PROFITEST Master Series

PROFITEST MTECH+, Mpro, Mxtra, Mbase+
IEC 60364-6, EN 50110-1 $\quad \begin{array}{r}3-447-150-03 \\ 1 / 8.22\end{array}$

- Testing of residual current devices (RCCBs)
- Measurement of touch voltage without tripping the RCCB - touch voltage is measured with reference to nominal residual current using $1 / 3$ of the nominal residual current value.
- Testing for N-PE reversal
- Tripping test with nominal residual current, measurement of time to trip
- Testing of equipment and RCCBs with rising residual current including indication of tripping current and touch voltage
- Testing of RCCBS with the following nominal current values: $1 / 2 \bullet I_{\Delta N}$, $1 \bullet I_{\Delta N}, 2 \bullet I_{\Delta N},\left(5 \bullet I_{\Delta N}\right.$ up to 300 mA : PROFITEST MPRO/PROFITEST MXTRA up to 100 mA : PROFITEST MTECH+)
- Intelligent ramp (PROFITEST MXTRA only): simultaneous measurement of breaking current $I_{\Delta N}$ and breaking time t_{A}
- Testing of selective \mathbf{S} SRCDs, PRCDs (SCHUKOMAT, SIDOS or comparable), type G/R, type AC, types A and F, types B and B+ and type EV (except PROFITEST MPRO)
- Testing of RCCBs which are suitable for pulsating residual direct current - testing is conducted with positive or negative half-waves.
- Creation of test sequences (ETC)
- Intelligent data transmission Bidirectional interface to Graphisoft ${ }^{\text {M }}$ DDScad Elektro

- Simulation of operating states of electric vehicles at charging stations from different manufacturers (PROFITEST MTECH + and PROFITEST MXTRA only)

DESIGN PLUS

Large Voltage and Frequency Ranges

A broad-range measuring device permits use of the test instrument in all alternating and 3-phase electrical systems with voltages from 65 to 500 V and frequencies of 16 to 400 Hz .

Loop and Line Impedance Measurement

Measurement of loop and line impedance can be performed in the 65 to 500 V range. Conversion to short-circuit current is based on the respective nominal line voltage, insofar as the measured line voltage is within the specified range. Test instrument measuring error is also taken into account for conversion. Outside of this range, short-circuit current is calculated on the basis of momentary line voltage and measured impedance.

Insulation Resistance Measurement

Using Nominal Voltage, with Variable or Rising Test Voltage

Insulation resistance is usually measured with a nominal voltage of 500,250 or 100 V . A test voltage which deviates from nominal voltage, and lies within a range of 20/50 to 1000 V , can be selected for measurements at sensitive components, as well as systems with voltage limiting devices.
Measurement can be performed with a constantly rising test voltage in order to detect weak points in the insulation and determine tripping voltage for voltage limiting devices.
Voltage at the device under test and any triggering/breakdown voltage appear at the test instrument's display.

Standing-Surface Insulation Measurement

Standing-surface insulation measurement is performed with momentary line frequency and line voltage.

Low-Resistance Measurement

Bonding conductor resistance and protective conductor resistance can be measured with a test current of $\geq 200 \mathrm{~mA}$ DC, automatic polarity reversal of the test voltage and selectable current flow direction. If the adjustable limit value is exceeded, an LED lights up.

Earthing Resistance Measurement

In addition to measurement of the overall resistance of an earthing system, selective measurement of the earthing resistance of an individual earth electrode is also possible, without having to disconnect it from the earthing system. A current clamp sensor available as an accessory is utilized to this end.
The PROFITEST MPRO and the PROFITEST MXTRA also permit battery-powered earthing resistance measurements in the "battery mode":
3/4-pole and earth loop resistance measurements.

Universal Connector System

The interchangeable plug inserts and 2-pole plug-in adapter which can be expanded to 3-poles for phase sequence testing allows for use of the test instrument all over the world.

Special Features

- Display of approved fuse types for electrical systems
- Energy meter start-up testing
- Measurement of biasing, leakage and circulating current of up to 1 A , as well as working current of up to 1000 A with current clamp sensor (available as an accessory)
- Phase sequence measurement (including highest line-to-line voltage)

PROFITEST Master Series
 PROFITEST Mtech+, Mpro, Mxtra, Mbase+
 IEC 60364-6, EN 50110-1

Display with Selectable Language

Menus, setting options, measurement results, tables, notes and error messages as well as schematic diagrams appear at the
LCD.
The display can be set to the desired language depending on the country in which the test instrument is used:
D, GB, I, F, E, P, NL, S, N, FIN, CZ or PL.

Operation

Device functions are selected directly with the help of a rotary selector knob. Softkeys allow for convenient selection of subfunctions and parameter settings. Unavailable functions and parameters are automatically prevented from appearing at the display.
The start and RCD tripping functions included directly on the instrument are identical to the functions of the two keys located on the test plug, allowing for easy measurement at difficult to access locations.
Schematic diagrams, measuring ranges and help texts can be displayed for all basic functions and sub-functions.

Phase Tester

Protective conductor potential is tested after starting a test sequence and touching the contact surface for finger contact. The PE symbol appears at the display if a potential difference of more than 25 V is detected between the contact surface and the protective contact at the mains plug.

Error Indication

- The instrument automatically detects instrument-to-system connection errors, which are indicated in a connection pictograph.
- Errors within the electrical system (no mains or phase voltage, tripped RCD) are indicated at 3 LEDs and in the tilting LCD panel.

Battery Monitoring and Self-Test

Battery monitoring is conducted while the instrument is subjected to an electrical load. Results are displayed both numerically and with a symbol. Test images can be called up one after the other, and LEDs can be tested during the self-test. The tester is shut down automatically when the batteries are depleted. A microprocessor controlled charging circuit is used to assure safe charging of rechargeable batteries.

Data Entry at the RS-232 Port

Data can be read in via a barcode or RFID scanner connected to the RS-232 port, and comments can be entered with the help of the softkeys.

USB Port

Measurement data are transmitted to a PC via the integrated USB port, at which they can be printed in report form and archived.
PC Database and Report Generating Software - ETC
ETC test software offers lots of helpful options for data collection and management:

- Acquisition of all important data for reports in accordance with IEC 60364-6
- Test reports (ZVEH) can be generated automatically.
- Created structures can be saved to memory and loaded to the test instrument as required via the USB port.
- Distribution structures with electrical circuit and RCD data can be individually defined.
- Data export to Excel, CSV and XML formats
- Editing of device selection lists

Instrument Updates

The test instrument can always be kept current because the firmware/software can be updated via the USB port. Updating is executed during the course of recalibration by our service department, or directly by the customer.

Display

(illustrative selection)
Softkeys allow for convenient selection of sub-functions and parameter settings. Unavailable sub-functions and parameters are automatically prevented from appearing at the display.

Earthing Resistance Meas. Display

Insulation Measurement Display

Loop Resistance Meas. Display

Low-Resistance Meas. Display

Voltage Measurement Display

Features of Instrument Variants

| PROFITEST ...
 (article number) | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | + | | | |

${ }^{1)}$ The so-called live measurement is only advisable if there's no bias current within the system. Only suitable for motor protection switches with small nominal current values.
2) Currently available languages $D, G B, I, F, E, P, N L, S, N, F I N, C Z, P L$

Applicable Regulations and Standards

$\begin{aligned} & \text { IEC 60364-6 } \\ & \text { EN 50110-1 } \end{aligned}$	Operation of electrical installations Part 100: General requirements
EN 60529	Test instruments and test procedures Degrees of protection provided by enclosures (IP code)
IEC 60364-6	Low-voltage electrical installations Part 6: Tests
IEC 60364-7-710	Low-voltage electrical installations - Requirements for special installations or locations Part 710: Medical locations
$\begin{aligned} & \text { IEC 61010/ } \\ & \text { EN 61010/ } \end{aligned}$	Safety requirements for electrical equipment for measurement, control and laboratory use Part 1: General requirements (IEC 61010-1 + cor.) Part 31: Safety requirements for hand-held probe assemblies for electrical measurement and test (IEC 61010-031 + A1)
$\begin{aligned} & \text { IEC } 61140 \\ & \text { DIN EN } 61140 \end{aligned}$	Protection against electric shock Common aspects for installations and equipment
DIN EN 61326-1	Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements
$\begin{aligned} & \text { IEC 61557/ } \\ & \text { EN 61557/ } \end{aligned}$	Electrical safety in low voltage distribution systems up to 1000 V AC and 1500 V DC - Equipment for testing, measuring or monitoring of protective measures Part 1: General requirements (IEC 61557-1) Part 2: Insulation resistance (IEC 61557-2) Part 3: Loop resistance (IEC 61557-3) Part 4: Resistance of earth connection and equipotential bonding (IEC 61557-4) Part 5: Earthing resistance (IEC 61557-5) Part 6: Effectiveness of residual current devices (RCDs) in TT, TN and IT systems (IEC 61557-6) 6 Part 7: Phase sequence (IEC 61557-7) Part 10: Electrical safety in low voltage distribution systems up to 1000 V AC and 1500 V DC - Equipment for testing, measuring or monitoring of protective measures (IEC 61557-10) Part 11: Effectiveness of type A and type B residual current monitors (RCMs) in TT, TN and IT systems (IEC 61557-11) (PROFITEST MXTRA IQ only)
$\begin{aligned} & \text { IEC 61851-1 } \\ & \text { DIN EN 61851-1 } \end{aligned}$	Electrical equipment for electric vehicles Electric vehicle conductive charging systems - Part 1: General requirements

Nominal ranges of use

Voltage U_{N}	120 V	$(108 \ldots 132 \mathrm{~V})$
	230 V	$(196 \ldots 253 \mathrm{~V})$
	400 V	$(340 \ldots 440 \mathrm{~V}$
Frequency f_{N}	$162 / 3 \mathrm{~Hz}$	$(15.4 \ldots 18 \mathrm{~Hz})$
	50 Hz	$(49.5 \ldots 50.5 \mathrm{~Hz})$
	60 Hz	$(59.4 \ldots 60.6 \mathrm{~Hz})$
	200 Hz	$(190 \ldots 210 \mathrm{~Hz})$
	$400 \mathrm{~Hz} \quad(380 \ldots 420 \mathrm{~Hz})$	
Overall voltage range	$65 \ldots 50 \mathrm{~V}$	
Overall frequency range	$15.4 \ldots 420 \mathrm{~Hz}$	
Line voltage	$S_{\text {inusoidal }}$	
Temperature range	$0^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$	
Battery voltage	$8 \ldots 12 \mathrm{~V}$	
Line impedance angle	Corresponds to $\cos \varphi=1 \ldots 0.95$	
Probe resistance	$<50 \mathrm{k} \Omega$	

PROFITEST Master Series
 PROFITEST MTECH+, Mpro, Mxtra, Mbase+
 IEC 60364-6, EN 50110-1

Characteristic Values for PROFITEST MTECH+ and PROFITEST MBASE+

Characteristic Values for PROFITEST MTECH+ and PROFITEST MBASE+

${ }^{1} \mathrm{U}>230 \mathrm{~V}$ with 2 or 3-pole adapter only
$21 \cdot / 2 \cdot I_{\Delta N}>300 \mathrm{~mA}$ and $5 \cdot \mathrm{I}_{\Delta N}>500 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{f}}>300 \mathrm{~mA}$ only up to $\mathrm{U}_{\mathrm{N}} \leq 230 \mathrm{~V}$! $\mathrm{I}_{\Delta \mathrm{N}} 5 \cdot 300 \mathrm{~mA}$ only where $\mathrm{UN}=230 \mathrm{~V}$
3 The transformation ratio selected at the clamp ($1 / 10 / 100 / 1000 \mathrm{mV} / \mathrm{A}$) must be set in the "Type" menu with the rotary switch in the "SENSOR" position.
4 Where $R_{\text {Esselective }} / R_{\text {Etotal }}<100$
5 The specified measuring and intrinsic uncertainties already include those of the respective current clamp.
${ }^{6}$ Measuring range of the signal input at the test instrument, $\mathrm{U}_{\mathrm{E}}: 0 \ldots 1.0 \mathrm{~V}_{\text {TRMS }}$ ($0 . . .1 .4 \mathrm{~V}_{\text {peak }}$) AC/DC

PROFITEST Master Series

PROFITEST Mtech+, Mpro, Mxtra, Mbase+
 IEC 60364-6, EN 50110-1

Characteristic Values for PROFITEST MXTRA and PROFITEST MPRO

${ }_{2} \mathrm{U}>230 \mathrm{~V}$, with 2 or 3-pole adapter only
$21 \cdot / 2 \cdot I_{\Delta N}>300 \mathrm{~mA}$ and $5 \cdot \mathrm{I}_{\Delta \mathrm{N}}>500 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{f}}>300 \mathrm{~mA}$ only up to $\mathrm{U}_{\mathrm{N}} \leq 230 \mathrm{~V}$!
3 The transformation ratio selected at the clamp ($1 / 10 / 100 / 1000 \mathrm{mV} / \mathrm{A}$) must be set
Key: $d=\operatorname{digit(s)}$, rdg. = reading (measured value)
in the "Type" menu with the rotary switch in the "SENSOR" position.
4 Where $R_{\text {Eselective }} / R_{\text {Etotal }}<100$
${ }^{5}$ The specified measuring uncertainties already include those of the respective current clamp.
${ }^{6}$ Measuring range of the signal input at the test instrument, $\mathrm{U}_{\mathrm{E}}: 0 \ldots 1.0 \mathrm{~V}_{\text {TRMS }}$
($0 \ldots 1.4 \mathrm{~V}_{\text {peak }}$) AC/DC
7 Input impedance of the signal input at the test instrument: $800 \mathrm{k} \Omega$
8 DC bias only possible with PROFITEST MXTRA

PROFITEST Master Series

PROFITEST MTech+, Mpro, Mxtra, Mbase+

IEC 60364-6, EN 50110-1

Characteristic Values, Special Measurements with PROFITEST MPRO and PROFITEST MXTRA

$\begin{aligned} & \text { Func- } \\ & \text { tion } \end{aligned}$	Measured Quantity	Display Range	Resolution	Test Current / Signal Frequency	Measuring Range	Measuring Uncertainty	Intrinsic Uncertainty	Connections			
								Adapter for Test Plug		Current Clamps	
								PRO-RE	PRO-RE/2	Z3512A	Z591B
RE BAT	RE, 3-pole	$0.00 \ldots 9.99 \Omega$$10.0 \ldots 99.9 \Omega$$100 \ldots 999 \Omega$$1.00 \ldots 9.99 \mathrm{k} \Omega$$10.0 \ldots 50.0 \mathrm{k} \Omega$	$\begin{gathered} 0.01 \Omega \\ 0.1 \Omega \\ 1 \Omega \\ 0.01 \mathrm{k} \Omega \\ 0.1 \mathrm{k} \Omega \end{gathered}$	$16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $1.6 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$	$\begin{gathered} 1.00 \Omega \ldots 19.9 \Omega \\ 5.0 \Omega \ldots 199 \Omega \\ 50 \Omega \ldots 1.99 \mathrm{k} \Omega \\ 0.50 \mathrm{k} \Omega \ldots 19.9 \mathrm{k} \Omega \\ 0.50 \mathrm{k} \Omega \ldots 49.9 \mathrm{k} \Omega \end{gathered}$	$\begin{gathered} \pm(\mid 10 \% \text { rdg. } \mathrm{I}+10 \mathrm{~d}) \\ +1 \Omega \end{gathered}$	$\begin{gathered} \pm(\mid 3 \% \text { rdg. } 1+5 \mathrm{~d}) \\ +0.5 \Omega \end{gathered}$	6			
	RE, 4-pole					$\pm(\mid 10 \%$ rdg.l+10d)	$\pm(\mid 3 \%$ rdg. $1+5 \mathrm{~d})$				
	RE, 4-pole selective with clamp meter	$0.00 \ldots 9.99 \Omega$ $10.0 \ldots 99.9 \Omega$ $100 \ldots 999 \Omega$ $1.00 \ldots 9.99 \mathrm{k} \Omega$ $10.0 \ldots 19.9 \mathrm{k} \Omega^{15}$ $10.0 \ldots 49.9 \mathrm{k}{ }^{16}$	$\begin{array}{\|c\|} \hline 0.01 \Omega \\ 0.1 \Omega \\ 1 \Omega \\ 0.01 \mathrm{k} \Omega \\ 0.1 \mathrm{k} \Omega \\ 0.1 \mathrm{k} \Omega \end{array}$	$16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $1.6 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$	$\begin{aligned} & 1.00 \Omega \ldots 9.99 \Omega \\ & 10.0 \Omega \ldots 200 \Omega \end{aligned}$	$\begin{aligned} & \pm(\mid 15 \% \text { rdg. } \mathrm{I} 10 \mathrm{0d}) \\ & \pm(\mid 20 \% \text { rdg. } 1+10 \mathrm{~d}) \\ & 10 \end{aligned}$	$\begin{aligned} & \pm(\mid 10 \% \text { rdg. } 1+10 \mathrm{~d}) \\ & \pm(\mid 15 \% \text { rdg } \mid \mathrm{l}+10 \mathrm{~d}) \end{aligned}$	6		9	
	Soil resistivity (p)	$\begin{gathered} 0.0 \ldots 9.9 \Omega \mathrm{~m} \\ 100 \ldots 999 \Omega \mathrm{~m} \\ 1.00 \ldots 9.99 \mathrm{k} \Omega \mathrm{~m} \end{gathered}$	$\begin{gathered} 0.1 \Omega \mathrm{~m} \\ 1 \Omega \mathrm{~m} \\ 0.01 \mathrm{k} \Omega \mathrm{~m} \end{gathered}$	$16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $1.6 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$ $0.16 \mathrm{~mA} / 128 \mathrm{~Hz}$	$100 \Omega \mathrm{~m} \ldots 9.99 \mathrm{k} \Omega \mathrm{m}^{12}$ $500 \Omega \mathrm{~m} \ldots 9.99 \mathrm{k} \Omega \mathrm{m}^{12}$ $5.00 \mathrm{k} \Omega \mathrm{m} \ldots 9.99 \mathrm{k} \Omega \mathrm{m}^{13}$ $5.00 \mathrm{k} \Omega \mathrm{m} \ldots 9.99 \mathrm{k} \Omega \mathrm{m}^{13}$ $5.00 \mathrm{k} \Omega \mathrm{m} \ldots 9.99 \mathrm{k} \Omega \mathrm{m}^{13}$	$\pm(\mid 20 \% \text { rdg. } 1+10 \mathrm{~d})$	$\pm(\mid 12 \% \text { rdg. } 1+10 \mathrm{~d})$	6			
	Probe clearance d (p)	0.1 ... 999 m									
	RE, 2 clamps	$0.00 \ldots 9.99 \Omega$ $10.0 \ldots 99.9 \Omega$ $100 \ldots 999 \Omega$ $1.00 \ldots 1.99 \mathrm{k} \Omega$	$\begin{array}{\|c\|} \hline 0.01 \Omega \\ 0.1 \Omega \\ 1 \Omega \\ 0.01 \mathrm{k} \Omega \end{array}$	$30 \mathrm{~V} / 128 \mathrm{~Hz}$	$\begin{aligned} & 0.10 \ldots 9.99 \Omega \\ & 10.0 \ldots 99.9 \Omega \end{aligned}$	$\begin{aligned} & \pm(\mid 10 \% \text { rdg. } 1+5 d) \\ & \pm(\mid 20 \% \text { rdg. } 1+5 \mathrm{~d}) \end{aligned}$	$\begin{aligned} & \pm(\mid 5 \% \text { rdg. } 1+5 \mathrm{~d}) \\ & \pm(\mid 12 \% \text { rdg. } 1+5 \mathrm{~d}) \end{aligned}$		7	9	8

5 Signal frequency without interference signal
6 PRO-RE (Z501S) adapter cable for test plug, for connecting earth probes (E-Set 3/4)
7 PRO-RE/2 adapter cable for test plug, for connecting the E-CLIP2 generator clamp
8 Generator clamp: E-CLIP2 (Z591B)
9 Clamp meter: Z3512A (Z225A)
10 Where $R_{\text {E.sel }} / R_{E}<10$ or clamp meter current $>500 \mu \mathrm{~A}$
${ }^{11}$ Where $R_{E . H} / R_{E} \leq 100$ and $R_{E . E} / R_{E} \leq 100$
${ }^{12}$ Where $\mathrm{d}=20 \mathrm{~m}$
${ }^{13}$ Where $d=2 \mathrm{~m}$
${ }^{14}$ Where $Z_{\text {L-PE }}<0.6 \Omega, \mathrm{I}_{\mathrm{k}}>\cup_{\mathrm{N}} / 0.5 \Omega$ is displayed
${ }^{15}$ Only where RANGE $=20 \mathrm{k} \Omega$
16 Only where RANGE $=50 \mathrm{k} \Omega$ or AUTO

Reference Conditions

Line voltage	$230 \mathrm{~V} \pm 0.1 \%$
Line frequency	$50 \mathrm{~Hz} \pm 0.1 \%$
Measured qty. frequency	$45 \mathrm{~Hz} \ldots 65 \mathrm{~Hz}$
Measured qty. waveform	Sine (deviation between effective and rectified value $\leq 0.1 \%)$
Line impedance angle	$\cos \varphi=1$
Probe resistance	$\leq 10 \Omega$
Supply voltage	$12 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Ambient temperature	$+23^{\circ} \mathrm{C} \pm 2 \mathrm{~K}$
Relative humidity	$40 \% \ldots 60 \%$
Finger contact	For testing potential difference to ground potential
Standing surface insulation	Purely ohmic

Power Supply

Rechargeable batteries 8 each AA 1.5 V
We recommend exclusive use of the included battery pack (article number: Z502H)
Number of measurements (standard setup with illumination)

- For RINS
- For $R_{\text {LO }}$
Battery test
Battery-saving circuit

1 measurement - 25 s pause: approx. 1100 measurements
Auto polarity reversal / 1Ω (1 measuring cycle) - 25 s pause: approx. 1000 measurements

BAT B

Display illumination can be switched off. The test instrument is switched off automatically after the last key operation. The user can select the desired on-time.

Safety shutdown	If supply voltage is too low, the instru- ment is switched off, or cannot be switched on.
Recharging socket	Inserted rechargeable batteries can be recharged directly by connecting a charger to the recharging socket:
Charging time	Z502R charger
Z502R charger:	
approx. 2 hours *	

* Maximum charging time with fully depleted batteries.

A timer in the charger limits charging time to no more than 4 hours.

Overload Capacity

$\mathrm{R}_{\text {ISO }}$
$U_{L-P E}, U_{L-N}$
RCD, R_{E}, R_{F}
$Z_{\text {L-PE }}, Z_{L-N}$
$\mathrm{R}_{\mathrm{LO}} \quad$ Electronic protection prevents switching
Protection with
fine-wire fuses

1200 V continuous
600 V continuous
440 V continuous
550 V (Limits the number of measurements and pause duration. If overload occurs, the instrument is switched off by means of a thermostatic switch.) on if interference voltage is present.

FF 3.15 A 10 s
Fuses blow at > 5 A

Electrical Safety

Protection class II
Nominal voltage $\quad 230 / 400 \mathrm{~V}(300 / 500 \mathrm{~V})$
Test voltage
Measuring category
Pollution degree
Fuses
L and N terminals $\quad 1$ cartridge fuse-link ea.
FF 3.15/500G $6.3 \times 32 \mathrm{~mm}$

Electromagnetic Compatibility (EMC)

Product standard	EN 61326-1	
Interference emission		Class
EN 55022		A
Interference immunity	Test value	Feature
EN 61000-4-2	Contact/atmos. $-4 \mathrm{kV} / 8 \mathrm{kV}$	
EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$	
EN 61000-4-4	Mains connection - 2 kV	
EN 61000-4-5	Mains connection - 1 kV	
EN 61000-4-6	Mains connection - 3 V	
EN 61000-4-11	0.5 periods / 100\%	

Ambient Conditions

Accuracy
Operation
Storage
Relative humidity
Elevation

$$
\begin{aligned}
& 0 \ldots+40^{\circ} \mathrm{C} \\
& -5 \ldots+50^{\circ} \mathrm{C} \\
& -20 \ldots+60^{\circ} \mathrm{C} \text { (without batteries) } \\
& \text { Max. } 75 \% \text {, no condensation allowed } \\
& \text { Max. } 2000 \mathrm{~m}
\end{aligned}
$$

Mechanical Design

Display
Dimensions
Weight
Protection

Multiple display with dot matrix, 128×128 pixels
$\mathrm{W} \times \mathrm{L} \times \mathrm{H}=260 \times 330 \times 90 \mathrm{~mm}$
Approx. 2.7 kg with batteries
Housing: IP 40, test probe: IP 20 per EN 60529

Data Interfaces

Type	USB for PC connection
Type	RS-232 for barcode and RFID readers

PROFITEST Master Series
 PROFITEST Mtech+, Mpro, Mxtra, Mbase+
 IEC 60364-6, EN 50110-1

Special Measurements (all types)

Automatic Test Sequence Function

If the same sequence of tests will be run frequently (one after the other with subsequent report generation), for example as specified in the standards, it's advisable to make use of test sequences
Automated test sequences can be compiled from manually created individual measurements with the help of the test sequence function. A test sequence consists of up to 200 individual steps, which are executed one after the other.
The test sequences are created at the PC with the help of software, and are then transferred to the test instrument.
Measurement parameters are also configured at the PC. However, parameters can be changed at the test instrument during the test sequence before the respective measurement is started.

Voltage Drop Measurement (at $\left.\mathrm{Z}_{\mathrm{LN}}\right)$ - $\Delta \mathrm{U}$ Function
According to IEC 60364-6, voltage drop from the intersection of the distribution network and the consumer system to the point of connection of an electrical power consumer (electrical outlet or device connector terminals) should not exceed 4\% of nominal line voltage.
Voltage drop calculation:
$\Delta \mathrm{U}=\mathrm{Z}_{\mathrm{L}-\mathrm{N}} \bullet$ nominal current of the fuse
ΔU as $\%=\Delta U / U_{\mathrm{L}-\mathrm{N}}$

$\Delta \mathrm{D}=\triangle \mathrm{D}$ TOTAL- \triangle UIOFFSET

Measurement of the Impedance of Insulating Floors and Walls (standing surface insulation impedance) $-Z_{S T}$ Function
The instrument measures the impedance between a weighted metal plate and earth. Line voltage available at the measuring site is used as an alternating voltage source. The Z_{ST} equivalent circuit is considered a parallel circuit.

Special Measurements PROFITEST MPRO and PROFITEST MXTRA

Battery Powered Earthing Resistance Measurements, "Battery Mode"

Earthing Resistance R_{E}

3 -wire measuring method,
probes and earth electrodes connected via PRO-RE adapter

4-wire measuring method, probes and earth electrodes connected via PRO-RE adapter

Selective Earthing Resistance R_{E} (4-wire measuring method) Current clamp sensor connected directly, probes and earth electrodes connected via PRO-RE adapter

Earth Loop Resistance $\mathrm{R}_{\text {Eloop }}$
2-clamp measurement:
Current clamp sensor directly connected,
current clamp transformer connected via PRO-RE/2 adapter

Soil Resistivity $\mathrm{R}_{\text {ho }}$
Probes connected via PRO-RE

PROFITEST MTECH+, Mpro, Mxtra, Mbase+
 IEC 60364-6, EN 50110-1

Special Measurements
 PROFITEST MTECH+, PROFITEST MXTRA

Tripping Test for Type B, AC/DC Sensitive RCDs $\approx=$
with Rising DC Residual Current and Measurement of Tripping Current

With the selector switch in the I_{F} position, slowly rising current flows via N and PE. The momentary measured current value is continuously displayed. When the RCCB is tripped, the last mea-
sured current value is displayed. A greatly reduced rate of increase is used for delayed RCCBs (type \mathbf{S}).
Tripping Test for Type B, AC/DC Sensitive RCDs 园 $=$ with Constant DC Residual Current and Measurement of Tripping Time
With the selector switch set to the respective nominal residual current, twice the selected nominal current flows via N and PE . Time to trip is measured for the RCCB and displayed.

Loop Resistance Measurement with Suppression of RCD Tripping

The test instruments make it possible to measure loop impedance in TN systems with type A, F 囦 and AC RCCBs \sim (10, 30, 100, 300, 500 mA nominal residual current).
The respective test instrument generates a DC residual current to this end, which saturates the RCCB's magnetic circuit.
The test instrument then superimposes a measuring current which only demonstrates half-waves of like polarity. The
 RCCB is no longer capable of detecting this measuring current and is consequently not tripped during measurement.
Selective Earth Resistance Measurement (mains powered)

Special Measurements
 PROFITEST MTECH+ and PROFITEST MXTRA

Checking the Operating States of Electric Vehicles at Charging Stations per IEC 61851
In combination with an adapter, the operating state of an electric vehicle can be tested at charging points in accordance with IEC 61851. The adapter is used to simulate the various operating states of a fictitious electric vehicle connected to a charging station.

Special Measurements PROFITEST MXTRA

Testing of Insulation Monitoring Devices (IMDs)

Insulation monitors are used in power supplies for which a singlepole earth fault may not result in failure of the power supply, for example in operating rooms or photovoltaic systems.
Insulation monitors can be tested with the help of this special function. After pressing the start button, an adjustable insulation resistance is activated between one of

Affligation of an adjustatile resistance betwenn externul conductor and eath in the IT moins

Staterstof: Fiess ETHFT the two phases of the IT system to be monitored and ground to this end. This resistance can be changed in the manual sequence mode with the help of the softkeys, and it can be varied automatically from $R_{\max }$ to $R_{\text {min }}$ in the automatic operating mode.
Time during which the momentary resistance value prevails at the system until the next change in value is displayed. The IMD's display and response characteristics can be subsequently evaluated and documented with the help of the softkeys.

PROFITEST Master Series
 PROFITEST Mtech+, Mpro, Mxtra, Mbase+
 IEC 60364-6, EN 50110-1

Leakage Current Measurement with PRO-AB Adapter

Measurement of continuous leakage and patient auxiliary current per IEC 62353 / IEC 601-1 / EN 60 601-1 (Medical electrical equipment - General requirements for basic safety) is possible with the help of the PRO-AB leakage current measuring adapter used as an accessory with the
PROFITEST MXTRA test instrument.

As specified in the standards listed above, current values of up to 10 mA can be measured with this measuring adapter.
In order to be able to fully cover this measuring range using the measurement input provided on the test instrument (2-pole current clamp input), the measuring instrument is equipped with range switching including transformation ratios of $10: 1$ and $1: 1$.

Determination of Residual Voltage / Detection of Mains Fluctuation
EN 60204 specifies that after switching supply power off, residual voltage between L and PE must drop to a value of 60 V or less within 5 seconds at all accessible, active components of a machine to which a voltage of greater that 60 V is applied during operation.
With the PROFITEST MXTRA, testing for the absence of voltage

- Determination of cesidual woltoge L agoinst FE after shutdown. - Detection of midins fluctuations >5\% within 0,7 seconds -Fermanent measurement is performed as follows by means of a voltage measurement which involves measuring discharge time tu:
In the case of voltage dips of greater than 5\% of momentary line voltage (within 0.7 seconds), the stopwatch is started and momentary undervoltage is displayed as Ures after 5 seconds and indicated by the red U_{L} / R_{L} diode.

Intelligent Ramp

The advantage of this measuring function in contrast to individual measurement of $I_{\Delta N}$ and t_{A} is the simultaneous measurement of breaking time and breaking current by means of a test current which is increased in steps, during which the RCD is tripped only once.
The intelligent ramp is subdivided into time segments of 300 ms each between the initial current value ($35 \% I_{\Delta N}$) and the final current value $\left(130 \% I_{\Delta N}\right)$. This results in a gradation for which each step corresponds to a constant test current which is applied for no longer than 300 ms , assuming that tripping does not occur.
And thus both tripping current and tripping time are measured and displayed.

Testing of Residual Current Monitoring Devices (RCMs)
Residual current monitors (RCMs) monitor residual current in electrical systems and display it continuously. As is also the case with residual current devices, external switching devices can be controlled in order to shut down supply power in the event that a specified residual current value is exceeded. However, the advantage of an RCM is that the user is informed of fault current within the system before shutdown takes place.
As opposed to individual measurement of $I_{\Delta N}$ and t_{A}, measurement results must be evaluated manually in this case.
If an RCM is used in combination with an external switching device, the combination must be tested as if it were an RCD.

Test Sequences for Documenting Fault Simulations at type S and K PRCDs with the Optional PROFITEST PRCD Adapter

- There are three preset test sequences:
- PRCD-S (single-phase)
- PRCD-K (single-phase)
- PRCD-S (3-phase)
- The test instrument runs through all test steps semi-automatically:
Single-phase PRCDs: PRCD-S: 11 test steps PRCD-K: 4 test steps
3-phase PRCDs: PRCD-S: 18 test steps
- Each test step is evaluated and assessed by the user (go/no-go) for later documentation.
- Measurement of the PRCD's protective conductor resistance using the test instrument's $R_{\text {LO }}$ function
- Measurement of the PRCD's insulation resistance using the test instrument's $\mathrm{R}_{\text {ISO }}$ function
- Tripping test with nominal residual current using the test instrument's $\mathrm{I}_{\mathrm{F}} \triangle$ function
- Measurement of time to trip using the test instrument's $I_{\Delta N}$ function
- Varistor test for PRCD-K: measurement via ISO ramp

Further information is available in the data sheet for the PROFITEST PRCD.

PROFITEST Master Series
 PROFITEST MTECH+, Mpro, Mxtra, Mbase+
 IEC 60364-6, EN 50110-1

Accessories

Report Generating Accessories

See also separate "ID systems" data sheet
Barcode Profiscanner RS232 (Z502F)
Barcode reader and scanner for RS232 connection to the test instrument for identifying systems, electrical circuits and operating equipment. Supported barcodes: EAN13, CODE 39, CODE 128 and 2D codes (2D code capability including QR codes as of serial number G15 - approx. August 2015)

Barcode and Label Printer for USB Connection to a PC (Z721E)
Barcode/label printer for connection to a PC for self-adhesive, smudge-proof barcode labels - for identifying devices and system components. Devices and system components can be logged by our test instruments, and acquired measured values can be allocated to them with the scanner.

SCANBASE RFID Reader for Connection to the RS-232 Port at the Tester (Z751G)
The SCANBASE RFID is used to identify tools and equipment: The RFID reader scans the code and forwards it to our test instruments in order to unequivocally assign the measured values and test results to a device under test.

The SCANBASE RFID is preprogrammed to read the following RFID tags:

Article no.	Frequency	Standard	Layout	Quantity per Package
Z751R	13.56 MHz	ISO 15693	Dia. approx. 22 mm , self-adhesive	500 pieces
Z751S	13.56 MHz	ISO 15693	Dia. approx. $30 \times 2 \mathrm{~mm}$ with 3 mm hole	500 pieces
Z751T	13.56 MHz	ISO 15693	Pigeon ring, dia. approx. 10 mm	250 pieces

Power Supply Accessories

Accessory Plug Inserts and Adapters

PRO-HB Test Probe and Measuring Adapter Holder (Z501V)

Country-Specific Plug Inserts

- PRO-Schuko (GTZ3228000R0001) for Germany: earth contact plug
- PRO-W (Z503A) for Germany: angled earth contact plug
- PRO-W II (Z503V)
for Germany:
angled earth contact plug with PE socket
- PRO-GB/USA (Z503B)
- PRO-CH (GTZ3225000R0001)

Test Tips, Probe Set (Z503F)
Length: 68 mm , diameter: 2.3 mm

PRO-PE Clip - Flat Test Clip for Busbars (Z503G)

PROFITEST Master Series

PROFITEST Mtech+, Mpro, Mxtra, Mbase+
 IEC 60364-6, EN 50110-1

Magnetic Measuring Probes (patented) with Magnetic Strain Relief (Z502U)

Safety Clip (Z503W)

Plug Inserts for PE and Other Similar Measurements

With 4-wire technology
CAT IV, 300 V

- PRO-RLO-II (Z501P) Cable length: 10 m
- PRO-RLO 20 (Z505F) Cable length: 20 m
- PRO-RLO 50 (Z505G) Cable length: 50 m

PRO-UNI-II Plug Insert (Z501R)

3 connector cables for any connection standards
CAT IV, 300 V

5-Pole 3-Phase Adapter

3-phase adapters

- A3-16
(GTZ3602000R0001),
- A3-32
(GTZ3603000R0001)
and
- A3-63
(GTZ3604000R0001)
permit trouble-free connection of test instruments to 5 -pole CEE outlets The three variants differ with
regard to plug size, which corresponds respectively to 5 -pole CEE outlets with current ratings of 16, 32 and 63 A. Phase sequence is indicated with lamps at all three variants. Testing the effectiveness of safety measures is conducted via five 4 mm sockets with touch protection.
7-Pole 3-Phase Adapter

Socket End
A3-32 Shielded (Z513B)

Socket End

VARIO Plug Adapter Set (Z500A)

Shielded A3-16 and A3-32 three-phase adapters are used for trouble-free connection of test instruments to 7 -pole CEE outlets.
The two variants differ with regard to plug size, which corresponds respectively to 7-pole CEE outlets with current ratings of 16 and 32 A .
Testing the effectiveness of safety measures is conducted via seven 4 mm sockets with touch protection.

Three self-retaining test probes with touch protection for the connection of measurement cables with 4 mm banana plugs, or with touch protected plugs for sockets with an opening of 3.5 mm to 12 mm , e.g. CEE or Perilex sockets etc.
For example, the test probes also fit the square PE jacks on Perilex sockets. Maximum allowable operating voltage: 600 V per IEC 61010.

PROFITEST Master Series
 PROFITEST MTech+, Mpro, Mxtra, Mbase+
 IEC 60364-6, EN 50110-1

PRO-AB Leakage Current Measuring Adapter (Z502S)
For PROFITEST MXTRA

Input current:
0 ... 10 mA
Input impedance:
$1 \mathrm{k} \Omega \pm 0.5 \%$
Output voltage:
10:1: $\quad 0 \ldots 1 \mathrm{~V}(0.1 \mathrm{~V} / \mathrm{mA})$
1:1: $\quad 0 \ldots 10 \mathrm{~V}(1 \mathrm{~V} / \mathrm{mA})$
Output impedance: $10 \mathrm{k} \Omega$

ISO Calibrator 1 (M662A)

Calibration adapter for rapid, efficient testing of the accuracy of measuring instruments for insulation resistance and low-value resistors

KS24 Cable Set (GTZ3201000R0001)

The KS24 cable set includes a 4 m long extension cord with a permanently attached test probe at one end and a contact protected socket at the other end, as well as an alligator clip which can be plugged onto the test probe.
Telescoping Rods TELEARM 120 (Z505C) and TELEARM 180 (Z505D)

TELEARM Case (Z505E)

1081 Floor Probe (GTZ3196000R0001)

Current Clamp Sensor WZ12C (Z219C)
Current clamp sensor for leakage current, selectable measuring ranges: 1 mA ... 15 A, 3\% and 1 A ... 150 A, 2\% Transformation ratios: $1 \mathrm{mV} / \mathrm{mA}, 1 \mathrm{mV} / \mathrm{A}$

METRAFLEX P300 (Z502E)

Flexible current clamp sensor for selective earthing resistance measurement
3/30/300 A,
$1 \mathrm{~V} / 100 \mathrm{mV} / 10 \mathrm{mV} / \mathrm{A}$

Earth Measurement Accessories

PRO-RE/2 Clamp Adapter (Z502T)

Adapter which is mounted to the test plug allowing for connection of the E-Clip 2 generator clamp for 2-clamp or ground-loop earthing resistance measurement.
2-clamp or ground loop measurement is thus made possible.

PRO-RE Adapter (Z501S)

Earth electrodes, auxiliary earth electrodes, probe and auxiliary probe are connected to the tester via the banana plug sockets, and thus via the adapter which is mounted to the test plug.

E- CLIP 2 Clamp Generator (Z591B)

Measuring range: $0.2 \mathrm{~A} .$. 1200 A
Measuring category: 600 V CAT III
Max. cable diameter: 52 mm
Transformation ratio: 1000A/1A
Frequency range:
$40 \mathrm{~Hz} \ldots 5 \mathrm{kHz}$
Output signal: $0.2 \mathrm{~mA} . . .1 .2 \mathrm{~A}$
Equipped with laboratory safety plug inputs
AC Current Clamp Sensor (Z3512A)

Switchable measuring ranges: 1 mA ... 1/100/ 1000 A~
Transmission ratios:
$1 \mathrm{~V} / \mathrm{A}, 100 \mathrm{mV} / \mathrm{A}$,
$10 \mathrm{mV} / \mathrm{A} ; 1 \mathrm{mV} / \mathrm{A}$

TR25II Cable Reel (Z503X)

TR50II Cable Reel (Z503Y)

50 m measurement cable coiled onto a plastic reel. Connection to the inside end of the cable is made possible with two sockets integrated into the reel. The other end is equipped with a banana plug.
Cable resistance can be compensated for with the rotary selector switch in the $R_{\text {LO }}$ position.

SP500 Earth Drill (Z503Z)

E-SET PROFESSIONAL (Z592Z)

E-SET BASIC (Z593A)

Accessory Cases, Trolleys and Pouches

SORTIMO L-BOXX GM (Z503D)

Plastic system case, outside dimensions: $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$
$450 \times 255 \times 355 \mathrm{~mm}$
Z503E foam insert for test instrument and accessories must be ordered separately, see below.

Foam Insert for SORTIMO L-BOXX GM (Z503E)

Profi-Case (Z502W)

E-CHECK Case (Z502M)

PROFITEST Master Series

PROFITEST MTECh+, Mpro, Mxtra, MbaSE+

IEC 60364-6, EN 50110-1

Sample Content

F2000 Universal Carrying Pouch (Z700D)

Outside dimensions:
W $\times \mathrm{H} \times \mathrm{D}$
$380 \times 310 \times 200 \mathrm{~mm}$
(without buckles, handle or carrying strap)

F2020 Large Universal Carrying Pouch (Z700F)

Outside dimensions:
$\mathrm{W} \times \mathrm{H} \times \mathrm{D}$
$430 \times 310 \times 300 \mathrm{~mm}$
(without buckles,
handle or
carrying strap)

Trolley for Profi-Case (Z502W) and E-CHECK Case (Z502N)
Folded delivery dimensions: $395 \times 150 \times 375 \mathrm{~mm}$

PROFITEST MASTER Ever-Ready Case (Z502X)

PROFITEST Master Series

PROFITEST MTECh+, Mpro, Mxtra, Mbase+
IEC 60364-6, EN 50110-1

E-Mobility Accessories

PROFITEST EMOBILITY (M513R)

Adapter for standards-compliant testing of single and 3-phase, mode 2 and 3 charging cables with simulation of faults in accordance with DIN EN 50678 / DIN EN 50699 and the manufacturer's specifications

- Testing of mode 2 and 3 , single and 3-phase charging cables
- Function test, i.e. tripping test by means of simulating the following faults: interruption, reversed wires and PE to phase
- Measurement of protective conductor current with current clamp transformer as accessory
- Measurement of protective conductor and insulation resistance
-Tripping test with nominal residual current and measurement of time to trip
- Evaluation and documentation of individual test steps

Test Adapter for Electric Charging Points (single/3-phase, type 2)
Single and 3 -phase test adapter with type 2 plug for testing the effectiveness of protective measures at electric charging points:

- METRALINE PRO-TYP EM I (Z525F)
- METRA,PRO-TYP EM III (Z525H): with earthing contact socket and interchangeable test plug

- Vehicle simulation (CP): Vehicle states A through E are selected with a rotary switch.
- Cable simulation (PP):

The various codings for charging cables with 13,20 , 32 and 63 A , as well as "no cable connected", can be simulated with the help of a rotary switch.

- Fault simulation:

Simulation of a short-circuit between CP and PE by means of a rotary switch

- Indication of phase voltages via LEDs:
Depending on the charging station, either one or three phases can be active.
- Testing of electric charging stations with permanently attached charging cable by means of an extended CP test pin

Fault Simulation Accessories

PROFSIM 1 (M560A)

PROFSIM 2 (M560B)
Installation board with option for fault simulation for measurements per IEC 60364-6 and EN 50110 for training and project work.

M560A
Service line with main grounding busbar, external and internal lightning protection, earth measurements, TN/TT systems

M560B
Sub-distribution branch with installation circuits, RCD type B, RCBO (FI/LS)

Further information regarding accessories can be found:

- In our Measuring Instruments and Testers catalog
- On the Internet at www.gossenmetrawatt.com

PROFITEST Master Series
 PROFITEST MTECH+, Mpro, Mxtra, Mbase+
 IEC 60364-6, EN 50110-1

Scope of Delivery

Standard scope of delivery for PROFITEST MASTER series:
1 Test instrument
1 Earthing contact plug insert, country-specific (PRO-SCHUKO / GTZ3228000R0001)
1 2-pole measuring adapter and cable for expansion into a 3-pole adapter (PRO-A3-II / Z501O)
2 Alligator clips
1 Shoulder strap
1 Compact battery pack (Z502H)
1 Charger (Z502R)
1 USB cable
1 DAkkS calibration certificate
1 Condensed operating instructions
1 ETC software **

* Set of complete operating instructions available on the Internet for download from www.gossenmetrawatt.com
** Download from Internet, registration certificate included
Refer to the order information below for further accessories and instrument sets with additional accessories for specific testing purposes.

Order Information

Test instruments from the PROFITEST MASTER series can be ordered with the standard scope of delivery.
Refer to the scope of delivery on page 3 with regard to the differences between the instrument variants
Accessories can also be ordered separately. Data sheets are available separately for some products, in which additional information can be found. These are indicated with a ${ }^{\mathrm{D})}$ in the table.
Each product is identified with its article number, by means of which it can also be ordered.

Test Instruments - Standard Scope of Delivery

Designation	Description / Scope of Delivery	Article Number
PROFITEST MBASE+	PROFITEST MBASE+ test instrument (M520S) with standard scope of delivery	M520S
PROFITEST MXTRA	PROFITEST MXTRA test instrument (M522P) with standard scope of delivery	M522P
PROFITEST MTECH+	PROFITEST MTECH+(M522R) with standard scope of delivery	M522R
PROFITEST MPRO	PROFITEST MPRO test instrument (M520N)with standard scope of delivery	M520N

Report Generating Accessories

Designation	Description	Article Number
Profiscanner-RS-222 barcode scanner ${ }^{\text {D) }}$	Barcode scanner for RS-232 connection with coil cable (approx. 1 m long)	Z502F
SCANBASE RFID ${ }^{\text {D) }}$	RFID reader/writer	Z751G

Power Supply Accessories

Designation	Description	Article Number
Master Battery Pack	8 LSD NiMH rechargeable batteries with reduced self-discharging (AA), with sealed cells	Z502H
Charger	Broad-range charger for charging the Master Battery Pack in the test instrument (Z502H) Input: $100 \ldots 240 \mathrm{~V}_{\text {AC }}$ Output: $16.5 \mathrm{VDC}_{\mathrm{DC}}, 1 \mathrm{~A}$	Z502R

Accessory Cases and Trolleys

Designation	Description	Article Number
PROFITEST MASTER ever-ready case	Ever-ready case with external pockets for accessories	Z502X
E-CHECK case	Aluminum case for test instrument and ac- cessories	Z502M
Trolley for E-CHECK case	Trolley to which the E-CHECK case can be mounted	Z502N
F2000		

Accessories - Plug Inserts, Plugs, Measuring Attachments etc.

Designation	Description	Article Number
PRO-HB	Holder for test probes and measuring adapter	Z501V
PRO-Schuko	Plug insert, earthing contact plug: D, A, NL, F etc.	$\begin{aligned} & \text { GTZ3228000R00 } \\ & 01 \end{aligned}$
PRO-W	Plug insert, angled earthing contact plug: D, A, NL, F etc.	Z503A
PRO-W II	Plug insert, angled earthing contact plug with PE socket	Z503V
PRO-CH	Plug insert per SEV: CH	$\begin{aligned} & \text { GTZ3225000R00 } \\ & 01 \end{aligned}$
PRO-GB/USA	Plug insert with adapter for GB and USA	Z503B
Probe set	Test probe set (red/black) CAT IIII 600 V, 1 A Length: 68 mm , diameter: 2.3 mm	Z503F
Safety Clip	Safety clips (red/blue) with hook, CAT IV 1 kV, 20 A	Z503W
PRO-PE Clip	Flat test clip for contacting busbars quickly and safely. Good contact at the front and back of the busbar thanks to time-tested contact blades. Rigid 4 mm socket in the handle, suitable for the insertion of springloaded 4 mm plugs with rigid insulating sleeve. CAT IV 1000 V, 32 A	Z503G
Magnetic Test Probes	2 touch-guarded magnetic test probes, with magnetic holder, 4 mm sockets, CAT IIII 1000 V, 4 A	Z502Z
PRO-RLO-II	Plug insert for PE and other similar measurements, 2 -wire measuring technology, cable length: 10 m, CAT I 300 V, 16 A	Z501P
PRO-RLO 20	Measuring adapter for PE and other similar measurements, cable length: 20 m, CAT III 600 V	Z505F
PRO-RL0 50	Measuring adapter for PE and other similar measurements, cable length: 50 m, CAT III 600 V	Z505G
PRO-UNI-II	Plug insert with 3 connector cables for any connection standards, CAT IV 300 V, 16 A	Z501R
Z500A	VARIO-STECKER-Set (3 self-retaining, contact protected test probes for the connection of measurement cables with 4 mm banana plugs, or with contact protected plugs for sockets with an opening of 3.5 mm to 12 mm, e.g. CEE or Perilex sockets) 600 V per IEC 61010	Z500A

Accessories - Extensions

Designation	Description	Article Number
KS24	Extension cord, 4 m	GTZ3201000R00 01
TELEARM 120 D$)$	Telescoping rod for RLO and RINS mea- surements, CAT III $600 \mathrm{~V} /$ CAT IV 300 V, 1 A, retracted: 53.5 cm , extended: $120 \mathrm{~cm}, 190 \mathrm{~g}$	Z505C
TELEARM 180 D)	Telescoping rod for RLO and RINS mea- surements, CAT III $600 \mathrm{~V} \mathrm{/} \mathrm{CAT} \mathrm{IV} \mathrm{300} \mathrm{V}$, 1 A, retracted: 73.5 cm , extended: $180 \mathrm{~cm}, 250 \mathrm{~g}$	Z505D
TELEARM case	Pouch for TELEARM 120/180 $\mathrm{L} \times \mathrm{W}: 920 \times 170 \mathrm{~mm}$	Z505E

Accessory Test Probes and Sensors

Designation	Description	Article Number
Probe 1081	Triangular probe for floor measurements in accordance with EN 1081 and IEC 60364	$\begin{aligned} & \text { GTZ3196000R00 } \\ & 01 \end{aligned}$
WZ12C ${ }^{\text {D }}$	Current clamp sensor for leakage current, switchable: $1 \mathrm{~mA} 1 / 415 \mathrm{~A}, 3 \%$ and $1 \mathrm{~A} 1 / 4$ 150 A, 2\%	Z219C
METRAFLEX P300	Flexible AC current sensor, $3 / 30 / 300 \mathrm{~A}$, $1 \mathrm{~V} / 100 \mathrm{mV} / 10 \mathrm{mV} / \mathrm{A}$, with batteries, probe length: 45 cm	Z502E

Accessory Adapters

Designation	Description	Article Number
PRO-A3-II	2 and 3-pole measuring adapter for 3phase and rotating-field systems, with coil cables, 300 V/1 A CAT IV with protective cap 600 V/1 A CAT III with protective cap 600 V/16 A CAT II without protective cap	Z5010
PRO-A3-II NCC	2 and 3-pole measuring adapter for 3phase and rotating-field systems, with straight cables (10 m), 300 V/1 A CAT IV with protective cap 600 V/1 A CAT III with protective cap 600 V/16 A CAT II without protective cap	Z503C
A3-16	5-pole 3-phase adapter For 16 A CEE outlets	$\begin{aligned} & \text { GTZ3602000R00 } \\ & 01 \end{aligned}$
A3-32	5-pole 3-phase adapter For 32 A CEE outlets	$\begin{aligned} & \text { GTZ3603000R00 } \\ & 01 \end{aligned}$
A3-63	5-pole 3-phase adapter For 63 A CEE outlets	$\begin{aligned} & \text { GTZ3604000R00 } \\ & 01 \end{aligned}$
A3-16 Shielded	7-pole 3-phase adapter Shielded for 32 A CEE outlets, 16 A, CAT III $300 \mathrm{~V}, 10 \mathrm{~A}$	Z513A
A3-32 Shielded	7-pole 3-phase adapter Shielded for 32 A CEE outlets, 32 A, CAT III 300 V, 10 A	Z513B
ISO Calibrator 1	Calibration adapter for testing the accuracy of measuring instruments for insulation resistance and low-value resistance	M662A
PRO-AB	Leakage current measuring adapter as upstream device for PROFITEST MXTRA (instrument not included)	Z502S

Earth Measurement Accessories

Designation	Description	Article Number
PRO-RE/2	Measuring adapter for connecting a second clamp (generator clamp), permits 2-clamp measuring method (ground loop measurement)	Z502T
PRO-RE	Connection adapter for earthing accessories for $3 / 4$-wire measurement and selective earthing resistance measurement	Z501S
E-CLIP 2	Generator clamp for 2-clamp measuring method (ground loop measurement) Transformation ratio: 1000 A/1 A Current measuring range: 0.2 A ... 1200 A Output signal: $0.2 \mathrm{~mA} . .1 .2 \mathrm{~A}$	Z591B
Z3512A ${ }^{\text {D }}$	Current clamp sensor for selective earth measurement and as clamp meter for 2clamp measuring method (ground loop measurement), switchable measuring ranges: 0 ... 1/100/1000 A~AV~ \pm (0.7\% ... 0.2\%)	Z225A
TR25II	Cable reel with 25 m measurement cable for low-resistance and earth measurements	Z503X
TR50II	Cable reel with 50 m measurement cable for low-resistance and earth measurements	Z503Y
SP500 earth drill	Earth drill, 50 cm long	Z503Z
E-SET PROFESSIONAL	Earth Measurement Accessories Consisting of one carrying pouch, four 500 mm earth drills, one 40 m blue measurement cable on cable reel with hand strap, one 20 m red measurement cable on cable reel with hand strap, one 5 m black measurement cable, one 5 m green measurement cable, one black test clamp with 4 mm socket, one green test clamp with 4 mm socket, one hammer, one reel tape measure, one dust cloth, one pad with pen	Z592Z
E-SET BASIC	Accessories for earth measurement including one rugged outdoor carrying pouch, two 420 mm earth drills, one 40 m blue measurement cable on cable reel with hand strap (1 kV CAT III), one 20 m red measurement cable on cable reel with hand strap (1 kV CAT IIII), one 2 m black measurement cable (1 kV CAT IV), one 2 m green measurement cable (1 kV CAT IV), one 30 cm red measurement cable (1 kV CAT IV), one 30 cm blue measurement cable (1 kV CAT IV), one black test clamp with 4 mm socket, one green test clamp with 4 mm socket	Z593A
E-Set 5	Earth measurement case consisting of imitation leather case including one reel with 25 m measurement cable, two reels with 50 m measurement cable each, three 0.5 m measurement cables, one 2 m measurement cable, one test clamp, four 350 mm earth drills, one dust cloth, two pads with forms	Z590B
PROFITEST PRCD ${ }^{\text {D) }}$	Test adapter for testing portable safety switches (types PRCD-K and PRCD-S) with the help of the PROFITEST MXTRA (instrument not included)	M512R

PROFITEST Master Series

PROFITEST Mtech+, Mpro, Mxtra, Mbase+

IEC 60364-6, EN 50110-1

E-Mobility Accessories

Designation	Description	Article Number
PROFITEST EMOBILITY	Test adapter for testing of mode 2 and 3, single and 3-phase charging cables	M513
METRALINE PRO-TYP	Single and 3-phase test adapter for testing EMe effectiveness of protective measures at electric charging points, simulation of ficti- tiously connected electric vehicles and simulation of current-carrying capacity of cord sets per IEC 61851-1, measurement inputs: 4 mm safety sockets for L1, L2, L3, N and PE for the test instru- ment, CP socket	
METRALINE PRO-TYP	Single and 3-phase test adapter for testing the effectiveness of protective measures at EM II	Z525G
electric charging points, simulation of ficti-		
tiously connected electric vehicles and		
simulation of current-carrying capacity of		
cord sets per IEC 61851-1,		
measurement inputs: 4 mm safety sockets		
for L1, L2, L3, N, PE and earthing contact		
socket for the test instrument, CP socket		

the effectiveness of protective measures at

electric charging points, simulation of ficti-

tiously connected electric vehicles and

simulation of current-carrying capacity of

cord sets per IEC 61851-1,

measurement inputs: 4 mm safety sockets

for L1, L2, L3, N, PE and earthing contact

socket for the test instrument, CP socket,

interchangeable type 2 test plug\end{array}\right.\)

Fault Simulation Accessories

Designation	Description	Article Number
PROFISIM 1	Installation board with option for fault sim- ulation for measurements per IEC 60364-6 and EN 50110, service line with main grounding busbar, external and internal lightning protection, earth measurements, TN/TT systems	M560A
PROFISIM 2	Installation board with option for fault sim- ulation for measurements per IEC 60364-6 and EN 50110, Sub-distribution branch with installation circuits, RCD type B, RCBO (FI/LS)	M560B

[^0]
[^0]: © Gossen Metrawatt GmbH
 Prepared in Germany • Subject to change, errors excepted • PDF version available on the Internet
 All trademarks, registered trademarks, logos, product names and company names are the property of their respective owners.

