

Anybus $^{\mathbb{S}}$ Communicator $^{\mathbb{T}}$ - Modbus TCP Server to PROFIBUS DP Device **USER MANUAL**

SCM-1202-201 Version 1.0 Publication date 2022-08-31

Important User Information

Disclaimer

The information in this document is for informational purposes only. Please inform HMS Networks of any inaccuracies or omissions found in this document. HMS Networks disclaims any responsibility or liability for any errors that may appear in this document.

HMS Networks reserves the right to modify its products in line with its policy of continuous product development. The information in this document shall therefore not be construed as a commitment on the part of HMS Networks and is subject to change without notice. HMS Networks makes no commitment to update or keep current the information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and are only intended to help improve understanding of the functionality and handling of the product. In view of the wide range of possible applications of the product, and because of the many variables and requirements associated with any particular implementation, HMS Networks cannot assume responsibility or liability for actual use based on the data, examples or illustrations included in this document nor for any damages incurred during installation of the product. Those responsible for the use of the product must acquire sufficient knowledge in order to ensure that the product is used correctly in their specific application and that the application meets all performance and safety requirements including any applicable laws, regulations, codes and standards. Further, HMS Networks will under no circumstances assume liability or responsibility for any problems that may arise as a result from the use of undocumented features or functional side effects found outside the documented scope of the product. The effects caused by any direct or indirect use of such aspects of the product are undefined and may include e.g. compatibility issues and stability issues.

Copyright © 2022 HMS Networks

Contact Information

Postal address: Box 4126 300 04 Halmstad, Sweden

E-Mail: info@hms.se

Table of Contents

1. Preface	1
1.1. About This Document	1
1.2. Document Conventions	1
1.3. Trademarks	2
2. Safety	3
2.1. Intended Use	3
2.2. General Safety	3
	_
3. Preparation	
3.1. Cabling	
3.2. System Requirements	
3.2.1. Supported Operating Systems	
3.2.2. Supported Web Browsers	
3.3. Mechanical Tools and Equipment	
3.4. Support and Resources	
3.5. HMS Software Applications	
3.6. Third-Party Software Applications	5
4. About Anybus Communicator	6
4.1. How the Communication Works	
4.2. How the Data Exchange Works	
4.3. Data Integrity	
13. 200 11.00 11.00	,
5. Installation	8
5.1. External Parts	8
5.2. DIN Rail Mounting	9
5.3. Connect to Modbus TCP Network	10
5.4. Connect to PROFIBUS Network	11
5.5. Rotary Switch Settings	12
5.5.1. Rotary Switches Default Setting	12
5.5.2. Set a Node Address with Rotary Switches	13
5.6. Connect to Power	
5.7. Security Switch	18
5.8. Lock the Cables	20
5.9. DIN Rail Demount	21
6. Communicator Configuration	22
6.1. Connect the Communicator	
6.3. Access the Built-In Web Interface From a Web Browser	
6.4. Communicator Built-In Web Interface Overview	
6.5. Modbus TCP Settings	
6.5.1. Modbus TCP IP Settings	
6.5.2. Timeout Time Settings	
6.6. PROFIBUS Settings	
6.6.1. PROFIBUS Address Settings	
6.6.2. Timeout Time Settings	
6.7. I/O Configuration	
6.8. Apply Configuration	
6.9. Configuration Notes	
6.9.1. Add Configuration Note	

6.9.2. View and Edit Configuration Notes	38
7. PLC Configuration	40
7.1. Export Product GSD File	40
7.2. Addressing and Register Mapping	40
7.2.1. Data From Modbus TCP Network to Serial-Subnet	40
7.2.2. Data From Serial-Subnet to Modbus TCP Network	40
7.2.3. Idle Mode	41
8. Verify Operation	42
8.1. Communicator Status Monitor	42
8.2. Communicator LED Indicators	44
9. Maintenance	46
9.1. Configuration File Handling	46
9.1.1. Export Configuration	46
9.1.2. Import Configuration	47
9.2. Clear and Revert Configuration	48
9.3. Firmware Management	49
9.3.1. View the Firmware Version	49
9.3.2. Firmware and Configuration Compatibility	49
9.3.3. Firmware File Validation	49
9.3.4. Update Firmware	50
10. Troubleshooting	51
10.1. Diagnostics	51
10.1.1. I/O Data	51
10.1.2. Event Log	52
10.2. Reset to Factory Settings	53
10.3. Firmware Upgrade Error Management	55
10.4. Support	57
10.4.1. Support Package	57
11. Technical Data	58
11.1 Technical Specifications	58

1. Preface

1.1. About This Document

This document describes how to install and configure Anybus® Communicator™.

For additional documentation and software downloads, FAQs, troubleshooting guides and technical support, please visit www.anybus.com/support.

1.2. Document Conventions

Lists

Numbered lists indicate tasks that should be carried out in sequence:

- 1. First do this
- 2. Then do this

Bulleted lists are used for:

- Tasks that can be carried out in any order
- Itemized information

User Interaction Elements

User interaction elements (buttons etc.) are indicated with bold text.

Program Code and Scripts

Program code and script examples

Cross-References and Links

Cross-reference within this document: Document Conventions (page 1)

External link (URL): www.anybus.com

Safety Symbols

DANGER

Instructions that must be followed to avoid an imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

Instructions that must be followed to avoid a potential hazardous situation that, if not avoided, could result in death or serious injury.

CAUTION

Instruction that must be followed to avoid a potential hazardous situation that, if not avoided, could result in minor or moderate injury.

IMPORTANT

Instruction that must be followed to avoid a risk of reduced functionality and/or damage to the equipment, or to avoid a network security risk.

SCM-1202-201 Version 1.0 Page 1 of 60

Information Symbols

NOTE

Additional information which may facilitate installation and/or operation.

TIP

Helpful advice and suggestions.

1.3. Trademarks

Anybus® is a registered trademark of HMS Networks.

All other trademarks are the property of their respective holders.

Page 2 of 60 SCM-1202-201 Version 1.0

2. Safety

2.1. Intended Use

The intended use of this equipment is as a communication interface and gateway.

The equipment receives and transmits data on various physical layers and connection types.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

2.2. General Safety

CAUTION

Ensure that the power supply is turned off before connecting it to the equipment.

CAUTION

This equipment contains parts that can be damaged by electrostatic discharge (ESD). Use ESD prevention measures to avoid damage.

CAUTION

To avoid system damage, the equipment should be connected to ground.

IMPORTANT

Using the wrong type of power supply can damage the equipment. Ensure that the power supply is connected properly and of the recommended type.

SCM-1202-201 Version 1.0 Page 3 of 60

3. Preparation

3.1. Cabling

Have the following cables available:

- Ethernet cable for configuration
- Ethernet cable for connecting to network
- PROFIBUS cable for connecting to network
- Power cable

3.2. System Requirements

3.2.1. Supported Operating Systems

Operating System	Description
Windows 7 SP1, 32-bit	Windows 7 32-bit with Service Pack 1
Windows 7 SP1, 64-bit	Windows 7 64-bit with Service Pack 1
Windows 10 64-bit	Windows 10 64-bit

3.2.2. Supported Web Browsers

The Communicator built-in web interface can be accessed from the following standard web browsers.

- Google Chrome
- Microsoft Edge
- Mozilla Firefox

3.3. Mechanical Tools and Equipment

Have the following tools available:

Flat-head screwdriver, size 5.5 mm
 Needed when removing the Communicator from DIN-rail.

3.4. Support and Resources

For additional documentation and software downloads, FAQs, troubleshooting guides and technical support, please visit www.anybus.com/support.

TIP

Have the product article number available, to search for the product specific support web page. You find the product article number on the product cover.

Page 4 of 60 SCM-1202-201 Version 1.0

3.5. HMS Software Applications

Download the software installation files and user documentation from www.anybus.com/support.

IPconfig

Use the HMS software application IPconfig and scan your network to discover and change the Communicator IP address and to access the Communicator built-in web interface.

NOTE

As an alternative, you can set a static IP address within the same IP address range as the Communicator IP address on the computer accessing the Communicator built-in web interface.

NOTE

IPconfig is only available for Windows.

3.6. Third-Party Software Applications

Microsoft Excel, or equivalent software application that supports the Office Open XML Workbook (xlsx) file format. Needed to open and read the **Event log** file.

SCM-1202-201 Version 1.0 Page 5 of 60

4. About Anybus Communicator

4.1. How the Communication Works

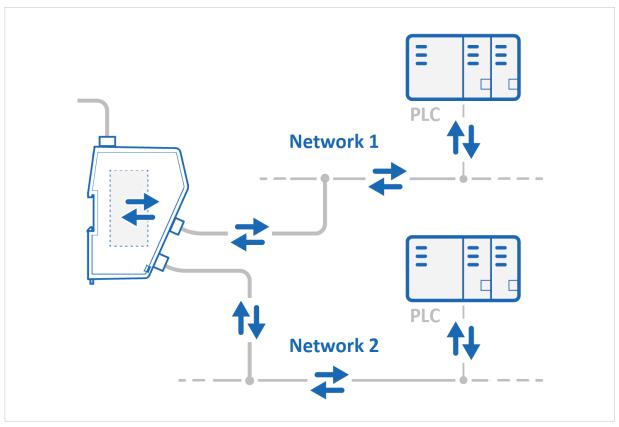


Figure 1. Process data traffic overview

The Communicator enables communication between a Master device connected to a Modbus TCP network and a Master device connected to a PROFIBUS network.

The Master device can, for example, be a PLC control system or a Gateway.

The Communicator main task is to transfer cyclic I/O data between the two networks.

Page 6 of 60 SCM-1202-201 Version 1.0

4.2. How the Data Exchange Works

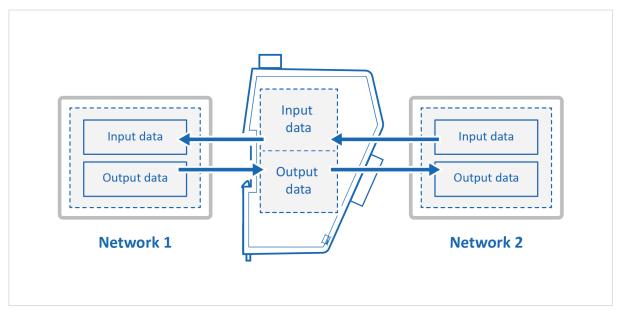


Figure 2. The Communicator internal memory areas

The data exchanged between the Communicator and the Modbus TCP and the PROFIBUS resides in the Communicator internal memory buffer.

The Communicator internal memory buffer is divided into two areas: Input data and Output data.

Input Data

This Input data area is read by the PROFIBUS.

The Communicator can handle up to 244 bytes input data.

Output Data

The Output data area is read/written by the Modbus TCP.

The Communicator can handle up to 1500 bytes output data.

4.3. Data Integrity

A snapshot of the process data buffer between the Modbus TCP/PROFIBUS Client and the server interface is used during the operation of executing all the transactions within one cycle.

When the cycle is completed, the process data available on the server interface is updated and a new snapshot is created for the next cycle.

SCM-1202-201 Version 1.0 Page 7 of 60

5. Installation

5.1. External Parts

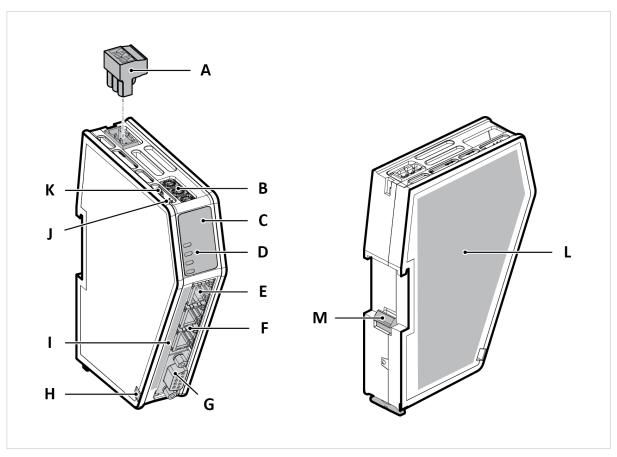


Figure 3. External parts

- A. Power connector
- B. Rotary Switch x 3 For PROFIBUS address
- C. Label with LED designation
- D. Status LEDs
- E. Configuration port
- F. Modbus TCP port x 2
- G. PROFIBUS DSUB connector
- H. Cable tie mount
- I. Laser engraved connectors designation
- J. Security switch
- K. Factory reset button
- L. Laser engraved label with product information
- M. DIN rail locking mechanism

Page 8 of 60 SCM-1202-201 Version 1.0

5.2. DIN Rail Mounting

IMPORTANT

The equipment must be electrically grounded through the DIN rail for EMC compliance. Make sure that the equipment is correctly mounted on the rail and that the rail is properly grounded.

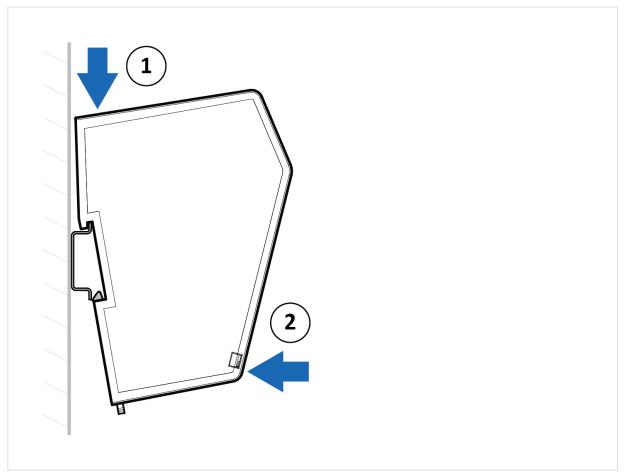


Figure 4. Attach the Communicator on the DIN rail

To attach the Communicator on the DIN rail:

- 1. Insert the upper end of the DIN rail clip into the DIN rail.
- 2. Push the bottom of the DIN rail clip into the DIN rail.

SCM-1202-201 Version 1.0 Page 9 of 60

5.3. Connect to Modbus TCP Network

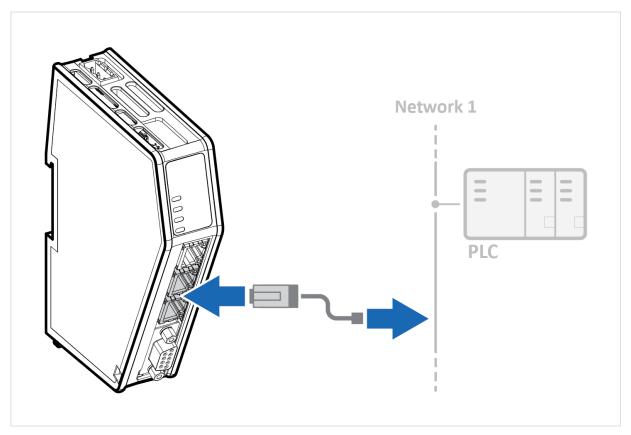
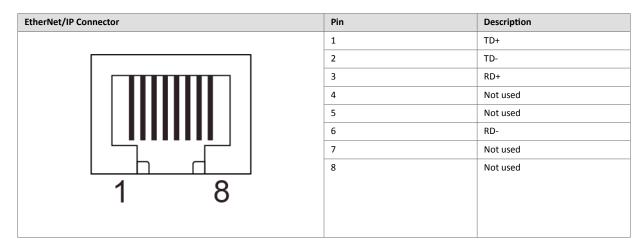



Figure 5. Connect to Modbus TCP network

1. Connect the Communicator, upper connector, to your Modbus TCP network.

To Do Next

Connect the Communicator to the PROFIBUS network, set the node address on the rotary switches and connect to power.

Check LED status, refer to Communicator LED Indicators.

Page 10 of 60 SCM-1202-201 Version 1.0

5.4. Connect to PROFIBUS Network

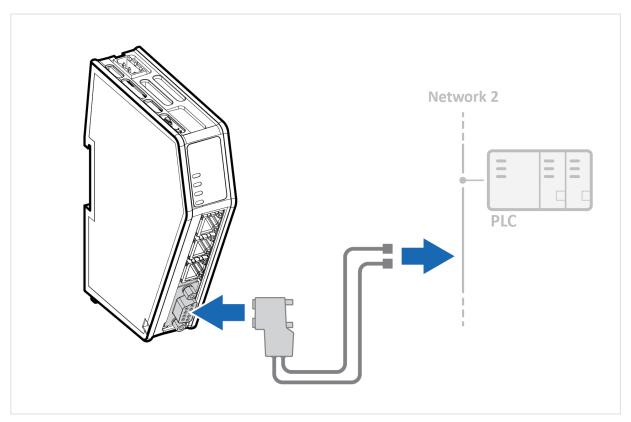
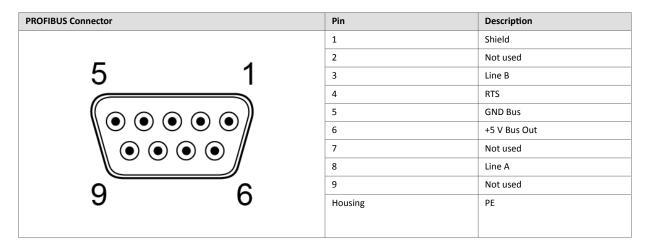



Figure 6. Connect to PROFIBUS network

1. Connect the Communicator, lower connector, to your PROFIBUS network.

To Do Next

Connect the Communicator to the Modbus TCP network, set the node address on the rotary switches and connect to power.

Check LED status, refer to Communicator LED Indicators.

SCM-1202-201 Version 1.0 Page 11 of 60

5.5. Rotary Switch Settings

5.5.1. Rotary Switches Default Setting

By default, the value on the three rotary switches are set to **000**.

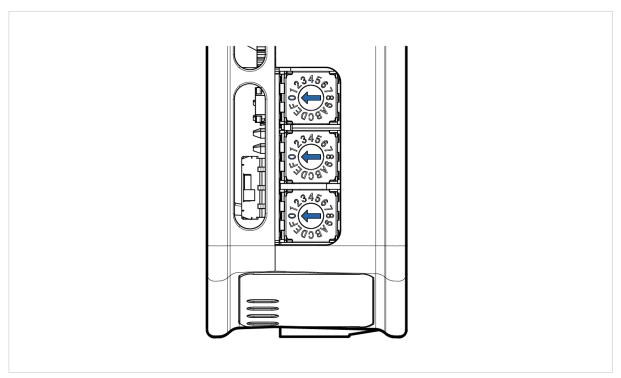
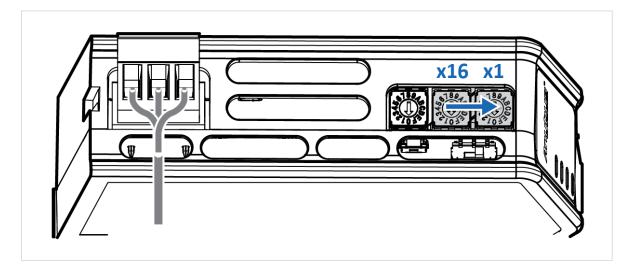


Figure 7. Rotary switches default setting **000**.

Page 12 of 60 SCM-1202-201 Version 1.0

5.5.2. Set a Node Address with Rotary Switches


About the Rotary Switch Settings

TIP

Use Windows Calculator (or similar application) to convert between hexadecimal (hex) and decimal (dec).

- The default node address setting is 000.
- The node address values are set in hexadecimal (hex).
- Minimum value is 00.
- Each node address may only occur once in the network.
- The node address is read from the center rotary switch x16 to the front rotary switch x1.
- The rear rotary switch is not used, ensure that it is set to 0.

SCM-1202-201 Version 1.0 Page 13 of 60

Before You Begin

Ensure that the Communicator is disconnected from power.

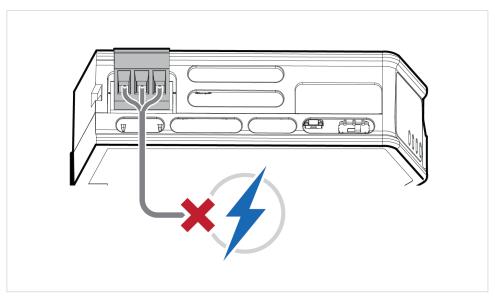
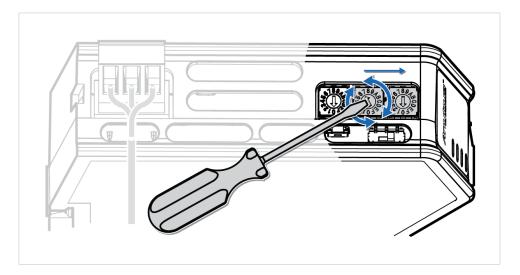
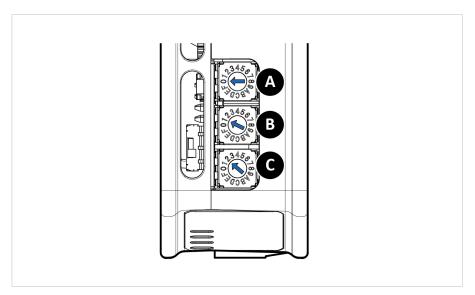



Figure 8. Disconnect Communicator from power

Procedure


Use a screwdriver to change the rotary switch position.

Ensure that the rotary switches engage correctly.

Page 14 of 60 SCM-1202-201 Version 1.0

Example 1. To set the node address 12 hex = 18 dec

- 1. The rear rotary switch A is not used, ensure that it is set to 0.
- 2. Set the center rotary switch B to 1 hex.
- 3. Set the front rotary switch C to 2 hex.

The center rotary switch B 1 hex = 1 dec and the front rotary switch C 2 hex = 2 dec.

The node address expressed in decimal numbers is therefore $16 \times 1 + 2 = 18$.

SCM-1202-201 Version 1.0 Page 15 of 60

To Do Next

Connect the Communicator to power. See Connect to Power (page 17).

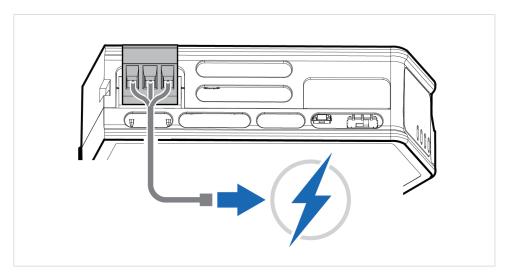


Figure 9. Connect Communicator to power

Result

The set node address is active as soon as the Communicator is powered on.

NOTE

Changing the address settings on the rotary switches during operation is ignored. For a new address to take effect, power cycle the Communicator.

Page 16 of 60 SCM-1202-201 Version 1.0

5.6. Connect to Power

CAUTION

Ensure that the power supply is turned off before connecting it to the equipment.

IMPORTANT

Using the wrong type of power supply can damage the equipment. Ensure that the power supply is connected properly and of the recommended type.

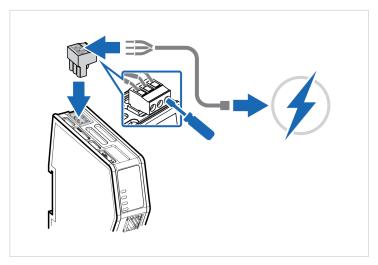


Figure 10. Connect to power

1. Insert the cable wires to the terminal block and tighten the wire clamp screws.

Power port	Pin	Description
	1	12-30 VDC Power Connector
	2	Ground (GND)
	3	Functional Earth (FE)
+ - =		

- 2. Connect the terminal block to the Communicator.
- 3. Connect the Communicator to a power supply.
- 4. Turn on the power supply.

To Do Next

Check LED status, refer to Communicator LED Indicators.

SCM-1202-201 Version 1.0 Page 17 of 60

5.7. Security Switch

When the security switch is in its locked position, the Communicator built-in web interface can not be accessed and the Communicator can not be configured using the built-in web interface. Network specific parameters, configured via the PLC is still available.

To Lock and Unlock the Security Switch

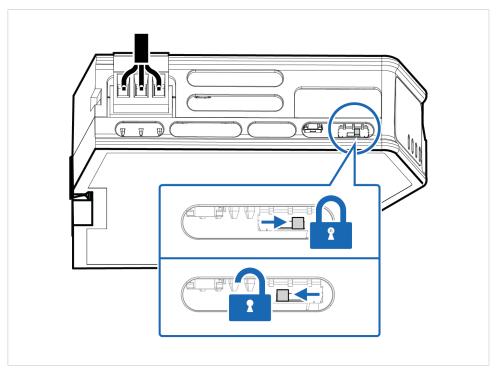


Figure 11. Security switch in locked and unlocked position

Use a pointed object, such as a ballpoint pen.

- To **lock** the security switch, push the toggle towards the **Communicator front**.
- To **unlock** the security switch, push the toggle towards the **Communicator back**.

Page 18 of 60 SCM-1202-201 Version 1.0

Security Switch Status LED

Figure 12. Security switch locked status LED

When the security switch is in its:

- locked position, the security switch status LED turn solid green.
- unlocked position, the security switch status LED is turned off.

SCM-1202-201 Version 1.0 Page 19 of 60

5.8. Lock the Cables

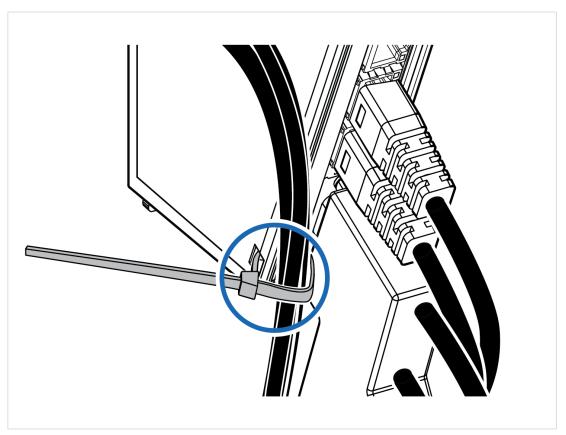


Figure 13. Lock the cables

To strain relieve the cables, place a cable tie in the holder and lock the cables.

Page 20 of 60 SCM-1202-201 Version 1.0

5.9. DIN Rail Demount

Before You Begin

IMPORTANT

Be careful when removing the Communicator from the DIN-rail. If not removed properly, the DIN rail locking mechanism and the product cover can break.

Have a flat-blade screwdriver, size 5.5 mm, available.

Procedure

Remove the Communicator from the DIN Rail:

- 1. Insert the screwdriver into the Communicator DIN rail locking mechanism.
- 2. To unlock the Communicator DIN rail locking mechanism, turn the screwdriver clockwise.



Figure 14. Unlock the Communicator

SCM-1202-201 Version 1.0 Page 21 of 60

3. Hold the screwdriver in the DIN rail locking mechanism while you unhook the Communicator from the DIN rail.

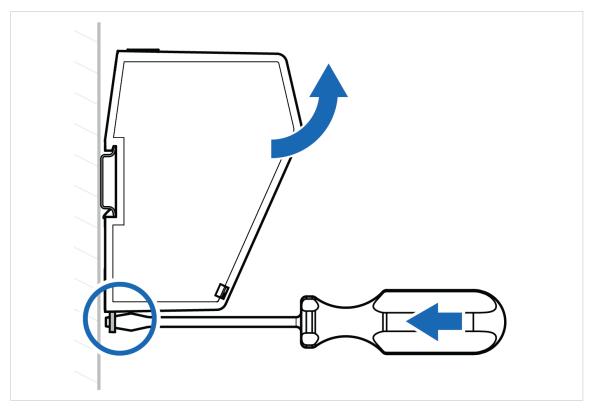
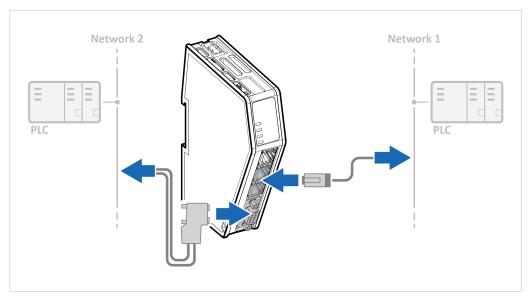
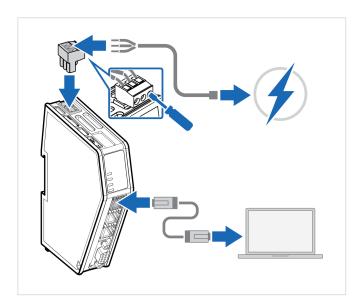


Figure 15. Unhook the Communicator


Page 22 of 60 SCM-1202-201 Version 1.0

6. Communicator Configuration

6.1. Connect the Communicator


Procedure

Connect to Modbus TCP and PROFIBUS network

Network 1 = Modbus TCP Network 2 = PROFIBUS

Connect to PC and Power

- 1. Connect an Ethernet cable between the Communicator and your PC.
- 2. Connect the Communicator to a power supply.

SCM-1202-201 Version 1.0 Page 23 of 60

6.2. Access the Built-In Web Interface From HMS IPconfig

Before You Begin

Download the software application HMS IPconfig installation files and user documentation from www.anybus.com/support.

NOTE

The Communicator default IP address is 192.168.0.10.

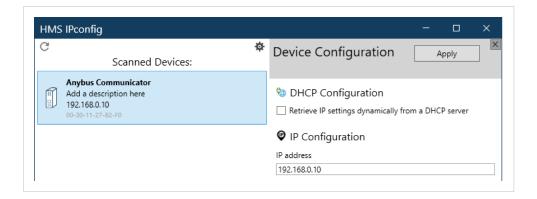
NOTE

To access the Communicator built-in web interface, ensure that Port 80 TCP is open in your Firewall. This applies to any Firewall between the web browser and the gateway.

NOTE

To access the Communicator built-in web interface from HMS IPconfig, ensure that port Port 3250 UDP is open in your PC Windows Firewall.

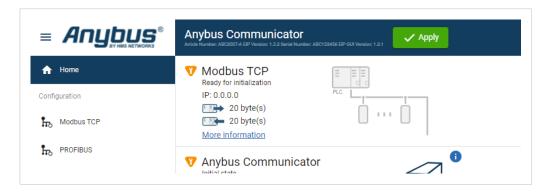
NOTE


Ensure that the security switch is unlocked. HMS IPconfig cannot configure the Communicator if the security switch is locked.

Procedure

- 1. Install HMS IPconfig on your PC.
- 2. Open HMS IPconfig.

- HMS IPconfig automatically starts scanning for compatible and active HMS devices.
- Found HMS devices are added to the device list.
- 3. To open the settings pane, click on the Communicator in the device list.
- 4. Change the Communicator configuration port IP address to one within the same IP address range as your PC.


Page 24 of 60 SCM-1202-201 Version 1.0

5. To open the **Open web page** built-in web interface, click Communicator.

Result

You are redirected to the Communicator built-in web interface Home page.

SCM-1202-201 Version 1.0 Page 25 of 60

6.3. Access the Built-In Web Interface From a Web Browser

Before You Begin

NOTE

The Communicator configuration port default IP address is 192.168.0.10.

NOTE

To access the Communicator built-in web interface, ensure that Port 80 TCP is open in your Firewall. This applies to any Firewall between the web browser and the gateway.

NOTE

When you change to a static IP address on your computer, internet access may be lost.

Procedure

1. On the PC accessing the Communicator built-in web interface, set a static IP address within the same IP address range as the Communicator IP address.

- 2. Open a web browser.
- 3. Click to select the **Address bar** and enter the Communicator IP address.

4. To open the built-in web interface Home page, press **Enter**.

Page 26 of 60 SCM-1202-201 Version 1.0

6.4. Communicator Built-In Web Interface Overview

Use the Communicator built-in web interface to configure, maintain and troubleshoot the Communicator.

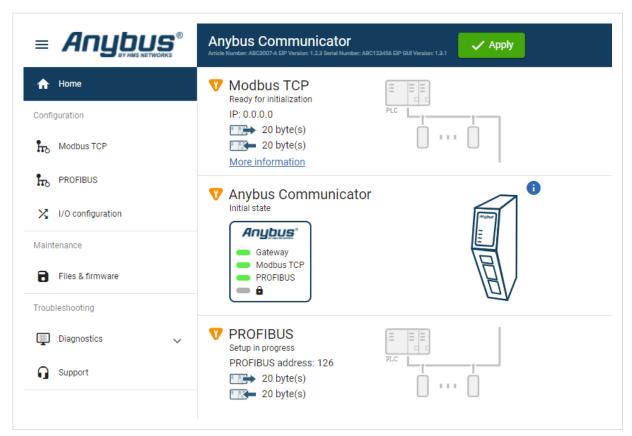


Figure 16. The Communicator built-in web interface Home page

Menu item	Description
Home	View the Communicator, network and node status.
Apply	After configuration changes are made and verified, press Apply to make the settings take effect.
Modbus TCP	Configure the network settings for the Modbus TCP network.
PROFIBUS	Configure the network settings for the PROFIBUS network.
I/O configuration	Configure input and output data sizes and endian conversion.
Files & firmware	Save settings in a configuration files, upload configuration files and upgrade firmware.
Diagnostics	Monitor and troubleshoot the Communicator.
Support	Contains Communicator product information, Anybus contact information, link to Anybus support website, and product file for download.
	Here you can generate a support package with product information, to send to your Anybus support technician.

SCM-1202-201 Version 1.0 Page 27 of 60

6.5. Modbus TCP Settings

6.5.1. Modbus TCP IP Settings

To Use DHCP Server

Anybus Communi ticle Number: AB7710-A Version: 1.2.3 Sei	CATOR rial Number: ABC123456 GUI Version: 0.44.1	Apply
P Settings		
✓ DHCP enabled		
IP address	Subnet mask 255.255.255.0	Gateway address 192.168.0.1
Primary DNS ———————————————————————————————————	Secondary DNS 0.0.0.0	

Figure 17. IP Settings, DHCP enabled

By default, the IP settings are provided by the high level network DHCP server. The **DHCP enabled** checkbox is selected

Page 28 of 60 SCM-1202-201 Version 1.0

To Configure IP Settings Manually

nybus Communio le Number: AB7710-A Version: 1.2.3 Ser	cator ial Number: ABC123456 GUI Version: 0.44.1	/ Apply
Settings		
DHCP enabled		
P address —	Subnet mask —	Gateway address —
192.168.1.15	255.255.255.0	0.0.0.0
Primary DNS —	Secondary DNS	
0.0.0.0	0.0.0.0	

Figure 18. Modbus TCP IP Settings, DCHP disabled

- 1. Deselect the **DHCP enabled** checkbox.
- 2. Configure the IP settings.

Setting	Description
IP address	The Modbus TCP network IP address in IPv4 dot-decimal notation
Subnet mask	The Modbus TCP network Subnet mask in IPv4 dot-decimal notation.
Gateway address	The Modbus TCP network Gateway address in IPv4 dot-decimal notation.
	If there is no gateway available, set the Gateway address to: 0.0.0.0
Primary DNS server	The Modbus TCP network Primary DNS in IPv4 dot-decimal notation.
Secondary DNS server	The Modbus TCP network Secondary DNS in IPv4 dot-decimal notation.
DHCP	Enabled

If you change a value and click **Refresh**, the value is reset to the last applied value.

SCM-1202-201 Version 1.0 Page 29 of 60

Naming the Host

Settings		
DHCP enabled		
P address —	Subnet mask	Gateway address
192.168.0.222	255.255.255.0	192.168.0.1
Primary DNS ——————	Secondary DNS	
0.0.0.0	0.0.0.0	

Figure 19. IP Settings Hostname

You can label the Communicator.

- The maximum allowed length of the Hostname is 64 characters.
- No symbol characters, punctuation characters, or whitespace are permitted.
- Write the Hostname as one single word.

6.5.2. Timeout Time Settings

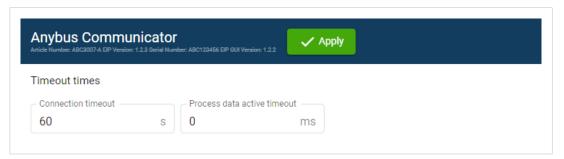


Figure 20. Modbus TCP page, Timeout times

Connection Timeout

Specify how long a Modbus TCP connection may be idle before it is closed by the Communicator.

The default value is 60 seconds.

Process Data Active Timeout

Specify the maximum allowed time between two incoming messages in steps of 10 ms.

If this time is exceeded, the high level network is considered to be offline.

The data sent to the sub-network is frozen.

A value of 0 disables this feature, i.e. the high level network can never go offline.

The default value is 0 ms.

Page 30 of 60 SCM-1202-201 Version 1.0

6.6. PROFIBUS Settings

6.6.1. PROFIBUS Address Settings

NOTE

Ensure that the Communicator rotary switches are sett to 000.

Figure 21. PROFIBUS address setting

In the PROFIBUS address field, enter the Communicator node address.

6.6.2. Timeout Time Settings

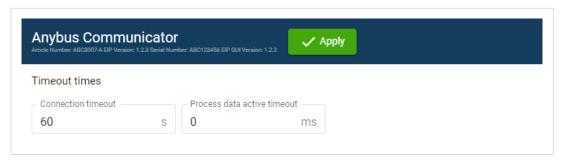


Figure 22. PROFIBUS page, Timeout times

Connection Timeout

Specify how long a Modbus TCP connection may be idle before it is closed by the Communicator.

The default value is 60 seconds.

Process Data Active Timeout

Specify the maximum allowed time between two incoming messages in steps of 10 ms.

If this time is exceeded, the high level network is considered to be offline.

The data sent to the sub-network is frozen.

A value of 0 disables this feature, i.e. the high level network can never go offline.

The default value is 0 ms.

SCM-1202-201 Version 1.0 Page 31 of 60

6.7. I/O Configuration

Figure 23. I/O configuration page

Enter the desired **Size** for the network input data and output data.

By default, the Communicator is set to use the same I/O sizes for both the Modbus TCP and the PROFIBUS networks.

To configure different sizes for the networks, deselect the Same I/O sizes for both networks checkbox.

Endian Swap

Big-endian

The big-endian format places the most significant byte of the data at the byte with the lowest memory address.

Little-endian

The little-endian format places the least significant byte of the data at the byte with the lowest memory address.

Page 32 of 60 SCM-1202-201 Version 1.0

Convert Between Big-Endian and Little-Endian

To convert between big-endian and little-endian you must reverse the byte order.

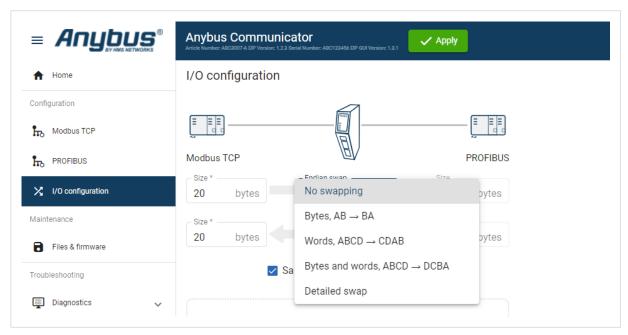


Figure 24. I/O data map, Endian swap

To reverse the byte order:

- 1. In the web-interface left sidebar menu, click .
- 2. Select the endian swap type from the **Endian swap** drop-down menu.

Setting	Description
No swapping	Default setting
	No swapping is performed on the data.
Bytes	Swap 2 bytes
	A B C D becomes B A D C
Words	Swap 4 bytes
	A B C D becomes C D A B
Bytes and words	A B C D becomes D C B A
Detailed swap	With Detailed swap, you can select a Endian swap method for each byte in the I/O Configuration.
	Set the endian swap type No swap, Bytes, AB → BA, Word swap, ABCD → CDAB or Bytes and words, ABCD → DCBA for each bite. See Build Detailed Endian Swap (page 34).

3. To apply the settings, click **Apply** in the web-interface header, and follow the instructions.

SCM-1202-201 Version 1.0 Page 33 of 60

Build Detailed Endian Swap

If you have multiple data types, you can use the **Detailed endian swap** to change different parts of the data area in different ways.

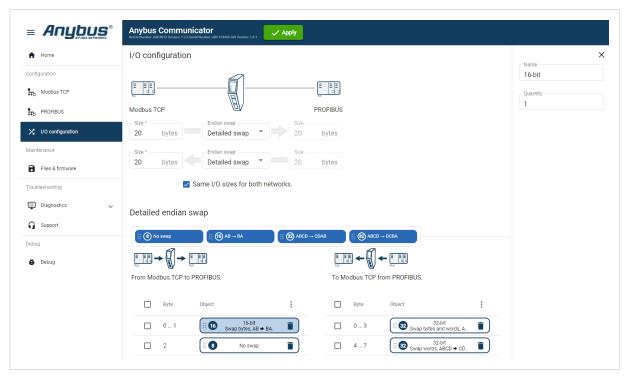


Figure 25. Detailed endian swap example

- 1. In the **Endian swap** drop-down menu for the desired network(s), select **Detailed swap**.
- 2. Build the detailed endian swap.
- To add an endian swap object: Drag and drop the desired endian swap object from the toolbar into the drag and drop fields.



Figure 26. Add endian swap object(s)

Page 34 of 60 SCM-1202-201 Version 1.0

• To duplicate an endian swap object: Select the checkbox in front of the endian swap object that you want to duplicate and click the **Duplicate selected** button.

You can select multiple endian swap objects and duplicate the group.

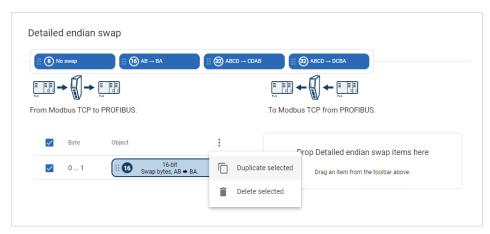


Figure 27. Duplicate endian swap object

• To change the order of the endian swap objects, drag and drop the endian swap objects in the list.

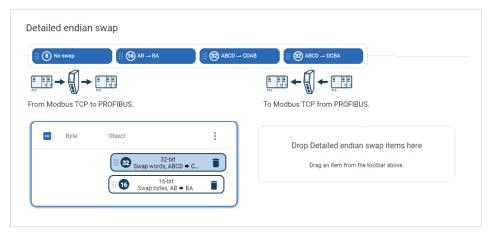


Figure 28. Change endian swap objects order

SCM-1202-201 Version 1.0 Page 35 of 60

6.8. Apply Configuration

Before You Begin

NOTE

When you apply the configuration, any existing configuration is overwritten.

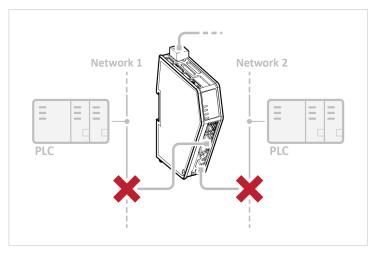
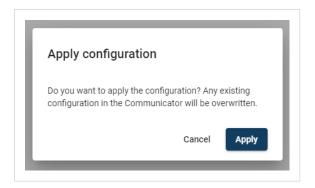


Figure 29.

Before you can apply the configuration, ensure that there is no active communication on the Modbus TCP network or the PROFIBUS network where the Communicator is connected.

Procedure


To make the settings take effect, download the configuration to the Communicator:

1. In the web-interface header, click Apply

2. To confirm download, click **Apply**.

The configured settings are downloaded and applied to the system.

Page 36 of 60 SCM-1202-201 Version 1.0

6.9. Configuration Notes

You can add notes to describe the Communicator configuration.

6.9.1. Add Configuration Note

1. To open the **Configuration Notes** window, click on the comments icon \square .

Figure 30. Configuration note, comment icon

2. To add a new configuration note, click **Add**.

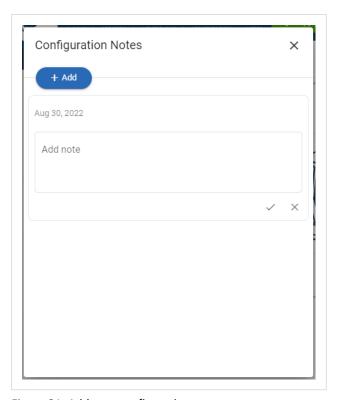


Figure 31. Add new configuration note

SCM-1202-201 Version 1.0 Page 37 of 60

3. Write your configuration note and click accept \checkmark .

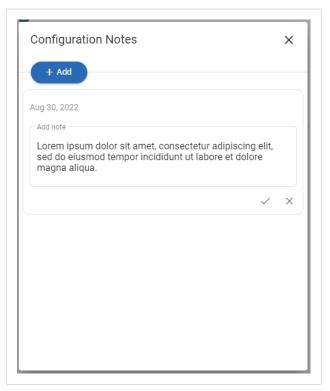


Figure 32. Write a configuration note

The configuration note is added to the list.

4. To close the window, click **close** \times .

6.9.2. View and Edit Configuration Notes

To view and/or edit a note, click on the comments icon .

Figure 33. Example: The comment icon indicates that there are three added notes

The configuration notes are listed in the **Configuration Note** window.

Page 38 of 60 SCM-1202-201 Version 1.0

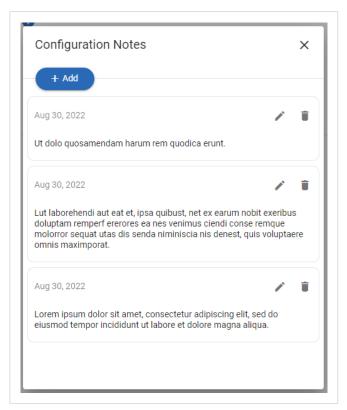


Figure 34. Example: The Configuration Notes window with added notes

SCM-1202-201 Version 1.0 Page 39 of 60

7. PLC Configuration

7.1. Export Product GSD File

Option for PROFIBUS DP Device.

Option if the PLC program requires a product file, GSD (General Station Description) file, describing how the Communicator can be used on the high level network.

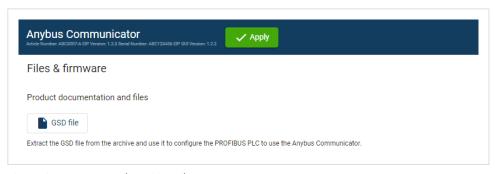


Figure 35. Export Product GSD File

You find the *PROFIBUS GSD* file on the Communicator built-in web interface **PROFIBUS** page, **Files & firmware** page and on the **Support** page.

To export the GSD file:

1. Click GSD file.

The GSD file is downloaded to your PC.

7.2. Addressing and Register Mapping

7.2.1. Data From Modbus TCP Network to Serial-Subnet

Process data offset	Coil address	Holding register
0x0000 — 0x001	0x0000 — 0x000F	0x0000
0x0002 — 0x0003	0x0010 — 0x001F	0x0001
0x05D8 — 0x05D9	0x2EC0 — 0x2ECF	0x02EC
0x05DA — 0x05DB	0x2ED0 — 0x2EDF	0x02ED

7.2.2. Data From Serial-Subnet to Modbus TCP Network

Process data offset	Discrete input address	Input register	Holding register
0x0000 — 0x001	0x0000 — 0x000F	0x0000	0x0800
0x0002 — 0x0003	0x0010 — 0x001F	0x0001	0x0801
0x05D8 — 0x05D9	0x2EC0 — 0x2ECF	0x02EC	0x0AEC
0x05DA — 0x05DB	0x2ED0 — 0x2EDF	0x02ED	0x0AED

Page 40 of 60 SCM-1202-201 Version 1.0

7.2.3. Idle Mode

Transaction	Holding Register	Description
Enter/Exit Idle Mode	0x1004	Used by the Modbus TCP client to
		indicate an idle/offline mode on the network.

SCM-1202-201 Version 1.0 Page 41 of 60

8. Verify Operation

8.1. Communicator Status Monitor

On the Home page, you can get a quick overview of the network and the Communicator operating status.

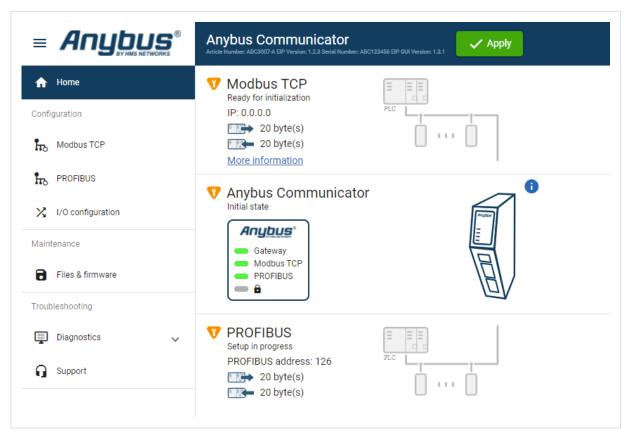


Figure 36. Home page

Gateway status

Overview the Communicator LED indications remotely.

Refer to Communicator LED Indicators.

Network Status and Settings

Overview communication status and the current networks settings.

Page 42 of 60 SCM-1202-201 Version 1.0

Status Symbols

Symbol	Description
×	Internal error has occurred and operation cannot be guaranteed.
?	Out of Specification.
Y	Check Function: Initial state where non network components are started and configured. Network startup in progress. Invalid configuration detected.
	Normal operation.

SCM-1202-201 Version 1.0 Page 43 of 60

8.2. Communicator LED Indicators

NOTE

Before you can verify operation you must configure the Communicator.

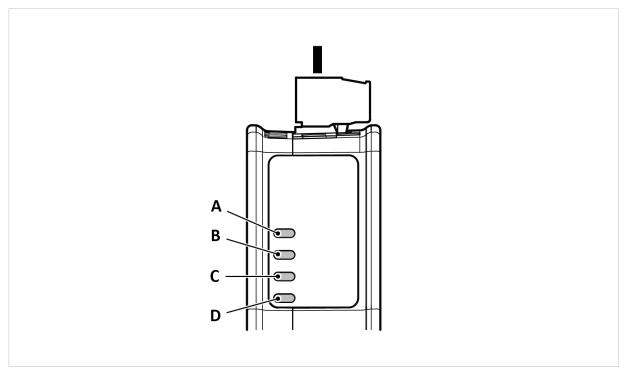


Figure 37. Gateway status (A), Lower connector (B), Upper connector (C) and (D) Security Switch

LED A - Gateway status	
Operation Status Description	
Off	No power
Green, flashing	Startup phase
Green, solid	Operational
Red, solid	Exception/Fatal error
Red, flashing	Invalid configuration
Green/Red, flashing	Power up self-test/Firmware update/Firmware recovery

LED B - Modbus TCP, Upper connector				
Operation Status	EtherCAT	EtherNet/IP	Modbus TCP	PROFINET
Off	No power/EtherCAT device in 'INIT'-state	No power/No EtherNet/IP IP address	No power/ No Modbus TCP IP address	No power/No connection with IO controller
Green, flashing	EtherCAT device in 'PRE- OPERATIONAL'-state	EtherNet/IP online, no connections established	Modbus TCP online, no messages received	Used by engineering tools to identify the node on the network
Green, one flash	EtherCAT device in 'SAFE- OPERATIONAL'-state	N/A	N/A	Connection with IO controller established IO controller in STOP state or IO data bad
Green, solid	EtherCAT device in 'OPERATIONAL'-stat	EtherNet/IP online, one or more connections established	Modbus TCP online, at least one message received	PROFINET online, one or more connections established

*The LtherCAT RUN (green) and ERROR (red) LED behaviors are combined in LED (C)/(D). This can cause LED (C)/(D) to alternate between red and green. The LED behavior still represents the states described in the table above.

Page 44 of 60 SCM-1202-201 Version 1.0

LED B - Modbus TCP, Upper connector				
Operation Status	EtherCAT	EtherNet/IP	Modbus TCP	PROFINET
Red, solid	FATAL event	Duplicated EtherNet/IP IP address	IP address conflict detected	FATAL event
Red, one flash	Unsolicited state change Slave device application has changed the EtherCAT state autonomously.	N/A	N/A	Station name not set
Red, two flash	Sync Manager watchdog timeout	N/A	N/A	IP address not set
Red, three flash	N/A	N/A	N/A	Expected Identification differs from Real Identification
Red, flashing	Invalid configuration	One or more connections timed out	Connection timeout	One or more connections timed out
Green/Red, flashing	EtherCAT RUN (green) and ERROR (reed) LED combined*	N/A	N/A	N/A

^{*}The EtherCAT RUN (green) and ERROR (red) LED behaviors are combined in LED (C)/(D). This can cause LED (C)/(D) to alternate between red and green. The LED behavior still represents the states described in the table above.

LED C - PROFIBUS, Lower connector	
Operation Status	PROFIBUS
Off	No data exchange
Green, flashing	Clear, data exchange
Green, one flash	N/A
Green	Operate, data exchange
Red	FATAL event
Red, one flash	Parameterization error
Red, two flash	PROFIBUS configuration error
Red, three flash	N/A
Red, flashing	N/A
Green/Red, flashing	N/A

LED D - Security switch		
Operation Status Description		
Off	No power/Security switch is unlocked/Exception/Fatal error	
Green	Security switch is locked	

Fatal Error and Exception Error

Fatal Error: A fatal error causes the Communicator firmware application to crash in an uncontrolled manner.

Exception Error: An exception error causes the Communicator to enter a controlled error state. The Communicator firmware application is still running.

LED	Fatal Error	Exception Error
Α	Red, solid	Red, solid
В	Red, solid	Off
С	Red, solid	Off
D	Off	Off

SCM-1202-201 Version 1.0 Page 45 of 60

9. Maintenance

9.1. Configuration File Handling

9.1.1. Export Configuration

You can export the current configuration, in order to import and use the same settings to configure additional Communicator.

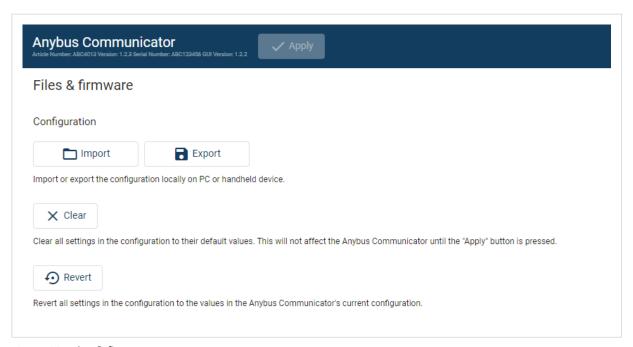


Figure 38. Files & firmware page

To export a configuration file:

• In Files & firmware, click Export.

The configuration settings are stored in a .conf file and downloaded to your PC.

Page 46 of 60 SCM-1202-201 Version 1.0

9.1.2. Import Configuration

To easily configure multiple Communicator with the same settings, you can import a configuration file.

Before You Begin

The supported file format is .conf.

Procedure

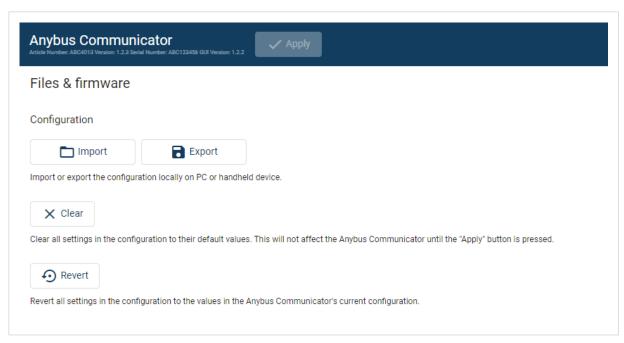


Figure 39. Files & firmware page

Import configuration file:

- 1. On the Files & firmware page, click Import.
- 2. In the Import configuration window, click **Select file (.conf)**.
- 3. In the Open dialog box, browse to and select the configuration file and click **Open**.
- 4. In the Import configuration window, click **Import**.
- 5. In the Communicator address settings window:
 - To import IP settings from the selected configuration file, click **Imported settings**. All configuration settings are imported.
 - To continue using the current IP settings, click **Configured settings**. All configuration settings except the IP settings are imported.
- 6. The configuration file is parsed.
 - If the configuration is compatible, the settings are imported.
 - If any compatibility mismatches occurs, a message about the mismatch appears.
- 7. To apply the settings, click **Apply** in the web-interface header, and follow the instructions.

SCM-1202-201 Version 1.0 Page 47 of 60

9.2. Clear and Revert Configuration

You can restore all settings in a configuration to the default settings.

Procedure

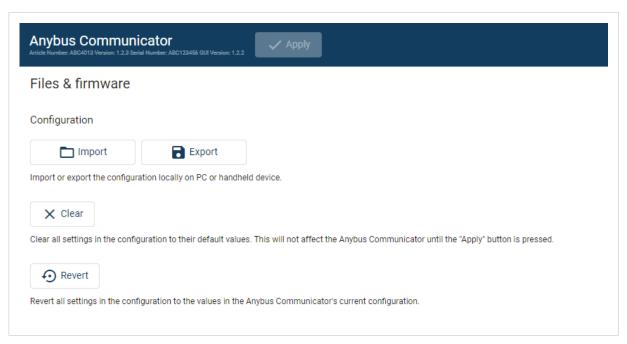


Figure 40. Files & firmware page

To Clear the Configuration

When you want to clear a configuration and return to the default settings.

- 1. On the Files & firmware page, click Clear.
- 2. In the Confirm clear window, click Clear.
- 3. To apply the change, click **Apply** in the web-interface header, and follow the instructions.

To Revert the Configuration

When you want to remove any configuration made in a current session and re-load the configuration from the gateway.

- 1. On the Files & firmware page, click **Revert**.
- 2. In the Confirm revert window, click Revert.
- 3. To apply the change, click **Apply** in the web-interface header, and follow the instructions.

Page 48 of 60 SCM-1202-201 Version 1.0

9.3. Firmware Management

9.3.1. View the Firmware Version

On the **Support** page, you can view the current applied firmware version.

Figure 41. Support page, Product information example

9.3.2. Firmware and Configuration Compatibility

Compatibility after firmware upgrade

Current configuration is still compatible after upgrading the firmware.

Compatibility after firmware downgrade

9.3.3. Firmware File Validation

Before the firmware file is imported into the system, the firmware upgrade function perform a validation of the file, to ensure that:

- the firmware is compatible with the Communicator hardware
- the firmware is suited for the product
- the officially HMS software signatures are valid
- that the firmware file is not corrupt or damaged

If the firmware file does not pass the validation, the firmware file is rejected and an error message appear.

SCM-1202-201 Version 1.0 Page 49 of 60

9.3.4. Update Firmware

Before You Begin

Ensure that the Communicator is disconnected from the OT networks.

Procedure

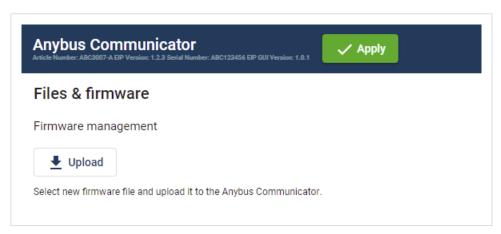


Figure 42. Files & firmware page

To update the firmware:

- 1. On the Files & firmware page, click Upload.
- 2. In the Upload Firmware window, click Select firmware (.hiff).
- 3. In the Open dialog box, browse to and select the firmware file and click **Open**.
- 4. To start the firmware upgrade, click **Update firmware**. The firmware file is validated and transferred.

Result

- If the firmware file pass the validation: The firmware is upgraded and then the Communicator automatically reboots, for the upgrade to take effect.
- If the firmware file is rejected: An error message appear.

Page 50 of 60 SCM-1202-201 Version 1.0

10. Troubleshooting

10.1. Diagnostics

10.1.1. I/O Data

On the **Diagnostics**, **I/O data** page you can monitor how the data flow between the **Modbus TCP** side and the **PROFIBUS** side, including any configured endian conversions.

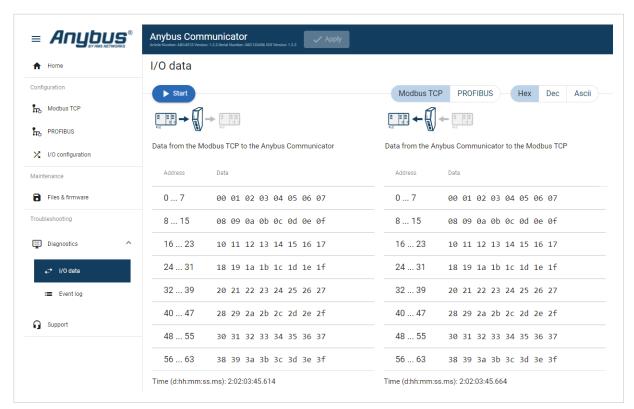


Figure 43. I/O data

The table can contain at most 10000 messages. When the limit is reached, the oldest messages are discarded when new messages are added.

Switch between the OT networks

To switch between the networks, select Modbus TCP or PROFIBUS.

Select how data is displayed

To choose if the data should be displayed in Hexadecimal, Decimal or ASCII, click Hex, Dec or Ascii.

Start and Stop Data flow

- To start the data flow, click Start.
- To end the data flow, click Stop.

SCM-1202-201 Version 1.0 Page 51 of 60

10.1.2. Event Log

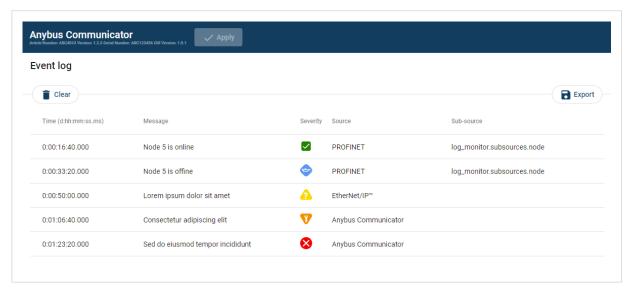


Figure 44. Event log page example

How To Analyze the Information

The log follows the FIFO principle, first in and first out. The oldest (first) value is processed first.

Time (d:hh:mm:ss.ms)	The date and time when the event occurred.		
Message	A brie	f description of the event.	
Severity	The severity of the event occurred.		
	For description of the symbols, see Communicator Status Monitor.		
Source	0	Communicator	
	1	PROFIBUS	
	2	Modbus TCP	

To clear the current log, click Clear log.

Page 52 of 60 SCM-1202-201 Version 1.0

10.2. Reset to Factory Settings

Before You Begin

Procedure

To reset the Communicator:

1. Disconnect the Communicator from power.

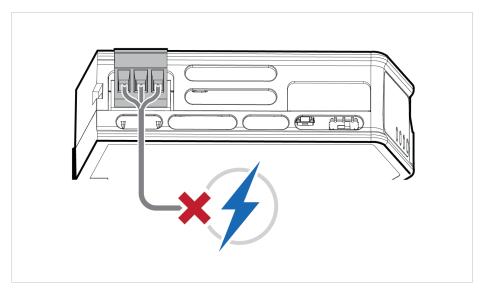


Figure 45. Disconnect power

2. Use a pointed object, such as a ballpoint pen to press and hold the **Reset** button.

Figure 46. Press and hold **Reset** button

SCM-1202-201 Version 1.0 Page 53 of 60

3. While holding the **reset** button, reconnect the Communicator to power.

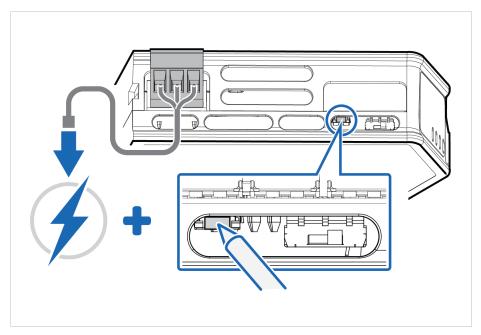


Figure 47. Hold Reset button and reconnect power

- Release the **reset** button.
 The Communicator enters exception state.
- 5. Reboot the Communicator.

Result

When the Communicator has successfully rebooted, the Communicator configuration is reset to the factory default configuration or the current configuration after firmware upgrade.

To Do Next

To ensure that the Communicator built-in web-interface is synchronized.

- 1. Open the the Communicator built-in web interface.
- 2. Navigate to the Files & firmware page and click Revert.

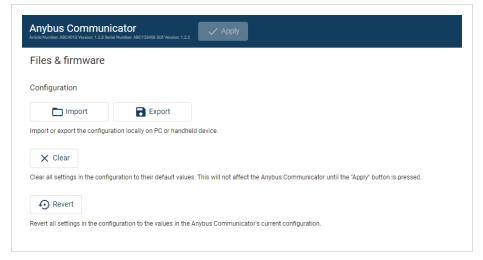


Figure 48. Files & firmware, Revert

Page 54 of 60 SCM-1202-201 Version 1.0

10.3. Firmware Upgrade Error Management

If the firmware update process is interrupted or if the power is lost during the update process, the Communicator goes into fallback mode.

The last working firmware is still available on the flash, but it is not active.

Procedure

To complete the interrupted firmware update:

1. Disconnect the Communicator from power.

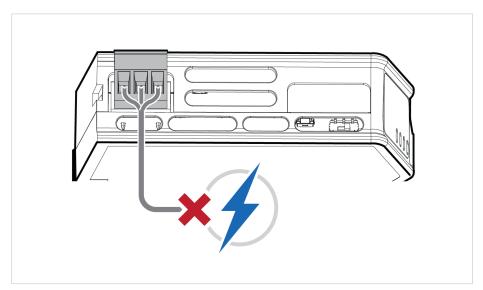


Figure 49. Disconnect power

2. Reconnect the Communicator to power.

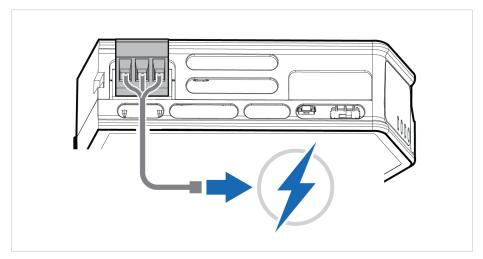


Figure 50. Reconnect power

SCM-1202-201 Version 1.0 Page 55 of 60

Leave the Communicator for 10 minutes.
 The Gateway status led indicator flashes red and green until the firmware upgrade is completed.

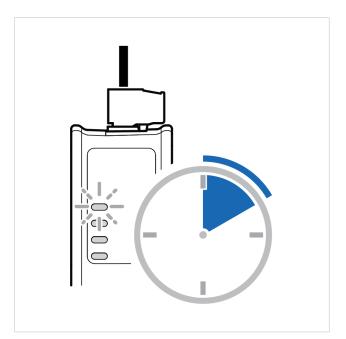


Figure 51. Firmware upgrade LED indication

Result

The Communicator recover and return to normal operation.

Figure 52. Recover and return to normal operation

To Do Next

To check LED status, refer to Communicator LED Indicators.

Page 56 of 60 SCM-1202-201 Version 1.0

10.4. Support

10.4.1. Support Package

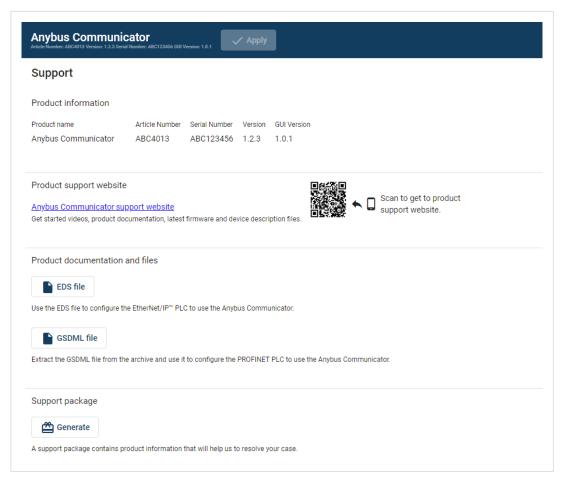


Figure 53. Support page example

Before you create a ticket for technical support, generate a support package.

The support package contains information about what has occurred and will help the Anybus technical support team resolve the support case as quickly and efficiently as possible.

Support Package Content

The information in the support package are available to open and read, the files are not locked or encrypted.

Generate Support Package

On the Support page, click Generate.

A zip file with the support files is downloaded to your PC.

Create a Support Ticket

On the Support page, click Anybus support website.
 You are redirected to the Anybus support website.

2. On the Anybus support website, create a support ticket and upload the support package.

SCM-1202-201 Version 1.0 Page 57 of 60

11. Technical Data

For complete technical specifications and regulatory compliance information, please visit www.anybus.com.

11.1. Technical Specifications

Article identification	ABC4018
Configuration connector	RJ45
Upper connector	RJ45 x 2
Lower connector	9-pin D-sub
Power connector	3-pin screw connector
Power supply	12-30 VDC, Reverse voltage protection and short circuit protection
Power consumption	Typical: 160 mA @ 24 V Max: 400 mA @ 12 V
Storage temperature	-40 to +85 °C
Operating temperature	-25 to +70 °C
Humidity	EN 600068-2-78: Damp heat, +40°C, 93% humidity for 4 days
	EN 60068-2-30: Damp heat, +25°C – +55°C, 95% RH, 2 cycles
Vibration	See datasheet
Housing material	Plastic, See datasheet for details
Protection class	IP20
Product weight	150 g
Dimensions	27 x 144 x 98 mm (W x H x D) with connectors included
Mounting	DIN-rail

Page 58 of 60 SCM-1202-201 Version 1.0

