

Data Sheet

TOF050F Time-of-Flight ranging Sensor-50CM

1. Description

TOF050F ranging sensor is a laser ranging module designed and manufactured based on VL6180, which provides accurate and repeatable short-distance measurement function. Thanks to the highly integrated infrared transmitting and receiving mechanism and ST's innovative FlightSense technology, faster and more accurate distance measurement and higher ambient light immunity can be achieved.

TOF050F supports serial port mode, serial port simulation Modbus mode, and IIC mode at the same time, which is well adapted to various application scenarios.

It is equipped with a host computer for easy debugging.

TOF050F has a range of up to 50cm and can choose high-precision or long-distance test mode according to needs, making it more flexible. The ranges are as follows:

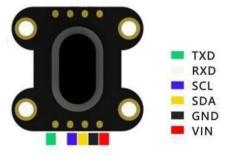
Item	Attributes	Data	Period
0	High	100periodms	20cm
1	precisionMiddle	100ms	40cm
2	distanceLong	100ms	50cm

Features

- 850nm laser meets the Class 1 operating conditions specified in the third edition of IEC 60825-1:2014
- Sensor size (20×16.8×6.0mm)
- The maximum measurement distance indoors can reach 0.5 meters, the accuracy is within 5%
- The measurement range has nothing to do with the reflectivity of the target object
- Can work in high infrared light environment
- High optical crosstalk compensation
- Measurement time is less than 30ms
- No need for additional optics
- Single power supply
- Standard TTL level serial port I2C
- High optical crosstalk compensation

Applications

- High-speed auto focus
- Video continuous auto focus
- User detection of computers and other equipment
- Automatic gesture recognition of goods (such as faucets, refrigerators, etc.)



Data Sheet

2. Characteristic description

2.1 Structural parameters

Volume	18mmX17mmX6mm(L*W*H)
Fixing	d=2mm, Spacing14/11mm
Weight	3g

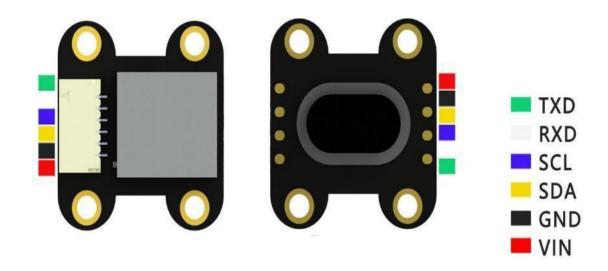
TOF050F

2.2 Electrical performance parameters

Project	Element	Minimum	Typical	Maximum	Unit
	High precision	1	200	1	mm
Measuring range	Middle distance	1	400	1	mm
	Long distance	1	500	600	mm
Operating Voltage	1	3.0	3.3	5	V
Working Current	1	1	1	40	mA
Operating Temperature	1	-20	1	70	·C
Storage temperature	1	-40	1	80	·C

2.3 Optical parameters

Items	Element	Minimum	Typical	Max	Unit
Vertical emission laser peak	1	1	850	1	nm
Vertical emission laser peak Wavelength current	1	1	38	1	mA


2.4 Pin description

Pin	Name	Attributes	Function
1	VIN	1	VIN+ 3 ~ 5V
2	GND	1	GNDGND
3	SDA	Input /Output	IIC clock port

Data Sheet

4	SCL	Input	IIC data port
5	RX	Input	Serial input TTL level RXD
6	TX	Output	Serial output TTL level TXD

3. Operating mode

Mode	Switch	Detailed
Serial port mode (default)		Single-machine serial port data sending and receiving, actually follow the Modbus_RTU protocol, and the supporting host computer can facilitate debugging and setting
Modbus protocol mode	No need to Switch	The standard Modbus_RTU can be used to access registers to facilitate interaction with industrial equipment. Separate addresses can be set, and broadcast addresses can be shared. It is very convenient to realize multi-module cooperative work.
IIC	Command switch	The module gives up the IIC bus and can directly use the IIC to access the sensor chip

3.1 Serial + modbus mode

Serial communication protocol description				
Bits per Second: 115200				
Data Bits :	8			
Parity :	None			
Stop bits :	1			
Stop bits :	None			

Data Sheet

3.1.1 modbus Format description

Read command (take slave 0x01 as an example)

Slave addr	Function number	Register High	Register Low addr	Data H	Data L	CRC Check L	CRC Check H
DR	RW	RegHaddr	RegL	DH	DL	CL	СН
0x01	0x03	RegH	RegL	DH	DL	CL	CH
Sensor return	n						
Slave addr	Function number	Number of data bytes	Data byte 1 high bit	Data byte 1 low bit		CRC Check L	CRC Check H
DR	RW	D	DATA1H	DATA1L		CL	СН
0x01	0x03	D	DATA1H	DATA1L		CL	СН

Example: Host 01 03 00 10 00 01 85 CF Read the ranging value of 1 slave sends:

Module reply: 01 03 02 00 15 79 8B

Ranging value is 0x0015 (21mm)

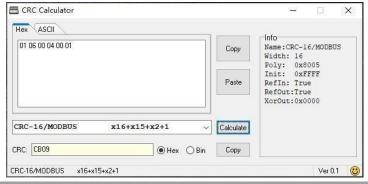
					<u> </u>	, ,	
Write comma	Write command (take slave 0x01 as an example)						
Slave	Function	Register	Register	Data	Data	CRC Check	CRC
addr	number	High	Low addr	Н	L	L	Check H
DR	RW	RegHaddr	RegL	DH	DL	CL	CH
0x01	0x06	RegH	RegL	DH	DL	CL	CH
Sensor retur	n						
Slave addr	Function number	Number of data bytes	Data byte 1 high bit	Data byte 1 low bit		CRC Check L	CRC Check H
DR	RW	RegH	RegL	DH	DL	CL	CH
0x01	0x06	RegH	RegL	DH	DL	CL	CH

Host

Set the ranging mode of 1 slave to

Example:

01 06 00 04 00 01 09 CB


sends: Module high precision

01 06 00 04 00 01 09 CB

Set successful response reply:

Special note: CRC check rule is CRC-16/MODBUS

XThe ^{16 +} check ^{X15+} code ^{X2+1} can be generated by the existing CRC check code generator or the matching module, which is convenient to use.

Data Sheet

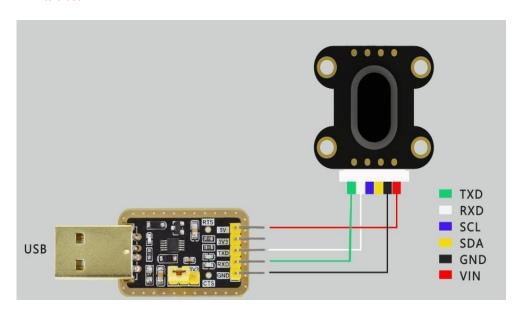
3.1.2 Register list

С	ategory	Data addr	Data	F	unction	W/R	
			0xAA55	Restore de	fault parameters		
Special regis	ster	0x0001	0x1000	F	Reboot	write	
			0x0000	Test communication			
Device addre	ess	0x0002	0xXXXX	0 : Bro	adcast addr	Read &write	
register			00004	4	-20400		
David auto as sisten		0x0003	0x0001 0x0002	I	6.75	Read	
Baud rate re	gistei	000003	0x0002 0x0003/others	Otho	rs:115200	&write	
					ision, 100ms,		
			0x0001	0.2m			
Range regist	er	0x0004	0x0002	2: Middle dis 0.4m	stance, 100ms,	Read &write	
			0-0000		ance, 100ms,	awrite	
			0x0003	0.5m			
	output control	0x0005	0x0000		self-output	Read	
register			0xXXXX	XX:XXms		&write	
Load calibrat	tion register	0x0006	0x0000		o not load	Read	
			0x0001	1	: load	&write	
Offset correct	ction value register	0x0007	0xXXXX	Offset correction value		Read &write	
xtalk correction value register 0:		0x0008	0xXXXX	xtalk co	rrection value	Read &write	
			0x0000	0: not prohibited (default)		Read	
Disable iic er	nable register	0x0009	0x0001	1: Prohibited (MCU releases		&write	
Me	asurement	0x0010	0x0001	Distance value: mm		Read	
result							
offset		0x0020	0x0020 0xXXXX		xx:The actual value is xx, 5cm is recommended		
calibration		-		15 160	ommended		
register xtalk	calibration						
register	Cambration	0x0021	0xXXXX	xx:The ac	tual value is xx	write	
Gray	Indicates that the s	etting needs to	be restarted to ta	ake effect		<u> </u>	
	Set mode		1 00 01 09 CB	Sat the distance measureme			
Read						<u> </u>	
distance value		01 03 00 10	0 00 01 85 CF		Read the ranging	value of No. 1	
Application examples restart Change							
		02 06 00 01	I 10 00 D5 F9		No. 2 slave modu	le restarts	
		04.05.55			a		
	the slave	01 06 00 02	2 00 04 29 C9		Slave 1 becomes	slave 4	
	ID				Set the baud rate machine to 9600, to take		

Data Sheet

Set the	04 06 00 03 00 02 F8 5E	effect
baud rate		
Automatic output	01 06 00 05 01 F4 99 DC	Set the No. 1 machine to automatically output the measured value in 500ms
IIC mode	01 06 00 09 00 01 98 08	Set machine 1 to IIC mode

3.2 IIC mode

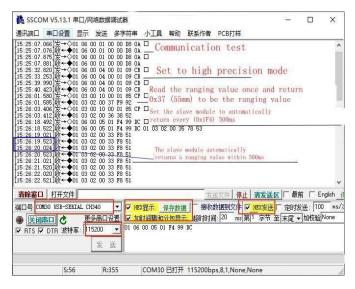

When set to IIC mode, the MCU releases the VL6180 sensor IIC bus. SDA and SCL are directly connected to the sensor (SDA and SCL are pulled up by internal 10K resistors). For specific data reading, please refer to the VL6180 data manual.

4 Commissioning instructions

4.1 Serial debugging instructions

4.1.1Hardware connection

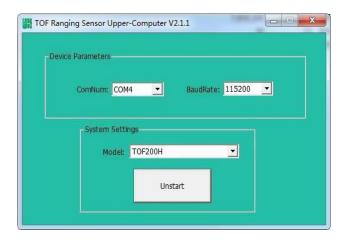
To connect to a computer, a serial port module with USB to TTL level is required. Note that TX and RX need to cross.



4.1.2 Serial software debugging

After connecting with the USB to TTL module, plug the serial port module into the computer USB port. Make sure to find the corresponding COM port after installing the driver of the serial port module. Open the serial port debugging software, connect for the first time, set the baud rate to the default 115200, you must select "HEX display" and "HEX send", and select "time stamp and sub-package display" as required. Finally, open the serial port and perform communication configuration according to the order of instructions from top to bottom as shown in the figure below to complete a complete debugging process. After setting, the ranging module works in high-precision mode and outputs a ranging value every 500ms.

Data Sheet


4.2 Supporting host computer debugging instructions

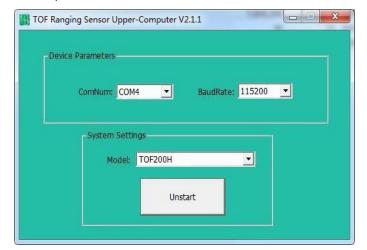
4.2.1Hardware connection

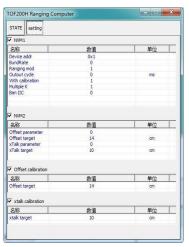
To connect to a computer, a serial port module with USB to TTL level is required. Note that TX and RX need to cross. Refer to section 4.1.1 for details.

4.2.2 PC debugging (take TOF200H as an example)

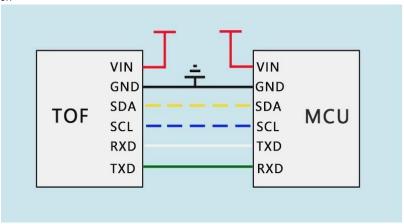
After connecting with the USB to TTL module, plug the serial port module into the computer USB port. Make sure to find the corresponding COM port after installing the driver of the serial port module. Open the host computer software of the TOF ranging sensor, connect for the first time, set the baud rate to the default 115200, select the corresponding model system in "System Configuration", and click "Start". You can see the real-time display of the measured distance column in the "status display", and the measured value is constantly refreshed as the actual distance changes.

Select the parameter configuration column, you can see that there are 4 groups of parameters for users to set or observe, which is convenient for debugging. Storage parameter 1 is a commonly used setting function. The user can set the device address, baud rate, distance mode, output cycle, etc., and the parameters are saved immediately after setting and are effective when power off. Setting method: directly input the value of the required option in the value of the corresponding function line, and press Enter.



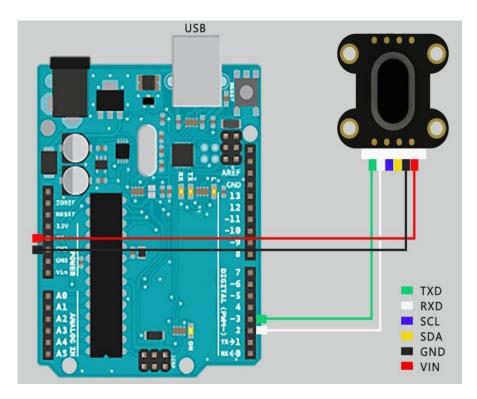

Data Sheet

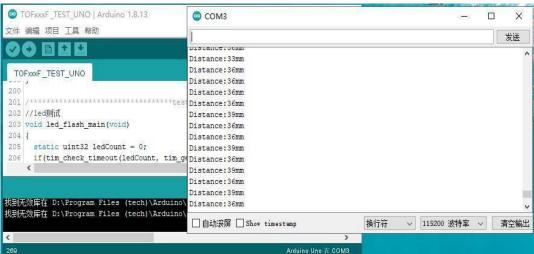
The device address is written directly; please refer to the instruction set for the parameters represented by the specific options of the baud rate/output cycle, for example, the baud rate 0 represents the default 115200; the output cycle is also written directly in ms (note that the output cycle is changed here) It is the serial port automatic output cycle, and the upper computer reads the data cycle is fixed). The correction K can specify the multiple of the output distance and the actual distance, which is suitable for special purposes. In the "Load Calibration" and "Disable iic" function lines, the value 1 means enable and 0 means disable.


Storage parameter 2 is generally used for observation. For specific values, refer to the chip specification.

The last two calibration parameter settings apply to the calibration function. For offset calibration, it is recommended to use a white target object with 88% reflectivity in dark conditions and calibrate at an actual distance of 10cm. That is, the object is placed at the actual distance of 10cm, enter 10cm in the offset calibration function line, press Enter to start the calibration, and wait for the parameter display to return to normal to complete the calibration. The actual module has been calibrated once with a 10cm offset before leaving the factory and can be used directly. The xtalk calibration is mainly to correct the crosstalk factor generated by the cover window in front of the probe. This module has been equipped with a dedicated glass cover sheet and has been calibrated at the factory. When users need to use without cover sheet or use other cover windows, this function can be used for crosstalk calibration. The specific method is to recommend the use of a gray target with 17% reflectivity. The crosstalk distance value needs to refer to the chip specification and the actual use environment. After selection, refer to the upper computer operation process.

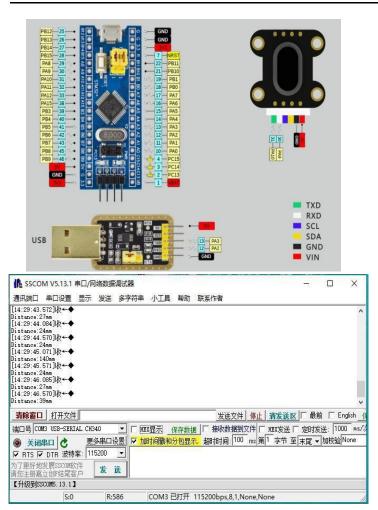
4.3 MCU connection


4.3.1 arduino


DEMO Connect UNO and TOF050H ranging module according to the wiring diagram, open the matching Uno test program, and upload it to the UNO development board. The test results are shown below.

Data Sheet

Wiring diagram



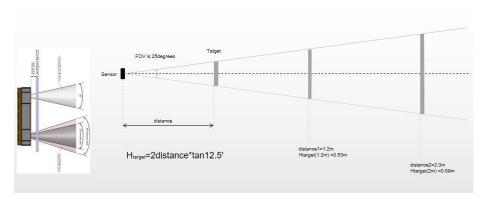
4.3.1 stm32 demo

Connect STM32 and TOF050F ranging module according to the wiring diagram, open the supporting STM32 test program, and upload it to the STM32 development board. The test results are shown below.

Data Sheet

4.3.1 Raspberry Pi demo

For the wiring method, please refer to the serial port debugging section, connect the serial port module with TOFXXXH, insert it into the USB port of the Raspberry Pi, and execute the TOFXXX_TEST.py file on the console. The effect is as follows:


5. Detailed Performance

5.1 Measurement condition

Data Sheet

In all measurement tables in the document, it is considered that the full Field Of View (FOV) is covered. This system FOV is 25 degrees. The height of the target must meet this condition.

5.2 Ranging Characteristics

Ranging conditions:

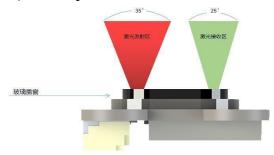
· Targets reflectance used: Grey (17 %), White (88 %)

· Offset correction done at 10 cm from sensor

· Indoor: no infrared

· Outdoor: eq. 5 kLux equivalent sunlight (10 kcps/SPAD)

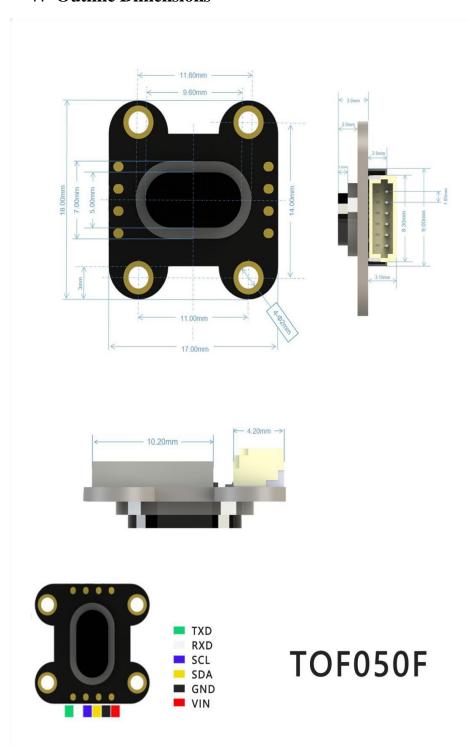
Parameter	Precision	Minimum	Typical	Max	unit
Minimum distance (indoor	±5%	1	3		mm
Maximum range distance white)	±4%	400	500	600	mm
Maximum range distance (indoor white)	±7%	1	400	1	mm
Maximum range distance (indoor gray)	±7%	70	200		mm
Maximum range distance (white outdoor)	±12%	60	200		mm
Ranging speed (fastest) (grey outdoor)				100	msec


6. Comes with a cover glass

It is important to keep the cover window surface finish smooth.

Typically, the T OF 050H ranging module will be used in conjunction with a window covering.

The cover window serv es two main purposes:


- 1. Provides physical protection of the module, including dust ingress prevention.
- 2. To provide optical filtering for the module.

Data Sheet

7. Outline Dimensions

