (oFF:Alarm not active. For independent or deviation alarm, $\mathrm{L} a$: Alarm is active below the set value, H : Alarm is active above the set value. For band alarm, $b, H_{1}:$ Activated in "in-band", bo. $H_{1}:$: Activated in "out-band".)	of F
R.Pon	Required relay-on delay time in order to set alarm output to active state after power-up. (Adjustable between 0 and 99 minutes).	01:00
Rton	Alarm output relay-on delay time. (Adjustable between 0 and 99 minutes).	01:00
Rteof	Alarm output relay-off delay time. (Adjustable between 0 and 99 minutes).	01:00
RS485 MODBUS COMMUNICATION PARAMETERS		Initial Value
Rodr 5	Slave device address. (Adjustable between 1 and 247)	i
bRU'd	Baudrate. (Can be adjusted as ; ofF, 1200, 2400, $4800,9600,19200 \mathrm{kbps}$)	9500

