BUSSMANN

MLVA

Multilayer varistor ESD suppressor

<u>C270</u>

Product features

- Zinc oxide based ceramic chip
- Provides ESD protection with fast response time (<1ns) allowing equipment to pass IEC 61000-Level 4 Test
- 0402 and 0603 meet IEC 61000-4-4 and 61000-4-5
- Low profile designs for board space savings
- Low and stable leakage currents consumption
- Low clamping voltage
- Wide 5.5 to 26 Vdc operating voltage range
- Halogen free and ToPS compliant applications

Applications

- Computers and peripherals
- Digital still cameras
- Cell phones
- Medical equipment
- Printers/copiers/scar
- DVD Player
- MP3/Multimedia players

- /DSL Modems
- Set top boxes

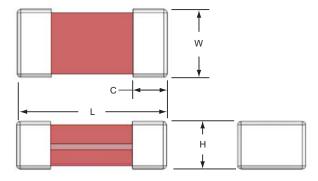
Part Numbering System:

- 2 1: 15,000 pieces per reel EIA (EIAJ) 402: 10,00 pieces per reel EIA (EIAJ) 603: 4000 pieces per reel EIA (EIAJ)

					эрес тса	ions			
	Par		Workin	C Not ade	Varistor Voltage	Clamping	Capacitance	Peak	Transient
_ (Number	Size	V _{r (15}	Vdc	@ I r Adc	Voltage	pF	Current (amps)	Energy (Joules)
	MLVA02V JSC0 3	0201	4	5.5	11	30	33	-	-
	MLYA?2V05C047	0201	2	5.5	3-14	26	47	-	-
	ML 'A02 '05C064	0211	4	5.5	8-14	26	64	-	-
	N JVA 941 05C270	0/02	4	1.5	6.4-9.6	20	270	20	0.05
	N LV 04V09C130	04,02	7	9	10-15	32	130	20	0.05
V ~	N. LVA04V14C \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0102	11	14	14.4-21.6	38	90	20	0.05
-(0 *	MLVA04V18C085	J402	14	18	17.6-26.4	45	85	20	0.05
$\alpha \mathbf{v}$	MLVAC6V 5C270	0603	4	5.5	6.4-9.6	22	270	30	0.1
	MLV^06 (0>5210	0603		9	10-15	27	210	30	0.1
	Mi. /A0c V14C150	2603	11	14	14.4-21.6	35	150	30	0.1
	1 LV. 36V18C130	0603	14	18	17.6-26.4	40	130	30	0.1
	M_VAU6V26C 10	0603	20	26	24.8-37.2	58	100	30	0.1

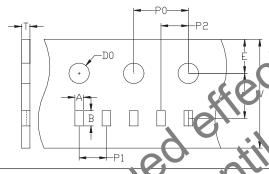
Maximum AC operating voltage the varistor can maintain and not exceed 10 $\,\mu A$ leakage current for 0402, 0603. Working Voltage Vdc ximum DC operating voltage the varistor can maintain and not exceed 10 µA leakage current for 0402, 0603.

Voltage - Voltage across the device measured at 1 mA DC current. Equivalent to VB, "breakdown voltage.

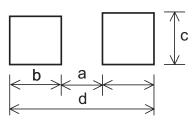

Voltage - Maximum peak voltage across the varistor with 8/20 µs waveform and 1 A pulse current.

Cap citance - Device capacitance measured with zero volt bias 1 V_{rms} at 1 MHz. Peak Current - Maximum peak current which may be applied with 8/20 μ s waveform without device failure.

Transient Energy - Maximum energy which may be dissipated with the 10/1000 µs waveform without device failure.



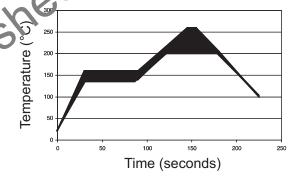
Dimensions - mm


Size	L	W	Н	С
0201	0.60±0.05	0.30±0.05	0.30±0.05	0.20±0.10
0402	1.00±0.15	0.50±0.10	0.50±0.10	0.25±0.15
0603	1.60±0.15	0.80±0.10	0.80±0.10	0.30±0.20

Tape Packaging Specifications - mm

				020	1 Carrie	Dimens	sions	-17		
	Α	В	W	E	1	P0	P1	P2	D0	I
	0.37 ±0.03	0.69 ±0.03	8.0 ±01	75 ±0.≥5	3.5 ±0.05	4.0 ±0.1	2.5 ±0.05	2.0 ±0.05	1.55 ±0 /5	0.42 ±0.00
	0402 Cal right Eimensions									
	0.58	1.2	ಕ.0	1.75	25	7.0	2.0	2.0	1.55	0.60
	◆±0.ſ3	+0.00	±0.1	= 0.05	±0. 5	±0.1	±0.05	₹ 0.05	±0.05 ◀	+0.€3
	CSO'S Carrier Dimensions									
V	1.05	1.90	8.0	1.75	3.50	r.U	1	2.00	.50	•
	±0.15	10.15	±0.30	±0.10	±0.0	2.10	-	±0.03	±0.10	-

Recommended Pad Layout - mm (in)



Size	а	b	C	d
0201	0.23 (0.009)	0.30 (0.012)	0.45 (0.018)	0.83 (0.033)
0402	0.51 (0.020)	0.61 (0.024)	0.51 (0.020)	1.70 (0.067)
0603	0.50 (0.020)	1.02 (0.040)	0.76 (0.030)	2.54 (0.100)

Environm	ental Specifications
Characteristic	Value
Bias Humidity	+40°C, 10°s RH for 1000 hours
Thermal Sheck	40 C > +85°C, 30 minute cycle, 5 cycles
Operating Temp erature Range.	-10°C to +85°C
St. rage Temperature Ra ge.	-40°C to +25°C
Full Load Voltage:	Working Voltage, 95°C, 1000 hours

Soldering Perommendations

- Cor ipa be with lead and lead-free solder reflow processes
- Perk reflow temperatures and durations:
- IR Reflow = 2.0 % max for 30 sec max.
- Wave Solder = 260°C max. for 10 sec. max.
- Recommended IR Reflow Profile:

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.

Eaton

Electronics Division

1000 Eaton Boulevard Cleveland, OH 44122 United States www.eaton.com/electronics

© 2017 Eaton All Rights Reserved Printed in USA Publication No. 4070 BU-SB10346 August 2017

All other trademarks are property of their respective owners.

