

Betriebsanleitung

PS 9000 1U DC-Labornetzgerät

Achtung! Diese Anleitung gilt nur für Geräte mit einer Firmware ab "KE: 2.06" und "HMI: 2.02". Zwecks Verfügbarkeit von Updates bitte unsere Webseite aufsuchen oder anfragen.

Doc ID: PS91UDE Revision: 03 Date: 07/2015 (6

INHALT

ALLGEMEINES

1.1	Zu diesem Dokument	5
1.1.1	Aufbewahrung und Verwendung	5
1.1.2	Urheberschutz (Copyright)	5
1.1.3	Geltungsbereich	5
1.1.4	Symbolerläuterungen	5
1.2	Gewährleistung und Garantie	5
1.3	Haftungsbeschränkungen	5
1.4	Entsorgung des Gerätes	6
1.5	Produktschlüssel	6
1.6	Bestimmungsgemäße Verwendung	6
1.7	Sicherheit	7
1.7.1	Sicherheitshinweise	7
1.7.2	Verantwortung des Bedieners	8
1.7.3	Pflichten des Betreibers	8
1.7.4	Anforderungen an das Bedienpersonal	8
1.7.5	Alarmsignale	9
1.8	Technische Daten	9
1.8.1	Zulässige Betriebsbedingungen	9
1.8.2	Allgemeine technische Daten	9
1.8.3	Spezifische technische Daten	10
1.8.4	Ansichten	14
1.9	Aufbau und Funktion	18
1.9.1	Allgemeine Beschreibung	18
1.9.2	Blockdiagramm	18
1.9.3	Lieferumfang	18
1.9.4	Die Bedieneinheit (HMI)	19
1.9.5	Sense-Anschluß (Fernfühlung)	20
1.9.6	USB-Port	21
1.9.7	Ethernetport	21
1.9.8	Analogschnittstelle	21
1.9.9	Share-Bus-Anschluß	21

INSTALLATION & INBETRIEBNAHME 2

2.1	Transport und Lagerung22	2
2.1.1	Transport	2
2.1.2	Verpackung	2
2.1.3	Lagerung22	2
2.2	Auspacken und Sichtkontrolle	2
2.3	Installation22	2
2.3.1	Sicherheitsmaßnahmen vor Installation und	
	Gebrauch22	2
2.3.2	Vorbereitung22	2
2.3.3	Aufstellung des Gerätes23	3
2.3.4	Anschließen an das Stromnetz (AC)23	3
2.3.5	Anschließen von DC-Lasten24	ŧ
2.3.6	Erdung des DC-Ausgangs25	5
2.3.7	Anschließen der Fernfühlung25	5
2.3.8	Anschließen des "Share-Bus"25	5
2.3.9	Anschließen der analogen Schnittstelle26	3
2.3.10	Anschließen des USB-Ports26	3
2.3.11	Erstinbetriebnahme26	3
2.3.12	Einrichten der Netzwerkverbindung27	7

2.3.13 Erneute Inbetriebnahme nach Firmwareupdates bzw. längerer Nichtbenutzung......27

BEDIENUNG UND VERWENDUNG 3

3.1	Wichtige Hinweise	28
3.1.1	Personenschutz	28
3.1.2	Allgemein	28
3.2	Regelungsarten	28
3.2.1	Spannungsregelung / Konstantspannung	28
3.2.2	Stromregelung / Konstantstrom / Strombe	-
	grenzung	28
3.2.3	Leistungsregelung / Konstantleistung / Lei	i-
	stungsbegrenzung	29
3.3	Alarmzustände	30
3.3.1	Power Fail	30
3.3.2	Übertemperatur (Overtemperature)	30
3.3.3	Überspannung (Overvoltage)	30
3.3.4	Überstrom (Overcurrent)	30
3.3.5	Überleistung (Overpower)	30
3.4	Manuelle Bedienung	31
3.4.1	Einschalten des Gerätes	31
3.4.2	Ausschalten des Gerätes	31
3.4.3	Konfiguration im Einstellmenü (Menu)	31
3.4.4	Einstellgrenzen (Limits)	35
3.4.5	Soll- und Istwertanzeige wechseln	36
3.4.6	Sollwerte manuell einstellen	36
3.4.7	Das Schnellmenü	37
3.4.8	DC-Ausgang ein- oder ausschalten	37
3.5	Fernsteuerung	38
3.5.1	Allgemeines	38
3.5.2	Bedienorte	38
3.5.3	Fernsteuerung über eine digitale Schnittst	el-
	le	38
3.5.4	Fernsteuerung über Analogschnittstelle	
	(AS)	39
3.6	Alarme und Überwachung	43
3.6.1	Begriffsdefinition	43
3.6.2	Gerätealarme handhaben	43
3.7	Bedieneinheit (HMI) sperren	44
3.8	Nutzerprofile laden und speichern	45
3.9	Weitere Anwendungen	46
3.9.1	Parallelschaltung mit Share Bus	46
3.9.2	Reihenschaltung	47
3.9.3	Betrieb als Batterielader	47

INSTANDHALTUNG & WARTUNG

4.1	Wartung / Reinigung4	8
4.2	Fehlersuche / Fehlerdiagnose / Reparatur .4	8
4.2.1	Defekte Netzsicherung tauschen4	8
4.3	Firmwareaktualisierung (Updates)4	9
4.3.1	Aktualisierung der Bedieneinheit (HMI)4	9

Aktualisierung der Kommunikationseinheit	
(KE)	.49
Gerät abgleichen (Nachjustierung)	50
Einleitung	.50
Vorbereitung	.50
Abgleichvorgang	.50
Ersatzableitstrommessung nach DIN VDE	
0701-1	.52
	Aktualisierung der Kommunikationseinheit (KE) Gerät abgleichen (Nachjustierung) Einleitung Vorbereitung Abgleichvorgang Ersatzableitstrommessung nach DIN VDE 0701-1

5 ZUBEHÖR UND OPTIONEN

6 SERVICE & SUPPORT

6.1	Übersicht	53
6.2	Kontaktmöglichkeiten	53

1. Allgemeines

1.1 Zu diesem Dokument

1.1.1 Aufbewahrung und Verwendung

Dieses Dokument ist für den späteren Gebrauch und stets in der Nähe des Gerätes aufzubewahren und dient zur Erläuterung des Gebrauchs des Gerätes. Bei Standortveränderung und/oder Benutzerwechsel ist dieses Dokument mitzuliefern und bestimmungsgemäß anzubringen bzw. zu lagern.

1.1.2 Urheberschutz (Copyright)

Nachdruck, Vervielfältigung oder auszugsweise, zweckentfremdete Verwendung dieser Bedienungsanleitung sind nicht gestattet und können bei Nichtbeachtung rechtliche Schritte nach sich ziehen.

1.1.3 Geltungsbereich

Diese Betriebsanleitung gilt für folgende Geräte, sowie für deren Abvarianten:

Model	Artikelnr.	Model	Artikelnr.
PS 9080-50 1U	06230400	PS 9080-100 1U	06230405
PS 9200-25 1U	06230401	PS 9200-50 1U	06230406
PS 9360-15 1U	06230402	PS 9360-30 1U	06230407
PS 9500-10 1U	06230403	PS 9500-20 1U	06230408
PS 9750-06 1U	06230404	PS 9750-12 1U	06230409

Änderungen und Abweichungen, bei Sondergeräten, werden in einem separaten Dokument aufgelistet.

1.1.4 Symbolerläuterungen

Warn- und Sicherheitshinweise, sowie allgemeine Hinweise in diesem Dokument sind stets in einer umrandeten Box und mit einem Symbol versehen:

1.2 Gewährleistung und Garantie

Elektro-Automatik garantiert die Funktionsfähigkeit der angewandten Verfahrenstechnik und die ausgewiesenen Leistungsparameter. Die Gewährleistungsfrist beginnt mit der mängelfreien Übergabe.

Die Garantiebestimmungen sind den allgemeinen Geschäftsbedingungen (AGB) der EA Elektro-Automatik GmbH zu entnehmen.

1.3 Haftungsbeschränkungen

Alle Angaben und Hinweise in dieser Anleitung wurden unter Berücksichtigung geltender Normen und Vorschriften, des Stands der Technik sowie unserer langjährigen Erkenntnisse und Erfahrungen zusammengestellt. Der Hersteller übernimmt keine Haftung für Schäden aufgrund:

- Nicht bestimmungsgemäßer Verwendung
- Einsatz von nicht ausgebildetem und nicht unterwiesenem Personal
- Eigenmächtiger Umbauten
- Technischer Veränderungen
- Verwendung nicht zugelassener Ersatzteile

Der tatsächliche Lieferumfang kann bei Sonderausführungen, der Inanspruchnahme zusätzlicher Bestelloptionen oder aufgrund neuester technischer Änderungen von den hier beschriebenen Erläuterungen und Darstellungen abweichen.

1.4 Entsorgung des Gerätes

Ein Gerät, das zur Entsorgung vorgesehen ist, muß laut europaweit geltenden Gesetzen und Verordnungen (ElektroG, WEEE) vom Hersteller zurückgenommen und entsorgt werden, sofern der Betreiber des Gerätes oder ein von ihm Beauftragter das nicht selbst erledigt. Unsere Geräte unterliegen diesen Verordnungen und sind dementsprechend mit diesem Symbol gekennzeichnet:

1.5 Produktschlüssel

Aufschlüsselung der Produktbezeichnung auf dem Typenschild anhand eines Beispiels:

<u>PS</u>	<u>9</u>	<u>80</u>	<u>0</u>	- 3	<u>50</u>	<u>1</u>	<u>U zzz</u>	
								Feld zur Kennzeichnung installierter Optionen und/oder Sondermodelle: S01S0x = Sondermodell
								Ausführung/Bauweise (nicht immer angegeben): 1U / 2U / 3U = 19" Bauform mit 1 HE, 2 HE oder 3 HE
								Maximalstrom des Gerätes in Ampere
		L						Maximalspannung des Gerätes in Volt
	L							Serienkennzeichnung: 8 = Serie 8000 oder 800, 9 = Serie 9000
								Typkennzeichnung: PS = Power Supply (Netzgerät), meist programmierbar
								PSI = Power Supply Intelligent (Netzgerät), immer programmierbar ELR = Electronic Load Recovery (Elektronische Last mit Rückspeisung)

Sondergeräte sind stets Varianten von Standardmodellen und können von der Bezeichnung abweichende Ausgangsspannungen und -ströme haben.

1.6 Bestimmungsgemäße Verwendung

Das Gerät ist, sofern ein Netzgerät bzw. Batterielader, ausschließlich für den Gebrauch als variable Spannungsoder Stromquelle oder, sofern eine elektronische Last, als variable Stromsenke bestimmt.

Typisches Anwendungsgebiet für ein Netzgerät ist die DC-Stromversorgung von entsprechenden Verbrauchern aller Art, für ein Batterieladegerät die Aufladung von diversen Batterietypen, sowie für elektronische Lasten der Ersatz eines ohmschen Widerstands in Form einer einstellbaren DC-Stromsenke zwecks Belastung von entsprechenden Spannungs- und Stromquellen aller Art.

- Ansprüche jeglicher Art wegen Schäden aus nicht bestimmungsgemäßer Verwendung sind ausgeschlossen
- Für alle Schäden durch nicht bestimmungsgemäße Verwendung haftet allein der Betreiber

1.7 Sicherheit

1.7.1 Sicherheitshinweise

Lebensgefahr - Gefährliche Spannung

- Beim Betrieb elektrischer Geräte stehen zwangsweise bestimmte Teile unter teils gefährlicher Spannung. Daher sind alle spannungsführenden Teile abzudecken!
- Alle Arbeiten an den Anschlussklemmen müssen im spannungslosen Zustand des Gerätes erfolgen (DC-Ausgang nicht verbunden mit Last) und dürfen nur von Personen durchgeführt werden, die mit den Gefahren des elektrischen Stroms vertraut sind oder unterrichtet wurden! Unsachgemäßer Umgang mit diesen Geräten kann zu tödlichen Verletzungen, sowie erheblichen Sachschäden führen.
- Berühren Sie die Kontakte am Netzkabel oder der Netzanschlußbuchse nie direkt nach dem Entfernen des Kabels aus der Steckdose oder dem Hauptanschluß, da die Gefahr eines Stromschlags besteht!
- Berühren Sie die Kontakte am DC-Terminal niemals direkt nach dem Ausschalten des DC-Ausgangs, da sich die Spannung noch auf gefährlichen Niveau befinden kann und sich erst noch mehr oder weniger langsam ja nach Last abbaut! Es kann auch gefährliches Potential zwischen DC-Minus und PE bzw. DC-Plus und PE bestehen, aufgrund von geladenen X-Kondensatoren

	 Das Gerät ist ausschlie ßlich seiner Bestimmung gem
	 Das Gerät ist nur f ür den Betrieb innerhalb der auf dem Typenschild angegebenen Anschluß- werte und technischen Daten zugelassen.
	 Führen Sie keine mechanischen Teile, insbesondere aus Metall, durch die Lüftungsschlitze in das Gerät ein.
	• Vermeiden Sie die Verwendung von Flüssigkeiten aller Art in der Nähe des Gerätes, diese könn- ten in das Gerät gelangen. Schützen Sie das Gerät vor Nässe, Feuchtigkeit und Kondensation.
	• Für Netzgeräte und Batterielader: Schließen Sie Verbraucher, vor allem niederohmige, nie bei eingeschaltetem Leistungsausgang an, es können Funken und dadurch Verbrennungen an den Händen, sowie Beschädigungen am Gerät und am Verbraucher entstehen!
٨	 Für elektronische Lasten: Schließen Sie Spannungsquellen nie bei eingeschaltetem Leistungs- eingang an, es können Funken und dadurch Verbrennungen an den Händen, sowie hohe Spannungsspitzen und Beschädigungen am Gerät und an der Quelle entstehen!
	 Um Schnittstellenkarten oder -module in dem daf ür vorgesehenen Einschub (Slot) zu best ücken, m üssen die einschl ägigen ESD –Vorschriften beachtet werden.
	• Nur im ausgeschalteten Zustand darf eine Schnittstellenkarte bzwmodul aus dem Einschub herausgenommen oder bestückt werden. Eine Öffnung des Gerätes ist nicht erforderlich.
	 Keine externen Spannungsquellen mit umgekehrter Polarität am DC-Ausgang bzw. DC-Eingang anschließen! Das Gerät wird dadurch beschädigt.
	 Für Netzgeräte: Möglichst keine externen Spannungsquellen am DC-Ausgang anschließen, jedoch auf keinen Fall welche, die eine höhere Spannung erzeugen können als die Nennspan- nung des Gerätes.
	 Für elektronische Lasten: keine Spannungsquelle am DC-Eingang anschließen, die eine Span- nung erzeugen kann, die höher ist als 120% der Nenneingangsspannung der Last. Das Gerät ist gegen Überspannungen nicht geschützt, diese können das Gerät zerstören.
	 Niemals Netzwerkkabel, die mit dem Ethernet oder dessen Komponenten verbunden sind, in die Master-Slave-Buchsen auf der Rückseite stecken!

1.7.2 Verantwortung des Bedieners

Das Gerät befindet sich im gewerblichen Einsatz. Das Personal unterliegt daher den gesetzlichen Pflichten zur Arbeitssicherheit. Neben den Warn- und Sicherheitshinweisen in dieser Anleitung müssen die für den Einsatzbereich gültigen Sicherheits-, Unfallverhütungs- und Umweltschutzvorschriften eingehalten werden. Insbesondere gilt, daß die das Gerät bedienenden Personen:

- sich über die geltenden Arbeitsschutzbestimmungen informieren.
- die zugewiesenen Zuständigkeiten für die Bedienung, Wartung und Reinigung des Gerätes ordnungsgemäß wahrnehmen.
- vor Arbeitsbeginn die Betriebsanleitung vollständig gelesen und verstanden haben.
- die vorgeschriebenen und empfohlenen Schutzausrüstungen anwenden.

1.7.3 Pflichten des Betreibers

Betreiber ist jede natürliche oder juristische Person, die das Gerät nutzt oder Dritten zur Anwendung überläßt und während der Nutzung für die Sicherheit des Benutzers, des Personals oder Dritter verantwortlich ist.

Das Gerät wird im gewerblichen Bereich eingesetzt. Der Betreiber des Gerätes unterliegt daher den gesetzlichen Pflichten zur Arbeitssicherheit. Neben den Warn- und Sicherheitshinweisen in dieser Anleitung müssen die für den Einsatzbereich des Gerätes gültigen Sicherheits-, Unfallverhütungs- und Umweltschutzvorschriften eingehalten werden. Insbesondere muß der Betreiber:

- sich über die geltenden Arbeitsschutzbestimmungen informieren.
- durch eine Gefährdungsbeurteilung mögliche zusätzliche Gefahren ermitteln, die sich durch die speziellen Anwendungsbedingungen am Einsatzort des Gerätes ergeben.
- in Betriebsanweisungen die notwendigen Verhaltensanforderungen für den Betrieb des Gerätes am Einsatzort umsetzen.
- während der gesamten Einsatzzeit des Gerätes regelmäßig prüfen, ob die von ihm erstellten Betriebsanweisungen dem aktuellen Stand der Regelwerke entsprechen.
- die Betriebsanweisungen, sofern erforderlich, an neue Vorschriften, Standards und Einsatzbedingungen anpassen.
- die Zuständigkeiten für die Installation, Bedienung, Wartung und Reinigung des Gerätes eindeutig und unmißverständlich regeln.
- dafür sorgen, daß alle Mitarbeiter, die an dem Gerät beschäftigt sind, die Betriebsanleitung gelesen und verstanden haben. Darüber hinaus muß er das Personal in regelmäßigen Abständen im Umgang mit dem Gerät schulen und über die möglichen Gefahren informieren.
- dem mit Arbeiten an dem Gerät beauftragten Personal die vorgeschriebenen und empfohlenen Schutzausrüstungen bereitstellen.

Weiterhin ist der Betreiber dafür verantwortlich, daß das Gerät stets in einem technisch einwandfreien Zustand ist.

1.7.4 Anforderungen an das Bedienpersonal

Jegliche Tätigkeiten an Geräten dieser Art dürfen nur Personen ausüben, die ihre Arbeit ordnungsgemäß und zuverlässig ausführen können und den jeweils benannten Anforderungen entsprechen.

- Personen, deren Reaktionsfähigkeit beeinflußt ist, z. B. durch Drogen, Alkohol oder Medikamente, dürfen keine Arbeiten ausführen.
- Beim Personaleinsatz immer die am Einsatzort geltenden alters- und berufsspezifischen Vorschriften beachten.

Verletzungsgefahr bei unzureichender Qualifikation!

Unsachgemäßes Arbeiten kann zu Personen- und Sachschäden führen. Jegliche Tätigkeiten dürfen nur Personen ausführen, die die erforderliche Ausbildung, das notwendige Wissen und die Erfahrung dafür besitzen.

Als **unterwiesenes Personal** gelten Personen, die vom Betreiber über die ihnen übertragenen Aufgaben und möglichen Gefahren ausführlich und nachweislich unterrichtet wurden.

Als **Fachpersonal** gilt, wer aufgrund seiner beruflichen Ausbildung, Kenntnisse und Erfahrungen sowie Kenntnis der einschlägigen Bestimmungen in der Lage ist, die übertragenen Arbeiten ordnungsgemäß auszuführen, mögliche Gefahren selbständig zu erkennen und Personen- oder Sachschäden zu vermeiden.

1.7.5 Alarmsignale

Das Gerät bietet diverse Möglichkeiten der Signalisierung von Alarmsituationen, jedoch nicht von Gefahrensituationen. Die Signalisierung kann optisch (auf der Anzeige als **Text**), akustisch (Piezosummer) oder elektronisch (Pin/Meldeausgang an einer analogen Schnittstelle) erfolgen. Alle diese Alarme bewirken die dauerhafte oder zeitweise Abschaltung des DC-Ausgangs.

Bedeutung der Alarmsignale:

Signal OT	Überhitzung des Gerätes
(OverTemperature)	DC-Ausgang wird zeitweise abgeschaltet
	Unkritisch
Signal OVP	• Überspannungsabschaltung des DC-Ausgangs erfolgte wegen überhöhter Spannung,
(OverVoltage)	von außen auf das Gerät gelangend oder durch einen Defekt vom Gerät erzeugt oder weil die eingestellte Ausgangsspannung höher ist als die eingestellt OVP-Schwelle
	Kritisch! Gerät und/oder Last könnten beschädigt sein
Signal OCP	• Abschaltung des DC-Ausgangs erfolgte wegen Erreichen einer einstellbaren Schwelle
(OverCurrent)	Unkritisch, dient zum Schutz der Last vor zu hoher Stromaufnahme
Signal OPP	• Abschaltung des DC-Ausgangs erfolgte wegen Erreichen einer einstellbaren Schwelle
(OverPower)	Unkritisch, dient zum Schutz der Last vor zu hoher Leistungsaufnahme
Signal PF	• Abschaltung des DC-Ausgangs wegen Netzunterspannung oder Defekt des AC-Ein-
(Power Fail)	gangskreises
	Kritisch bei Überspannung! AC-Netzeingangskreis könnte beschädigt sein

1.8 Technische Daten

1.8.1 Zulässige Betriebsbedingungen

- Verwendung nur in trockenen Innenräumen
- Umgebungstemperaturbereich: 0...50°C
- Betriebshöhe: max. 2000 m über NN
- Max. 80% relative Feuchte bis 30°C, linear abnehmend bis 50% rel. Feuchte bei 50°C

1.8.2 Allgemeine technische Daten

Ausführung der Anzeige:Punkt-Matrix, 240 x 64 PunkteBedienelemente:2 Drehknöpfe mit Tastfunktion, 6 Drucktasten

Die Nennwerte des Gerätes bestimmen den maximal einstellbaren Bereich.

1.8.3 Spezifische technische Daten

4500 \W	Modell 1U							
1500 W	PS 9080-50	PS 9200-25	PS 9360-15	PS 9500-10	PS 9750-06			
AC-Eingang								
Netzspannung	100264 V AC	100264 V AC	100264 V AC	100264 V AC	100264 V AC			
Netzanschluß	1ph,N,PE	1ph,N,PE	1ph,N,PE	1ph,N,PE	1ph,N,PE			
Netzfrequenz	50/60 Hz	50/60 Hz	50/60 Hz	50/60 Hz	50/60 Hz			
Netzsicherung (intern)	T16 A	T16 A	T16 A	T16 A	T16 A			
Ableitstrom	< 3.5 mA	< 3.5 mA	< 3.5 mA	< 3.5 mA	< 3.5 mA			
Leistungsfaktor	~ 0.99	~ 0.99	~ 0.99	~ 0.99	~ 0.99			
Leerlaufleistungsaufnahme	~ 70 W	~ 70 W	~ 70 W	~ 70 W	~ 70 W			
DC-Ausgang								
Maximale Spannung U _{Nenn}	80 V	200 V	360 V	500 V	750 V			
Maximaler Strom I _{Nenn}	50 A	25 A	15 A	10 A	6 A			
Maximale Leistung P _{Nenn}	1500 W	1500 W	1500 W	1500 W	1500 W			
Überspannungsschutzbereich	088 V	0220 V	0396 V	0550 V	0825 V			
Überstromschutzbereich	055 A	027,5 A	017,6 A	011 A	06,6 A			
Überleistungsschutzbereich	01650 W	01650 W	01650 W	01650 W	01650 W			
Temperaturkoeffizient	Strom / Spannur	ig: 100 ppm/K	•	•	•			
Spannungsregelung								
Einstellbereich	081,6 V	0204 V	0367,2 V	0510 V	0765 V			
Genauigkeit ⁽¹ (bei 23 ± 5°C)	< 0,1% U _{Nenn}	< 0,1% U _{Nenn}	< 0,1% U _{Nenn}	< 0,1% U _{Nenn}	< 0,1% U _{Nenn}			
Stabilität bei ±10% ΔU _{AC}	< 0,02% U _{Nenn}	< 0,02% U _{Nenn}	< 0,02% U _{Nenn}	< 0,02% U _{Nenn}	< 0,02% U _{Nenn}			
Stabilität bei 0100% Last	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}			
Anstiegszeit 1090% ΔU	Max. 15 ms	Max. 15 ms	Max. 15 ms	Max. 15 ms	Max. 15 ms			
Ausregelzeit 10%->90% Last	< 1,7 ms	< 1,4 ms	< 2,2 ms	< 2 ms	< 2 ms			
Anzeige: Einstellauflösung	Siehe Abschnitt "1.9.4.4. Auflösung der Anzeigewerte"							
Anzeige: Genauigkeit (3	≤ 0,2% U _{Nenn}	≤ 0,2% U _{Nenn}	≤ 0,2% U _{Nenn}	≤ 0,2% U _{Nenn}	≤ 0,2% U _{Nenn}			
Restwelligkeit ⁽²	< 100 mV _{PP}	< 293 mV _{PP}	< 195 mV _{PP}	< 293 mV _{PP}	< 260 mV _{PP}			
	< 5,2 mV _{RMS}	< 51 mV _{RMS}	< 33 mV _{RMS}	< 63 mV _{RMS}	< 40 mV _{RMS}			
Kompensation Fernfuhlung	Max. 5% U _{Nenn}	Max. 5% U _{Nenn}	Max. 5% U _{Nenn}	Max. 5% U _{Nenn}	Max. 5% U _{Nenn}			
Ausschalten des DC-Ausgangs	Von 100% Spani	nung auf < 60 V: <	:10 s	1	1			
Stromregelung								
Einstellbereich	051 A	025,5 A	015,3 A	010,2 A	06,12 A			
Genaugkeit () (bei 23 ± 5°C)	< 0,2% I _{Nenn}	< 0,2% I _{Nenn}	< 0,2% I _{Nenn}	< 0,2% I _{Nenn}	< 0,2% I _{Nenn}			
Stabilität bei ±10% ΔU _{AC}	< 0,05% I _{Nenn}	< 0,05% I _{Nenn}	< 0,05% I _{Nenn}	< 0,05% I _{Nenn}	< 0,05% I _{Nenn}			
Stabilität bei 0100% ΔU _{ουτ}	< 0,15% I _{Nenn}	< 0,15% I _{Nenn}	< 0,15% I _{Nenn}	< 0,15% I _{Nenn}	< 0,15% I _{Nenn}			
Restwelligkeit ⁽²	< 75 mA _{PP}	< 29 mA _{PP}	< 10 mA _{PP}	< 9,2 mA _{PP}	< 4,1 mA _{PP}			
Anzeige: Einstellauflösung	Siehe Abschnitt ,	,1.9.4.4. Auflösung	g der Anzeigewert	e"	1			
Anzeige: Genauigkeit ⁽³	≤ 0,2% I _{Nenn}	≤ 0,2% I _{Nenn}	≤ 0,2% I _{Nenn}	≤ 0,2% I _{Nenn}	≤ 0,2% I _{Nenn}			
Leistungsregelung								
Einstellbereich	01530 W	01530 W	01530 W	01530 W	01530 W			
Genauigkeit ⁽¹ (bei 23 ± 5°C)	< 1% P _{Nenn}	< 1% P _{Nenn}	< 1% P _{Nenn}	< 1% P _{Nenn}	< 1% P _{Nenn}			
Stabilität bei ±10% ΔU _{AC}	< 0,05% P _{Nenn}	< 0,05% P _{Nenn}	< 0,05% P _{Nenn}	< 0,05% P _{Nenn}	< 0,05% P _{Nenn}			
Stabilität bei 10-90% ΔU _{DC} *ΔI _{DC}	< 0,75% P _{Nenn}	< 0,75% P _{Nenn}	< 0,75% P _{Nenn}	< 0,75% P _{Nenn}	< 0,75% P _{Nenn}			
Anzeige: Einstellauflösung	Siehe Abschnitt,	,1.9.4.4. Auflösung	g der Anzeigewert	e"				
Wirkungsgrad bei 100% U _{DC}	~ 91%	~ 93%	~ 94%	~ 94%	~ 95%			
Wirkungsgrad bei 100% I _{DC}	~ 89%	~ 90%	~ 92%	~ 92%	~ 94%			

(1 Bezogen auf den Nennwert definiert die Genauigkeit die maximale Abweichung zwischen Sollwert und Istwert.

Beispiel: ein 80 V-Gerät hat min. 0,1% Spannungsgenauigkeit, das sind 80 mV. Bei einem Sollwert von 5 V dürfte der Istwert also max. 80 mV abweichen, sprich er dürfte 4,92 V...5,08 V betragen.

(2 RMS-Wert: NF 0...300 kHz, PP-Wert: HF 0...20MHz

(3 Der Fehler der Anzeige addiert sich zum Fehler des Istwertes am DC-Ausgang

4 5 0 0 1 1	Modell 1U							
1500 W	PS 9080-50	PS 9200-25	PS 9360-15	PS 9500-10	PS 9750-06			
Analoge Schnittstelle (1								
Тур	Sub-D, 15 polig, weiblich							
Steuereingänge	U, I, P	U, I, P	U, I, P	U, I, P	U, I, P			
Monitorausgänge	U, I	U, I	U, I	U, I	U, I			
Steuersignale	DC ein/aus, Fernst. ein/aus	DC ein/aus, Fernst. ein/aus	DC ein/aus, Fernst. ein/aus	DC ein/aus, Fernst. ein/aus	DC ein/aus, Fernst. ein/aus			
Meldesignale	CV, OVP, OT	CV, OVP, OT	CV, OVP, OT	CV, OVP, OT	CV, OVP, OT			
Galvanische Trennung zum Gerät	Max. 1500 V DC	Max. 1500 V DC	Max. 1500 V DC	Max. 1500 V DC	Max. 1500 V DC			
Isolation	Potentialverschie	ebung am DC-Au	sgang					
Negativ zu Gehäuse (PE) Max.	±400 V DC	±400 V DC	±400 V DC	±400 V DC	±400 V DC			
Positiv zu Gehäuse (PE) Max.	+480 V DC	+600 V DC	+760 V DC	+900 V DC	+1150 V DC			
Verschiedenes								
Kühlungsart	Temperaturgere	gelte Lüfter, Lufte	inlaß vorn, Luftau	slaß hinten				
Umgebungstemperatur	050°C							
Lagertemperatur	-2070°C							
Luftfeuchtigkeit	< 80%, nicht kondensierend							
Normen	EN 61010, EN 61326							
Überspannungskategorie	2							
Schutzklasse	1							
Verschmutzungsgrad	2							
Betriebshöhe	< 2000 m							
Digitale Schnittstellen								
Eingebaut	1x USB-B, 1x Et	hernet						
Galvanische Trennung zum Gerät	Max. 1500 V DC							
Spezifikation USB	USB 2.0, Buchse Typ B, VCOM-Treiber							
Antwortzeit USB	SCPI: max. 5 ms, ModBus: max. 5 ms							
Spezifikation LAN	RJ45, 10/100Mbit, TCP/IP, ICMP, HTTP, DHCP							
Antwortzeit LAN	SCPI: max. 7 ms, ModBus: 9-17 ms							
Anschlüsse								
Rückseite	Share-Bus, DC-Ausgang, AC-Eingang, Sense, Analogschnittstelle, USB-B, Ethernet							
Maße								
Gehäuse (BxHxT)	19" x 1 HE x 463 mm							
Total (BxHxT)	483 x 44 x mind.	565 mm						
Gewicht	~ 10.5 kg	~ 10.5 kg	~ 10.5 kg	~ 10.5 kg	~ 10.5 kg			
Artikelnummer	06230400	06230401	06230402	06230403	06230404			

(1 Technische Daten der Analogschnittstelle siehe "3.5.4.3 Spezifikation der Analogschnittstelle" auf Seite 40

	Modell 1U							
3000 W	PS 9080-100	PS 9200-50	PS 9360-30	PS 9500-20	PS 9750-12			
AC-Eingang								
Netzspannung	207264 V AC	207264 V AC	207264 V AC	207264 V AC	207264 V AC			
Netzanschluß	1ph,N,PE	1ph,N,PE	1ph,N,PE	1ph,N,PE	1ph,N,PE			
Netzfrequenz	50/60 Hz	50/60 Hz	50/60 Hz	50/60 Hz	50/60 Hz			
Netzsicherung (intern)	T16 A	T16 A	T16 A	T16 A	T16 A			
Ableitstrom	< 3.5 mA	< 3.5 mA	< 3.5 mA	< 3.5 mA	< 3.5 mA			
Leistungsfaktor	~ 0.99	~ 0.99	~ 0.99	~ 0.99	~ 0.99			
Leerlaufleistungsaufnahme	~ 70 W	~ 70 W	~ 70 W	~ 70 W	~ 70 W			
DC-Ausgang								
Maximale Spannung U _{Nenn}	80 V	200 V	360 V	500 V	750 V			
Maximaler Strom I _{Nenn}	100 A	50 A	30 A	20 A	12 A			
Maximale Leistung P _{Nenn}	3000 W	3000 W	3000 W	3000 W	3000 W			
Überspannungsschutzbereich	088 V	0220 V	0396 V	0550 V	0825 V			
Überstromschutzbereich	0110 A	055 A	033 A	022 A	013.2 A			
Überleistungsschutzbereich	03300 W	03300 W	03300 W	03300 W	03300 W			
Temperaturkoeffizient	Strom / Spannun	a: 100 ppm/K						
Spannungsregelung								
Finstellbereich	081.6 V	0204 V	0367.2 V	0510 V	0765 V			
Genauigkeit ⁽¹ (bei $23 \pm 5^{\circ}$ C)	< 0.1% UNoon	< 0.1% UNoon	< 0.1% UNeen	< 0.1% UNeep	< 0.1% UNon			
Stabilität bei +10% AU	< 0.02% UNer	< 0.02% UNer	< 0.02% UNer	< 0.02% UNIGO	< 0.02% [Jhann			
Stabilität bei 0 100% Last	< 0.05% UNer	< 0.05% UNer	< 0.05% UNer	< 0.05% UNer	< 0.05% UNer			
	Max 15 ms	Max 15 ms	Max 15 ms	Max 15 ms	Max 15 ms			
	< 1.7 mg	< 1.4 mg	< 2.2 mc	< 2 me	< 2 mg			
Ausregeizeit 10%->90% Last	Siebe Abschnitt	1011 Auflösund	< 2,2 ms n der Anzeigewert	<u> </u>	< 2 1115			
				C 0 2% 11	< 0.2% 11			
	$\leq 76 \text{ mV}_{\text{NPD}}$	$< 234 \text{ mV}_{\text{NPD}}$	$< 156 \text{ mV}_{\text{Nenn}}$	$< 234 \text{ mV}_{\text{Nenn}}$	$< 260 \text{ mV}_{\text{RP}}$			
Restwelligkeit ⁽²	< 4,2 mV _{RMS}	< 40 mV _{RMS}	$< 26 \text{ mV}_{RMS}$	$< 50 \text{ mV}_{RMS}$	$< 40 \text{ mV}_{RMS}$			
Kompensation Fernfühlung	Max. 5% U _{Nenn}	Max. 5% U _{Nenn}	Max. 5% U _{Nenn}	Max. 5% U _{Nenn}	Max. 5% U _{Nenn}			
Entladezeit (Leerlauf) nach Ausschalten des DC-Ausgangs	Von 100% Spanr	nung auf < 60 V: <	:10 s					
Stromregelung								
Einstellbereich	0102 A	051 A	030,6 A	020,4 A	012,24 A			
Genauigkeit ⁽¹ (bei 23 ± 5°C)	< 0,2% I _{Nenn}	< 0,2% I _{Nenn}	< 0,2% I _{Nenn}	< 0,2% I _{Nenn}	< 0,2% I _{Nenn}			
Stabilität bei ±10% ΔU _{AC}	< 0,05% I _{Nenn}	< 0,05% I _{Nenn}	< 0,05% I _{Nenn}	< 0,05% I _{Nenn}	< 0,05% I _{Nenn}			
Stabilität bei 0100% ΔU _{ουτ}	< 0,15% I _{Nenn}	< 0,15% I _{Nenn}	< 0,15% I _{Nenn}	< 0,15% I _{Nenn}	< 0,15% I _{Nenn}			
Restwelligkeit ⁽²	< 114 mA _{PP}	< 29 mA _{PP}	< 10 mA _{PP}	< 9,2 mA _{PP}	< 4,1 mA _{PP}			
Anzeige: Einstellauflösung	Siehe Abschnitt "	1.9.4.4. Auflösung	, g der Anzeigewerte	9"				
Anzeige: Genauigkeit ⁽³	≤ 0,2% I _{Nenn}	≤ 0,2% I _{Nenn}	≤ 0,2% I _{Nenn}	≤ 0,2% I _{Nenn}	≤ 0,2% I _{Nenn}			
Leistungsregelung								
Einstellbereich	03060 W	03060 W	03060 W	03060 W	03060 W			
Genauigkeit ⁽¹ (bei 23 ± 5°C)	< 1% P _{Nenn}	< 1% P _{Nenn} < 1% P _{Nenn}		< 1% P _{Nenn}	< 1% P _{Nenn}			
Stabilität bei ±10% ΔU _{AC}	< 0,05% P _{Nenn}	< 0,05% P _{Nenn}	< 0,05% P _{Nenn}	< 0,05% P _{Nenn}	< 0,05% P _{Nenn}			
Stabilität bei 10-90% ΔU _{DC} *ΔI _{DC}	< 0,75% P _{Nenn}	< 0,75% P _{Nenn}	< 0,75% P _{Nenn}	< 0,75% P _{Nenn}	< 0,75% P _{Nenn}			
Anzeige: Einstellauflösung	Siehe Abschnitt "1.9.4.4. Auflösuna der Anzeigewerte"							
Wirkungsgrad bei 100% U _{DC}	~ 91%	~ 93%	~ 94%	~ 94%	~ 95%			
Wirkungsgrad bei 100% I _{DC}	~ 89%	~ 90%	~ 92%	~ 92%	~ 94%			

(1 Bezogen auf den Nennwert definiert die Genauigkeit die maximale Abweichung zwischen Sollwert und Istwert. Beispiel: ein 80 V-Gerät hat min. 0,1% Spannungsgenauigkeit, das sind 80 mV. Bei einem Sollwert von 5 V dürfte der Istwert also max. 80 mV abweichen, sprich er dürfte 4,92 V...5,08 V betragen. (2 RMS-Wert: NF 0...300 kHz, PP-Wert: HF 0...20MHz

(3 Der Fehler der Anzeige addiert sich zum Fehler des Istwertes am DC-Ausgang

2000 \	Modell 1U							
3000 VV	PS 9080-100	PS 9200-50	PS 9360-30	PS 9500-20	PS 9750-12			
Analoge Schnittstelle (1								
Тур	Sub-D, 15 polig, weiblich							
Steuereingänge	U, I, P	U, I, P	U, I, P	U, I, P	U, I, P			
Monitorausgänge	U, I	U, I	U, I	U, I	U, I			
Steuersignale	DC ein/aus, DC ein/aus, DC ein/aus, DC ein/aus, Ernst. ein/aus Fernst. ein/aus Fernst. ein/aus			DC ein/aus, Fernst. ein/aus	DC ein/aus, Fernst. ein/aus			
Meldesignale	CV, OVP, OT	CV, OVP, OT	CV, OVP, OT	CV, OVP, OT	CV, OVP, OT			
Galvanische Trennung zum Gerät	Max. 1500 V DC	Max. 1500 V DC	Max. 1500 V DC	Max. 1500 V DC	Max. 1500 V DC			
Isolation	Potentialverschie	ebung am DC-Au	sgang					
Negativ zu Gehäuse (PE) Max.	±400 V DC	±400 V DC	±400 V DC	±400 V DC	±400 V DC			
Positiv zu Gehäuse (PE) Max.	+480 V DC	+600 V DC	+760 V DC	+900 V DC	+1150 V DC			
Verschiedenes								
Kühlungsart	Temperaturgere	gelte Lüfter, Lufte	inlaß vorn, Luftau	slaß hinten				
Umgebungstemperatur	050°C							
Lagertemperatur	-2070°C							
Luftfeuchtigkeit	< 80%, nicht kondensierend							
Normen	EN 61010, EN 61326							
Überspannungskategorie	2							
Schutzklasse	1							
Verschmutzungsgrad	2							
Betriebshöhe	< 2000 m							
Digitale Schnittstellen								
Eingebaut	1x USB-B, 1x Et	hernet						
Galvanische Trennung zum Gerät	Max. 1500 V DC							
Spezifikation USB	USB 2.0, Buchse Typ B, VCOM-Treiber							
Antwortzeit USB	SCPI: max. 5 ms, ModBus: max. 5 ms							
Spezifikation LAN	RJ45, 10/100Mbit, TCP/IP, ICMP, HTTP, DHCP							
Antwortzeit LAN	SCPI: max. 7 ms, ModBus: 9-17 ms							
Anschlüsse								
Rückseite	Share-Bus, DC-Ausgang, AC-Eingang, Sense, Analogschnittstelle, USB-B, Ethernet							
Maße								
Gehäuse (BxHxT)	19" x 1 HE x 463 mm							
Total (BxHxT)	483 x 44 x mind.	565 mm						
Gewicht	~ 11 kg	~ 11 kg	~ 11 kg	~ 11 kg	~ 11 kg			
Artikelnummer	06230405	06230406	06230407	06230408	06230409			

(1 Technische Daten der Analogschnittstelle siehe "3.5.4.3 Spezifikation der Analogschnittstelle" auf Seite 40

EA Elektro-Automatik GmbH Helmholtzstr. 31-33 • 41747 Viersen

Bild 5 - Ansicht von oben

Bild 6 - Bedienfeld

Übersicht der Bedienelemente am Bedienfeld

Für eine genaue Erläuterung siehe Abschnitt "1.9.4. Die Bedieneinheit (HMI)".

	A							
(1)	Anzeige							
. ,	Dient zur Anzeige von Sollwerten, Menüs, Zuständen, sowie Istwerten und Status.							
	Drehknopf links, mit Tastfunktion							
(2)	Drehen: Einstellen von allen Sollwerten, die auf die Ausgangsspannung des Gerätes bezogen sind							
	Drücken: Dezimalstelle eines einzustellenden Wertes wechseln, um diese durch Drehen dann zu veränderr							
	Tastenfeld							
	Taste Menu: Aktiviert das Menü für diverse Geräteeinstellungen (siehe "3.4.3. Konfiguration im Einstell- menü (Menu)")							
Taste T: Navigiert im Menu durch Untermenüs und Parameter (Richtung: nach oben wechselt den Anzeigemodus								
(3)	Taste 丰 :	Navigiert im Menu durch Untermenüs und Parameter (Richtung: nach unten / rechts) bzw. wechselt den Anzeigemodus						
	Taste Enter:	Dient zu Bestätigung und Übernahme von Einstellungen im (Menu) oder Sollwerten bzw. ruft						
		Untermenüs auf. Dient auch zur Bestätigung von Gerätealarmen.						
	Taste ESC :	Verwirft geänderte Einstellungen im (Menu) bzw. verläßt Menüs						
	Drehknopf re	echts, mit Tastfunktion						
(4)	Drehen: Einstellen von diversen Sollwerten, die auf den Ausgangsstrom oder die Ausgangsleistung des Gerätes bezogen sind, sowie Änderung von Parameterwerten im Menü							
Drücken: Dezimalstelle eines einzustellenden Wertes wechseln, um diese durch Drehen dar								
	Tooto für doo							
		laste fur das Ein- und Ausschalten des DC-Ausgangs						
(5) Dient zum Ein- oder Ausschalten des DC-Ausgangs bei manueller Bedienung oder zur E Gerätealarmen. Die LED zeigt den Zustand des DC-Ausgangs an, egal ob bei manueller E Fernsteuerung (leuchtet, wenn Ausgang = ein).								

1.9 Aufbau und Funktion

1.9.1 Allgemeine Beschreibung

Die elektronischen Hochleistungsnetzgeräte der Serie PS 9000 1U sind durch ihre recht kompakten 19"-Einschubgehäuse und sehr geringe Bauhöhe mit nur einer Höheneinheit (44mm, 1HE, *engl.* 1U) besonders für Prüfsysteme und Industriesteuerungen, aber auch Labore und Werkstätten geeignet.

Für die Fernsteuerung per PC oder SPS verfügt das Gerät serienmäßig über eine rückwärtige USB-B-Schnittstelle, eine Ethernetschnittstelle, sowie eine Analogschnittstelle. Alle Schnittstellen sind zum Gerät bis 1500 V DC galvanisch getrennt.

Die Geräte bieten außerdem standardmäßig die Möglichkeit der Parallelschaltung im Share-Bus-Betrieb zur gleichmäßigen Stromaufteilung. Über diese Betriebsart lassen sich bis zu 10 Geräte zu einem System verbinden, das eine erhöhte Gesamtleistung von bis zu 30 kW bietet.

Alle Modelle sind mikroprozessorgesteuert. Dies erlaubt eine genaue und schnelle Messung und Anzeige von Istwerten.

1.9.2 Blockdiagramm

Das Blockdiagramm soll die einzelnen Hauptkomponenten und deren Zusammenspiel verdeutlichen. Es gibt drei digitale, microcontrollergesteuerte Elemente (KE, DR, BE), die von Firmwareaktualisierungen betroffen sein können.

1.9.3 Lieferumfang

1 x Netzgerät

- 1 x Netzkabel (Kaltgerätestecker, 250 V, 16 A)
- 1 x Gedruckte Betriebsanleitung
- 1 x Stecker für Share-Bus (aufgesteckt oder beiliegend)
- 1 x Stecker für Fernfühlung (aufgesteckt oder beiliegend)
- 1 x USB-Kabel 1,8 m
- 1 x CD "Drivers & Tools"

1.9.4 Die Bedieneinheit (HMI)

HMI steht für Human Machine Interface, auf deutsch Mensch-Maschine-Schnittstelle, und besteht hier aus einer Anzeige, zwei Drehknöpfen mit Tastfunktion und sechs Drucktasten.

1.9.4.1 Anzeige

Die grafische Anzeige ist in mehrere Bereiche aufgeteilt. Im Normalfall werden im oberen Teil die Istwerte und im unteren Teil die Sollwerte und Statusinformationen angezeigt:

• Bereich Istwerte und Status (oberer Teil)

Hier werden im Normalbetrieb die DC-Ausgangswerte (große Zahlen) von Spannung und Strom bzw., je nach Anzeigemodus, die Leistung mit ihren Einheiten angezeigt. Das Anzeigeformat folgt dabei den Angaben in *1.9.4.4*.

Weiterhin wird hier die Regelungsart CV, CC oder CP (siehe "3.2. Regelungsarten"), sowie eventuelle Alarme (OT, OVP, OCP, PF, OPP) mit Kürzeln angezeigt. Näheres dazu siehe "3.3. Alarmzustände".

• Bereich Sollwerte (unterer Teil, links und rechts)

Die Sollwerte Spannung und Strom (Modus: U/I) bzw. Spannung und Leistung (Modus: U/P) sind bei manueller Bedienung mit den neben der Anzeige befindlichen Drehknöpfen verstellbar, wobei die einzustellende Dezimalstelle durch Druck auf den jeweiligen Drehknopf verschoben werden kann. Der linke Drehknopf ist dabei immer der Spannung oder einem auf die Spannung bezogen Wert wie OVP, U-max usw. zugeordnet, beim rechtem ändert sich das je nach Einstellmodus. Bei Fernsteuerung, egal ob digital oder analog, werden hier die von extern vorgegebenen Sollwerte angezeigt.

Die Einstellwerte werden beim Drehen logisch herauf- oder heruntergezählt, sofern die Verstellung nicht den Maximalwert oder eine vom Anwender gesetzte Einstellgrenze (siehe "3.4.4. Einstellgrenzen (Limits)") übersteigen würde.

Anzeigewert	Einheit	Bereich	Beschreibung	
Istwert Spannung	V	0-125% U _{Nenn}	Aktueller Wert der DC-Ausgangsspannung	
Sollwert Spannung	V	0-102% U _{Nenn}	Einstellwert für die Begrenzung der DC-Ausgangsspg.	
Istwert Strom	A	0,1-125% I _{Nenn}	Aktueller Wert des DC-Ausgangsstroms	
Sollwert Strom	А	0-102% I _{Nenn}	Einstellwert für die Begrenzung des DC-Ausgangsstroms	
Istwert Leistung	kW	0-125% P _{Nenn}	Aktueller Wert der Ausgangsleistung nach P = U * I	
Sollwert Leistung	kW	0-102% P _{Nenn}	Einstellwert für die Begrenzung der DC-Ausgangsleistung	
Einstellgrenzen	A, V, kW	0-102% Nennwert	U-max, I-min usw., immer bezogen auf eine Einstellgröße	
Schutzeinstellungen	A, V, kW	0-110% Nennwert	OVP, OCP usw., immer bezogen auf eine Einstellgröße	

Generelle Anzeige- und Einstellbereiche:

• Bereich Status (unterer Teil, Mitte)

Im mittleren Bereich der unteren Hälfte wird bei Normalanzeigemodus der Bedienort (siehe "3.5.2. Bedienorte") oder ein anderer Status (siehe Tabelle unten) angezeigt. Wird jedoch, während der DC-Ausgang eingeschaltet ist,

die Taste Menu betätigt, erscheint das Schnellmenü (näheres siehe "3.4.7. Das Schnellmenü"):

Weitere Statusanzeigen an:

Anzeige	Beschreibung
Gesperrt	Das HMI ist gesperrt
Fern Das Gerät befindet sich in Fernsteuerung durch	
Analogdie eingebaute Analogschnittstelle	
USBdie eingebaute USB-Schnittstelle	
Ethernetdie eingebaute Ethernet/LAN-Schnittstelle	
Lokal Das Gerät ist durch Benutzereingabe explizit gegen Fernsteuerung gesperrt worde	

1.9.4.2 Drehknöpfe

Solange das Gerät manuell bedient wird, dienen die beiden Drehknöpfe zur Einstellung aller Sollwerte, sowie zur Auswahl und Einstellung der Parameter im Einstellmenü ("Menu"). Für eine genauere Erläuterung der einzelnen Funktionen siehe "3.4 Manuelle Bedienung" auf Seite 31.

1.9.4.3 Tastfunktion der Drehknöpfe

Die Drehknöpfe haben auch eine Tastfunktion, die in allen Einstellmenüs, wo Werte gestellt werden können, zum Verschieben des Cursors von niederwertigen zu höherwertigen Dezimalpositionen (rotierend) des einzustellenden Wertes dienen:

1.9.4.4 Auflösung der Anzeigewerte

In der Anzeige können Sollwerte in festgelegten Schrittweiten eingestellt werden. Die Anzahl der Nachkommastellen eines Einstellwertes hängt vom Gerätemodell ab. Die Werte haben 4 oder 5 Stellen. Ist- und Sollwerte derselben phys. Größe haben jeweils die gleiche Anzahl Dezimalstellen (Digits).

Einstellauflösung und Anzeigebreite der Sollwerte in der Anzeige:

Spannung, OVP, U-min, U-max			Strom, OCP, I-min, I-max			Lei OPP	stu , P-	ng, max
Nennwert	Digits	Min. Schritt	Nennwert	Digits	Min. Schritt	Nennwert	Digits	Min. Schritt
80 V	4	0,01 V	6 A	4	0,001 A	1500 W	4	1 W
200 V	5	0,01 V	10 A / 12 A	5	0,001 A	3000 W	4	1 W
360 V / 500 V	4	0,1 V	15 A / 20 A	5	0,001 A			
750 V	4	0,1 V	25 A	5	0,001 A			
			30 A / 50 A	4	0,01 A			
			100 A	5	0,01 A			

Grundsätzlich kann jeder Sollwert bei manueller Bedienung in den oben angegebenen Schritten (=Auflösung) eingestellt werden. Zu den tatsächlichen Werten, die das Gerät dann am Ausgang stellt, kommen noch Abweichungen hinzu, auch genannt Toleranz oder Fehler. Diese sind in den technischen Daten angegeben, errechnen sich prozentual vom Endwert und beeinflussen den Istwert.

1.9.5 Sense-Anschluß (Fernfühlung)

Wenn bei Konstantspannungsbetrieb (CV) die Ausgangsspannung nicht am DC-Ausgang der Last konstant gehalten werden soll, sondern an der Last, dann kann der Eingang Sense mit der Last verbunden werden, dort wo die DC-Anschlüsse sind. Dann kompensiert das Netzgerät den Spannungsunterschied, der durch Laststrom und Leitungslänge entsteht, zwischen seinem DC-Ausgang und der Last. Die max. mögliche Kompensation ist in den technischen Daten aufgeführt.

1.9.6 USB-Port

Der USB-Port Typ B auf der Rückseite des Gerätes dient zur Kommunikation mit dem Gerät, sowie zur Firmwareaktualisierung. Über das mitgelieferte USB-Kabel kann das Gerät mit einem USB-Port (USB 2.0, USB 3.0) am PC verbunden werden. Der Treiber wird auf CD mitgeliefert bzw. ist als Download verfügbar und installiert einen virtuellen COM-Port. Details zur Fernsteuerung sind in weiterer Dokumentation auf der Webseite des Geräteherstellers bzw. auf der mitgelieferten CD zu finden.

Das Gerät kann über den USB-Port wahlweise über das international standardisierte ModBus-Protokoll oder per SCPI-Sprache angesprochen werden. Es erkennt das in einer Nachricht verwendete Protokoll automatisch.

Die USB-Schnittstelle hat, wenn Fernsteuerung aktiviert werden soll, keinen Vorrang vor der Analog- oder der Ethernetschnittstelle und kann daher nur abwechselnd zu diesen benutzt werden. Jedoch ist Überwachung (Monitoring, Abfrage von Daten) immer möglich.

1.9.7 Ethernetport

Der RJ45-Ethernet/LAN-Port auf der Rückseite des Gerätes (nur Standardausführung) dient zur ausschließlich zur Kommunikation mit dem Gerät im Sinne von Fernsteuerung oder Monitoring. Dabei hat der Anwender grundsätzlich zwei Möglichkeiten des Zugriffs:

1. Eine Webseite (HTTP, Port 80), die normal in einem Browser über die IP oder den Hostnamen aufgerufen wird

und die Informationen über das Gerät anzeigt, die eine Konfigurationsmöglichkeit der Netzwerkparameter bietet und eine Eingabezeile für SCPI-Befehle.

2. TCP/IP-Zugriff über einen frei wählbaren Port (außer 80 und andere reservierte Ports). Standardport für dieses Gerät ist 5025, Standard-IP 192.168.0.2. Über TCP/IP und den Port kann über diverse Tools sowie die meisten, gängigen Programmiersprachen mit dem Gerät kommuniziert werden.

Das Gerät kann bei Verwendung von TCP/IP über diesen Port wahlweise über das ModBus-RTU-Protokoll oder per SCPI-Sprache angesprochen werden. Es erkennt das in einer Nachricht verwendete Protokoll automatisch.

Die Konfiguration des Netzwerkparameter kann manuell oder per DHCP geschehen. Die Übertragungsgeschwindigkeit ist dabei auf "Auto" gestellt, das bedeutet 10MBit/s oder 100MBit/s. 1GBit/s wird nicht unterstützt. Duplexmodus ist immer Vollduplex.

Die Ethernet-Schnittstelle hat, wenn Fernsteuerung aktiviert werden soll, keinen Vorrang vor der Analog- oder der USB-Schnittstelle und kann daher nur abwechselnd zu diesen benutzt werden. Jedoch ist Überwachung (Monitoring, Abfrage von Daten) immer möglich.

1.9.8 Analogschnittstelle

Diese 15polige Sub-D-Buchse auf der Rückseite dient zur Fernsteuerung des Gerätes mittels analogen Signalen bzw. Schaltzuständen.

Der Eingangsspannungsbereich der Sollwerte bzw. der Ausgangsspannungsbereich der Monitorwerte und der Referenzspannung kann im Einstellungsmenü des Gerätes zwischen 0...5 V und 0...10 V für jeweils 0...100% (U, I und P) umgeschaltet werden.

Share

+

Die Analog-Schnittstelle hat, wenn Fernsteuerung aktiviert werden soll, keinen Vorrang vor der Ethernet- oder der USB-Schnittstelle und kann daher nur abwechselnd zu diesen benutzt werden. Jedoch ist Überwachung (Istwerte/ Status erfassen) immer möglich.

1.9.9 Share-Bus-Anschluß

Diese auf der Rückseite des Gerätes befindliche, 2polige WAGO-Buchse ("Share") dient zur Verbindung mit der gleichnamigen Buchse an kompatiblen Netzgeräten, um in Parallelschaltung von bis zu 10 gleichartigen Geräten eine gleichmäßigen Laststromaufteilung zu erreichen. Folgende Netzgeräteserien sind kompatibel:

• PS 9000 2U/3U

Sense

NC NC

2. Installation & Inbetriebnahme

2.1 Transport und Lagerung

2.1.1 Transport

- Die Griffe an der Vorderseite des Gerätes dienen nicht zum Tragen!
- Transport des Gerätes nicht im eingeschalteten oder angeschlossenen Zustand!
- Bei Verlagerung des Gerätes an einen anderen Standort wird die Verwendung der originalen Transportverpackung empfohlen
- Das Gerät sollte stets waagerecht aufgestellt oder getragen werden
- Benutzen Sie möglichst geeignete Schutzkleidung, vor allem Sicherheitsschuhe, beim Tragen des Gerätes, da durch das teils hohe Gewicht bei einem Sturz erhebliche Verletzungen entstehen können

2.1.2 Verpackung

Es wird empfohlen, die komplette Transportverpackung (Lieferverpackung) für die Lebensdauer des Gerätes aufzubewahren, um sie für den späteren Transport des Gerätes an einen anderen Standort oder Einsendung des Gerätes an den Hersteller zwecks Reparatur wiederverwenden zu können. Im anderen Fall ist die Verpackung umweltgerecht zu entsorgen.

2.1.3 Lagerung

Für eine längere Lagerung des Gerätes bei Nichtgebrauch wird die Benutzung der Transportverpackung oder einer ähnlichen Verpackung empfohlen. Die Lagerung muß in trockenen Räumen und möglichst luftdicht verpackt erfolgen, um Korrosion durch Luftfeuchtigkeit, vor Allem im Inneren des Gerätes, zu vermeiden.

2.2 Auspacken und Sichtkontrolle

Nach jedem Transport mit oder ohne Transportverpackung oder vor der Erstinstallation ist das Gerät auf sichtbare Beschädigungen und Vollständigkeit der Lieferung hin zu untersuchen. Vergleichen Sie hierzu auch mit dem Lieferschein und dem Lieferumfang (siehe Abschnitt *1.9.3*). Ein offensichtlich beschädigtes Gerät (z. B. lose Teile im Inneren, äußerer Schaden) darf unter keinen Umständen in Betrieb genommen werden.

2.3 Installation

2.3.1 Sicherheitsmaßnahmen vor Installation und Gebrauch

- Bei Installation in einem 19"-Schrank sind Halteschienen zu montieren, die für die Gehäusebreite und das Gewicht (siehe *"1.8. Technische Daten"*) geeignet sind.
- Stellen Sie vor dem Anschluß des Gerätes an die AC-Stromzufuhr sicher, daß die auf dem Typenschild des Gerätes angegebenen Anschlußdaten eingehalten werden. Eine Überspannung am AC-Anschluß kann das Gerät beschädigen.

2.3.2 Vorbereitung

Für das netzseitige Anschließen des Netzgerätes der Serie PS 9000 1U ist ein 3poliges Netzkabel von 2 m Länge im Lieferumfang enthalten. Soll das Gerät anders verkabelt werden, so ist sicherzustellen, daß der Querschnitt der verwendeten Zuleitung mindestens 3x 1,5 mm² (wie beim Netzkabel) beträgt.

Bei der Dimensionierung der DC-Leitungen zur Last sind mehrere Dinge zu betrachten:

- Der Querschnitt der Leitungen sollte immer mindestens für den Maximalstrom des Gerätes ausgelegt sein
- Bei dauerhafter Strombelastung der Leitungen am zulässigen Limit entsteht Wärme, die ggf. abgeführt werden muß, sowie ein Spannungsabfall, der von der Leitungslänge und der Erwärmung der Leitung abhängig ist. Um das zu kompensieren, muß der Querschnitt erhöht bzw. die Leitungslänge verringert werden.

2.3.3 Aufstellung des Gerätes

 Wählen Sie den Ort der Aufstellung so, daß die Zuleitungen zur Last so kurz wie möglich gehalten werden können!

- Lassen Sie hinter dem Gerät ausreichend Platz, jedoch mindestens 30cm, für die stets hinten austretende, warme bis heiße Abluft.
- Die Geräte sind nicht stapelbar!
- Stellen oder legen Sie keine Gegenstände mit einem Gesamtgewicht von mehr als 1kg auf das Gerät!

Ein Gerät in 19" Bauform wird üblicherweise auf entsprechenden Halteschienen und in 19" Einschüben oder -Schränken installiert. Dabei muß auf die Einbautiefe des Gerätes geachtet werden, sowie auf das Gewicht. Die Griffe an der Front dienen dabei zum Hineinschieben und Herausziehen aus dem Schrank. An der Frontplatte befindliche Langloch-Bohrungen dienen zur Befestigung im 19"-Schrank (Befestigungsschrauben im Lieferumfang nicht enthalten).

Zulässige und unzulässige Aufstellpositionen:

Aufstellfläche

2.3.4 Anschließen an das Stromnetz (AC)

 Das Anschließen des Gerätes mittels des mitgelieferten Netzkabels kann an jeder Wand- steckdose bzw. Steckdosenverteilung erfolgen, die über einen Schutzkontakt verfügt und für mindestens 16 A ausgelegt ist.
 Bei Verwendung einer Steckdosenverteilung muß die Gesamtleistung aller angeschlossenen Geräte beachtet werden, so daß der Maximalstrom (Leistung ÷ Minimalspannung) nicht den für die Steckdosenverteilung und der Hauptanschlußsteckdose definierten max. Anschlußstrom übersteigt
 Stellen Sie vor dem Anstecken des Netzanschlußsteckers sicher, daß das Gerät am Netz- schalter ausgeschaltet ist!

Das Gerät wird mit einem 3poligen Netzanschlußkabel (L, N, PE) geliefert. Soll das Gerät anderweitig mit einem zwei- oder dreiphasigen Hauptanschluß verbunden werden, so werden für den Netzanschluß folgende Phasen benötigt:

Nennleistung	Anschlußleiter	Anschlußtyp			
1,5 kW / 3 kW	L1 oder L2 oder L3, N, PE	Mind. Steckdose 16 A			

Die Standardanschlußwerte des Gerätes sind: 230 V, 16 A, 50 Hz. Es ist mit intern 16 A abgesichert. Der Nennanschlußstrom richtet sich nach der höheren Stromaufnahme bei AC-Unterspannung (siehe techn. Daten für min. Eingangsspannung).

2.3.5 Anschließen von DC-Lasten

Der DC-Lastausgang befindet sich auf der Rückseite des Gerätes und ist **nicht** über eine Sicherung abgesichert. Der Querschnitt der Zuleitungen richtet sich nach der Stromaufnahme, der Leitungslänge und der Umgebungstemperatur.

Bei Lastleitungen **bis 1,5 m** und durchschnittlichen Umgebungstemperaturen bis 50°C empfehlen wir:

bis 10 A :	0,75 mm²	bis 15 A :	1,5 mm²
bis 30 A :	4 mm²	bis 40 A :	6 mm²
bis 60 A :	16 mm²	bis 100 A :	25 mm²

pro Anschlußpol (mehradrig, isoliert, frei verlegt) mindestens zu verwenden. Einzelleitungen, wie z. B. 16 mm², können durch 2x6 mm² ersetzt werden usw. Bei längeren Lastleitungen ist der Querschnitt entsprechend zu erhöhen, um Spannungsabfall über die Leitungen und unnötige Erhitzung zu vermeiden.

2.3.5.1 Anschlußklemme

In dieser Geräteserie haben alle Modelle den gleichen Typ Anschlußklemme. Zum Anschließen von Lastleitungen werden grundsätzlich flexible Leitungen mit Ringkabelschuhen empfohlen.

Schraubverbindung M6 an vernickelte Kupferschiene

Empfehlung: Ringkabelschuhe mit 6er Loch

2.3.5.2 Kabelzuführung und Plastikabdeckung

Für die DC-Anschlußklemme wird eine Plastikabdeckung (siehe oben) als Berührungsschutz mitgeliefert. Diese sollte immer installiert sein.

Der Anschlußwinkel und der erforderliche Knickradius für die DC-Zuleitungen sind zu berücksichtigen, wenn die Gesamttiefe des Gerätes geplant werden soll, besonders beim Einbau in 19"-Schränke und ähnlichen. Wird die Abdeckung der DC-Klemme montiert, ist nur das horizontale Zuführen der DC-Leitungen möglich.

2.3.6 Erdung des DC-Ausgangs

Grundsätzlich können einzeln betriebene Geräte am DC-Minuspol geerdet, sprich er kann direkt mit PE verbunden werden. Beim DC-Pluspol ist das anders. Hier gilt: wenn geerdet werden soll, dann nur bis 400 V Ausgangsspannung, sofern in den technischen Daten nicht anders angegeben.

Daher ist bei Modellen, die mehr als 400 V Ausgangsspannung erzeugen können, die Erdung des DC-Pluspols aus Sicherheitsgründen nicht zu empfehlen, weil dann der DC-Minuspol negativ verschoben wird, bis hin zur Nennspannung des Gerätes. Sofern bei Erdung des DC-Pluspols die Ausgangsspannung nicht über 400 V eingestellt wird, ist der Betrieb bedingt zulässig.

- Erdung des DC-Pluspols bei Modellen mit >400 V Nennspannung auf eigene Gefahr! Zerstörungsgefahr! Garantieverlust droht!
 Digitale und analoge Schnittstellen sind zum DC-Ausgang hin galvanisch getrennt und sollten daher nicht geerdet werden, wenn einer der DC-Ausgangspole geerdet wird, weil das die galvanische Trennung aufhebt!
 Bei Erdung einer der Ausgangspole muß beachtet werden, ob an der Last (z. B. elektronische
 - Bei Erdung einer der Ausgangspole muß beachtet werden, ob an der Last (z. B. elektronische Last) auch ein Eingangspol geerdet ist. Dies kann zu einem Kurzschluß führen!

2.3.7 Anschließen der Fernfühlung

Um Spannungsabfälle auf den DC-Zuleitungen bis zu einem gewissen Grad kompensieren zu können, bietet das Gerät einen Fernfühlungsanschluß, der mit der Last verbunden werden kann. Das Gerät erkennt den Fernfühlungsbetrieb automatisch und "fühlt" die Ausgangsspannung (nur für CV-Betrieb gedacht) dann an der Last, statt am eigenen DC-Ausgang.

In den technischen Daten (siehe *"1.8. Technische Daten"*) wird angegeben, wieviel Kompensation möglich ist. Sollte das nicht ausreichen, muß der Leitungsquerschnitt der Zuleitungen erhöht werden.

Bild 7 - Beispiel Fernfühlungsverdrahtung

2.3.8 Anschließen des "Share-Bus"

Die rückseitig am Gerät befindliche Klemme "Share-Bus" dient bei Parallelbetrieb mehrerer Netzgeräte zur Stromsymmetrierung und Ausregelung bei Funktionsgeneratorbetrieb (Sinus usw.). Der Share-Bus sollte daher verbunden werden. Weitere Information siehe auch *"3.9.1 Parallelschaltung mit Share Bus" auf Seite 46.* Für die Verschaltung des Share-Bus' gilt es folgendes zu beachten:

• Verbindung nur zwischen kompatiblen Geräten (siehe *"1.9.9. Share-Bus-Anschluß"*) und nur bis max. 10 Einheiten

2.3.9 Anschließen der analogen Schnittstelle

Der 15polige Anschluß (Typ: Sub-D, D-Sub) auf der Rückseite ist eine analoge Schnittstelle. Um diesen mit einer steuernden Hardware (PC, elektronische Schaltung) zu verbinden, ist ein handelsüblicher Sub-D-Stecker erforderlich (nicht im Lieferumfang enthalten). Generell ist es ratsam, bei Verbindung oder Trennung dieses Anschlusses das Gerät komplett auszuschalten, mindestens aber den DC-Ausgang.

Die analoge Schnittstelle ist intern, zum Gerät hin, galvanisch getrennt. Verbinden Sie daher möglichst niemals eine Masse der analogen Schnittstelle (AGND) mit dem DC-Minus-Ausgang, weil das die galvanische Trennung aufhebt.

2.3.10 Anschließen des USB-Ports

Um das Gerät über diesen Anschluß fernsteuern zu können, verbinden Sie Gerät und PC über das mitgelieferte USB-Kabel und schalten Sie das Gerät ein, falls noch ausgeschaltet.

2.3.10.1 Treiberinstallation (Windows)

Bei der allerersten Verbindung mit dem PC sollte das Betriebssystem das Gerät als neu erkennen und einen Treiber installieren. Der Treiber ist vom Typ Communications Device Class (CDC) und ist bei aktuellen Betriebssystemen wie Windows 7 oder XP normalerweise integriert. Daher wird der Treiber an sich vom Hersteller des Gerätes nicht mitgeliefert. Auf der beiliegenden CD ist eine Treiber-Informationsdatei (*.inf) vorhanden, die das Gerät im System als virtuellen COM-Port (VCOM) installiert.

Nach Erkennung des USB-Gerätes wird es zunächst im Windows-Gerätemanager in "Andere Geräte" (Windows 7) aufgelistet und der Treiber eventuell nicht automatisch komplett installiert. In so einem Fall führen Sie folgende Schritte aus:

- 1. Klicken Sie im Windows Gerätemanager mit der rechten Maustaste auf das nicht fertig installierte Gerät und wählen Sie "Treiber aktualisieren".
- 2. Windows fragt, ob es den Treiber automatisch suchen soll oder ob Sie den Treiber manuell suchen und installieren wollen. Wählen Sie Letzteres (zweite Auswahl im Dialogfenster).
- 3. Im nächsten Dialogfenster wird der Treiberquellpfad festgelegt. Klicken Sie auf "Durchsuchen" und geben Sie den Ordner des USB-Treibers auf der "Drivers & Tools"-CD an bzw. den Pfad, wo der heruntergeladene Treiber entpackt wurde. Lassen Sie Windows den Treiber installieren. Die Meldung, daß der Treiber nicht digital signiert ist, bestätigen Sie mit "Trotzdem installieren".

2.3.10.2 Treiberinstallation (Linux, MacOS)

Für diese Betriebssysteme können wir keinen Treiber und keine Installationsbeschreibung zur Verfügung stellen. Ob und wie ein passender Treiber zur Verfügung steht, kann der Anwender durch Suche im Internet selbst herausfinden.

2.3.10.3 Treiberalternativen

Falls der oben beschriebene CDC-Treiber auf Ihrem System nicht vorhanden ist oder aus irgendeinem Grund nicht richtig funktionieren sollte, können kommerzielle Anbieter Abhilfe schaffen. Suchen und finden Sie dazu im Internet diverse Anbieter mit den Schlüsselwörtern "cdc driver windows" oder "cdc driver linux" oder "cdc driver macos".

2.3.11 Erstinbetriebnahme

Bei der allerersten Inbetriebnahme nach dem Erwerb des Gerätes und der Erstinstallation sind zusätzliche Maßnahmen zu ergreifen:

- Überprüfen Sie die von Ihnen verwendeten Anschlußkabel für AC und DC auf ausreichenden Querschnitt!
- Überprüfen Sie die werkseitigen Einstellungen bezüglich Sollwerte, Sicherheits- und Überwachungsfunktionen sowie Kommunikation daraufhin, daß Sie für Ihre Anwendung passen und stellen Sie sie ggf. nach Anleitung ein!
- Lesen Sie, bei Fernsteuerung des Gerätes per PC, zusätzlich vorhandene Dokumentation zu Schnittstellen und Software!
- Lesen Sie, bei Fernsteuerung des Gerätes über die analoge Schnittstelle, unbedingt den Abschnitt zur analogen Schnittstelle in diesem Dokument und ggf. noch weiteren Dokumente zu analogen Schnittstellen und deren Verwendung im Besonderen!

Wenn Sie möchten, können Sie die Sprache der Anzeige noch auf Deutsch umstellen.

So stellen Sie die Sprache der Anzeige um

- 1. Schalten Sie das Gerät ein warten Sie, bis die Hauptanzeige erscheint. Diese sollte wie rechts gezeigt aussehen.
- 2. Betätigen Sie Taste Menu . In dem nun erscheinenden Haupt-

menü benutzen Sie die Pfeiltasten der tund navigieren Sie zum Feld **HMI-Setup**.

3. Betätigen Sie Enter, um in die Einstellungen für die Bedienein-

heit zu kommen. Betätigen Sie dann erneut.

 In der nun erscheinenden Einstellungsseite stellen Sie den Parameter Language mit dem rechten Drehknopf auf Deutsch.

2.3.12 Einrichten der Netzwerkverbindung

Das Gerät wird Standard-Netzwerkparametern ausgeliefert (siehe "3.4.3.6. Menü "Kommunikation""). Die Ethernet/LAN-Schnittstelle ist kurz nach der ersten Inbetriebnahme des Gerätes sofort betriebsbereit. Standardwerte:

IP: 192.168.0.2

Subnetzmaske: 255.255.255.0

Gateway: 192.168.0.1

Port: 5025

DHCP: aus

Für die Verkabelung, sprich hardwaremäßige Anbindung des LAN-Ports an ein Netzwerk oder PC, kontaktieren Sie bitte Ihren IT-Manager oder eine ähnlich verantwortliche Person. Als Netzwerkkabel sind handelsübliche Ethernetkabel (CAT5 oder besser) zu verwenden.

Um die Netzwerkparameter nach Ihren Wünschen einzustellen, haben Sie drei Möglichkeiten: das ab April 2015 als Download erhältliche oder mitgelieferte Programm "EA Power Control" oder die Webseite des Gerätes oder das Setup-Menü. Für die Konfiguration im Setup-Menü siehe "*3.4.3.6. Menü "Kommunikation"*".

Für die Konfiguration über die Webseite oder EA Power Control benötigen Sie ein bereits fertig verkabeltes und eingeschaltetes Gerät, sowie einen PC, der auf die voreingestellte Geräte-IP 192.168.0.2 zugreifen kann.

► So stellen Sie die Netzwerkparameter des Gerätes über die Webseite ein

- 1. Falls noch aktiv, verlassen Sie jegliches Setup-Menü an der Bedieneinheit des Gerätes.
- Öffnen Sie die Webseite des Gerätes über einen Browser, indem sie entweder die Standard-IP (http://192.168.0.2) oder den Standard-Hostnamen (http://Client, nur möglich, wenn ein DNS im Netzwerk ist) in die URL-Zeile eingeben.
- Nach dem Laden der Webseite überprüfen Sie, ob im Feld "Status" beim Wert "Access" der Zustand "free" steht. Falls nicht, ist das Gerät entweder bereits in Fernsteuerung (rem) oder vor Zugriff gesperrt (local). Falls "local", dann Sperre zunächst entfernen. Siehe dazu "3.5.2. Bedienorte".
- 4. Steht "rem" im Feld "Access" machen Sie weiter mit Schritt 4. Ansonsten geben Sie in die Eingabezeile mit Titel "SCPI command" den Befehl syst:lock on ein (Achtung! Leerzeichen vor on!) und pr
 üfen Sie, ob sich der Wert "Access" im Feld "Status" auf "rem-eth" (bedeutet: Remote Ethernet) ändert.
- **5.** Wechseln Sie auf die Webseite **CONFIGURATION** (oben rechts) und stellen Sie die Netzwerkparameter bzw. den Port und DHCP und übernehmen Sie die Einstellungen mit Knopf **SUBMIT**.
- 6. Warten Sie ein paar Sekunden, dann können Sie die neue IP testen, indem Sie die Webseite unter der neuen IP aufrufen oder anpingen. Ein erneutes Aufrufen über den Hostnamen ist erst möglich, nachdem das Gerät aus- und wieder eingeschaltet wurde, weil erst dann dem DNS die neue IP zum Hostnamen übermitteln wird.

2.3.13 Erneute Inbetriebnahme nach Firmwareupdates bzw. längerer Nichtbenutzung

Bei der erneuten Inbetriebnahme nach einer Firmwareaktualisierung, Rückerhalt des Gerätes nach einer Reparatur oder nach Positions- bzw. Konfigurationsveränderungen der Umgebung des Gerätes sind ähnliche Maßnahmen zu ergreifen wie bei einer Erstinbetriebnahme. Siehe daher auch *"2.3.11. Erstinbetriebnahme".*

Erst nach erfolgreicher Überprüfung des Gerätes nach den gelisteten Punkten darf es wie gewohnt in Betrieb genommen werden.

0.00	IU	0.00A			
80.0 <u>0</u> V		12 <u>0</u> .00A			
•					
Einstellun9en	Profile	Kommunikation			
Ubersicht	Info HW,SW	HMI-Setup			

3. Bedienung und Verwendung

3.1 Wichtige Hinweise

3.1.1 Personenschutz

- Um Sicherheit bei der Benutzung des Gerätes zu gewährleisten, darf das Gerät nur von Personen bedient werden, die über die erforderlichen Sicherheitsma
 ßnahmen im Umgang mit gefährlichen elektrischen Spannungen unterrichtet worden sind
 - Bei Geräten, die eine berührungsgefährliche Spannung erzeugen können oder an diese angebunden werden, ist stets die mitgelieferte DC-Anschluß-Abdeckung oder eine ähnliche, ausreichend sichere Abdeckung zu montieren
 - Schalten Sie das Gerät bei Umkonfiguration der Last und des DC-Anschlusses immer mit dem Netzschalter aus und nicht nur mit der Funktion "Ausgang aus"!

3.1.2 Allgemein

- Leerlauf, also Betrieb des Gerätes ohne angeschlossene Last oder einer sehr geringen Last mit einer Stromaufnahme von <0,5% I_{Nenn} wird nicht als normale Betriebsart betrachtet
- Bei Leerlauf können technische Daten unter Umständen nicht eingehalten werden
- Es wird empfohlen, ein Netzgerät immer mit mindestens 10% Spannung und Stromlast zu betreiben

3.2 Regelungsarten

Ein Netzgerät beinhaltet intern einen oder mehrere Regelkreise, die Spannung, Strom und Leistung durch Soll-Istwert-Vergleich auf die eingestellten Sollwerte regeln sollen. Die Regelkreise folgen dabei typischen Gesetzmäßigkeiten der Regelungstechnik. Jede Regelungsart hat ihre eigene Charakteristik, die nachfolgend grundlegend beschrieben wird.

3.2.1 Spannungsregelung / Konstantspannung

Spannungsregelung wird auch Konstantspannungsbetrieb (kurz: CV) genannt.

Die DC-Ausgangsspannung wird bei Netzgeräten konstant auf dem eingestellten Wert gehalten, sofern der in den Verbraucher fließende Strom den eingestellten Strommaximalwert bzw. sofern die vom Verbraucher entnommene Leistung nach P = $U_{AUS} * I_{AUS}$ nicht den eingestellten Leistungsmaximalwert erreicht. Sollte einer dieser Fälle eintreten, so wechselt das Gerät automatisch in die Strombegrenzung bzw. Leistungsbegrenzung, jenachdem was zuerst zutrifft. Dabei kann die Ausgangsspannung nicht mehr konstant gehalten werden und sinkt auf einen Wert, der sich durch das ohmsche Gesetz ergibt.

Solange der DC-Ausgang eingeschaltet und Konstantspannungsbetrieb aktiv ist, wird der Zustand "CV-Betrieb aktiv" als Kürzel CV auf der Anzeige und auch als Signal auf der analogen Schnittstelle ausgegeben, kann aber auch als Status über die digitalen Schnittstellen ausgelesen werden.

3.2.2 Stromregelung / Konstantstrom / Strombegrenzung

Stromregelung wird auch Strombegrenzung oder Konstantstrombetrieb (kurz: CC) genannt.

Der DC-Ausgangsstrom wird bei Netzgeräten konstant auf dem eingestellten Wert gehalten, wenn der in den Verbraucher fließende Strom den eingestellten Stromsollwert erreicht. Der aus einem Netzgerät fließende Strom ergibt sich aus der eingestellten Ausgangsspannung und dem tatsächlichen Widerstand des Verbrauchers. Ist der Strom unter dem eingestellten Wert, findet Spannungsregelung oder Leistungsregelung statt. Erreicht der Strom den eingestellten Wert, wechselt das Gerät automatisch in Konstantstrombetrieb. Wenn jedoch die vom Verbraucher entnommene Leistung die Maximalleistung des Gerätes oder den eingestellten Leistungssollwert erreicht, wechselt das Gerät automatisch in Leistungsbegrenzung und stellt Ausgangsspannung und Ausgangsstrom nach P = U * I ein.

Solange der DC-Ausgang eingeschaltet und Konstantstrombetrieb aktiv ist, wird der Zustand "CC-Betrieb aktiv" als Kürzel CC auf der Anzeige und auch als Signal auf der analogen Schnittstelle ausgegeben, kann aber auch als Status über die digitalen Schnittstellen ausgelesen werden.

3.2.3 Leistungsregelung / Konstantleistung / Leistungsbegrenzung

Leistungsregelung, auch Leistungsbegrenzung oder Konstantleistung (kurz: CP) genannt, hält die DC-Ausgangsleistung bei Netzgeräten konstant auf dem eingestellten Wert, wenn der in den Verbraucher fließende Strom in Zusammenhang mit der eingestellten Ausgangsspannung und dem Widerstand des Verbrauchers nach P = U * I bzw. P = U² / R die Maximalleistung erreicht. Die Leistungsbegrenzung regelt dann den Ausgangsstrom nach I = SQR(P / R) bei der eingestellten Ausgangsspannung ein (R = Widerstand des Verbrauchers).

00% 50% Auto-range

Die Leistungsbegrenzung arbeitet nach dem Auto-range-Prinzip, so daß bei geringer Ausgangsspannung hoher Strom oder bei hoher Ausgangsspannung geringer Strom fließen kann, um die Leistung im Bereich P_N (siehe Grafik rechts) konstant zu halten.

Konstantleistungsbetrieb wirkt auf den internen Stromsollwert ein. Das bedeutet, der als maximal eingestellte Strom kann unter Umständen nicht erreicht werden, wenn der Leistungssollwert nach I = P / U einen geringeren Strom bewirkt und das Gerät auf diesen begrenzt. Der vom Anwender eingestellte und auf dem Display angezeigte Stromsollwert ist stets nur eine obere Grenze.

Solange der DC-Ausgang eingeschaltet und Konstantleistungsbetrieb aktiv ist, wird der Zustand "CP-Betrieb aktiv" als Kürzel CP auf der grafischen Anzeige ausgegeben, kann aber auch als Status über die digitalen Schnittstellen ausgelesen werden.

3.2.3.1 Leistungsreduktion (Derating)

Die Netzgeräte der Serie PS 9000 1U bieten einen erweiterten AC-Eingangsbereich, sind jedoch für eine Versorgungsspannung von typisch 230 V_{AC}, $\pm 10\%$ ausgelegt. Ab einer bestimmten Netzunterspannung setzt automatisch eine Leistungsreduktion (*engl.: derating*) ein, die die maximal verfügbare Leistung begrenzt. Diese Begrenzung erfolgt auf der AC-Eingangsseite und wird vom Gerät nicht erfaßt und auch nicht als "**CP**" (Konstantleistung, Leistungsbegrenzung) angezeigt.

Je nach Leistung greift das Derating bei unterschiedlichen Netzspannungen. Es gilt:

- 3 kW-Modelle
 - Unter ca. 207 V_{AC}: Derating auf max. 2500 W Ausgangsleistung
 - Unter ca. 180 V_{AC}: Abschaltung des DC-Ausgangs
- 1,5 kW-Modelle
 - Unter ca. 150 V_{AC}: Derating auf max. 1000 W Ausgangsleistung
 - Unter ca. 90 V_{AC}: Abschaltung des DC-Ausgangs

3.3 Alarmzustände

Dieser Abschnitt gibt nur eine Übersicht über mögliche Alarmzustände. Was zu tun ist im Fall, daß Ihr Gerät Ihnen einen Alarm anzeigt, wird in Abschnitt "3.6. Alarme und Überwachung" erläutert.

Grundsätzlich werden alle Alarmzustände optisch (Meldung in der Anzeige), akustisch (wenn Alarmton aktiviert) und als auslesbarer Status über digitale Schnittstelle signalisiert. Außerdem wird bei einem Alarm der DC-Ausgang des Gerätes ausgeschaltet. Die Alarmzustände OT und OVP werden zusätzlich über die analoge Schnittstelle signalisiert.

3.3.1 Power Fail

Power Fail (kurz: PF) kennzeichnet einen Alarmzustand des Gerätes, der mehrere Ursachen haben kann:

- AC-Eingangsspannung zu hoch (Netzüberspannung) oder zu niedrig (Netzunterspannung, Netzausfall)
- Defekt im Eingangskreis (PFC)

Das Ausschalten des Gerätes mittels des Netzschalters oder einer externen Trenneinheit ist wie ein Netzausfall und wird auch so interpretiert. Daher tritt beim Ausschalten jedesmal ein "Alarm PF" auf, der in dem Fall ignoriert werden kann.

3.3.2 Übertemperatur (Overtemperature)

Ein Übertemperaturalarm (kurz: OT) kann auftreten, wenn

• das Gerät wegen zu hoher Innentemperatur selbständig die Leistungsstufen abschaltet.

Zu hohe Erwämung und daraus folgende zeitweise Abschaltung ist üblicherweise bedingt durch ungenügende Kühlung (Lufttemperatur der Umgebung sehr hoch, Lüfter verdreckt, Lufteinlässe verstopft). Die Lüfter kühlen daraufhin das Gerät intern wieder ab, bis es die Leistungsstufen automatisch wieder einschaltet und den Betrieb fortführt. Die Abschaltung der Leistungsabgabe ist daher nur temporär.

3.3.3 Überspannung (Overvoltage)

Ein Überspannungsalarm (kurz: OVP) führt zur Abschaltung des DC-Ausgangs und kann auftreten, wenn

- das Netzgerät selbst oder die angeschlossene Last durch z. B. Gegenspannungserzeugung eine höhere Ausgangsspannung auf den DC-Ausgang bringt, als mit der einstellbaren Überspannungsalarmschwelle OVP (0...110% U_{Nenn}) festgelegt
- der OVP-Schwellwert zu nah über den Spannungssollwert gesetzt wurde und das Gerät im CC-Betrieb durch schlagartige Entlastung einen Spannungssprung macht, der zu einem Spannungsüberschwinger führt, der zwar kurze Zeit danach ausgeregelt wird, aber unter Umständen den OVP auslöst

Diese Funktion dient dazu, dem Betreiber des Netzgerätes akustisch oder optisch mitzuteilen, daß es möglicherweise eine überhöhte Spannung erzeugt hat und entweder ein Defekt des Gerätes oder der angeschlossenen Last resultieren könnte.

Das Netzgerät ist nicht mit Schutzmaßnahmen gegen Überspannung von außen ausgestattet. Überspannung kann Bauteile am DC-Ausgang beschädigen!

3.3.4 Überstrom (Overcurrent)

Ein Überstromalarm (kurz: OCP) führt zur Abschaltung des DC-Ausgangs und kann auftreten, wenn

• der aus dem DC-Ausgang fließende Ausgangsstrom die eingestellte OCP-Schwelle erreicht.

Diese Schutzfunktion dient nicht dem Schutz des Netzgerätes, sondern dem Schutz der angeschlossenen Last, damit diese nicht durch zu hohen Strom beschädigt oder bei einem Defekt, der überhöhten Strom zur Folge hat, nicht irreparabel zerstört wird.

3.3.5 Überleistung (Overpower)

Ein Überleistungsalarm (kurz: OPP) führt zur Abschaltung des DC-Ausgangs und kann auftreten, wenn

• das Produkt aus der am DC-Ausgang anstehenden Ausgangsspannung und dem Ausgangsstrom die eingestellte OPP-Schwelle erreicht.

Diese Schutzfunktion dient nicht dem Schutz des Gerätes, sondern dem Schutz der angeschlossenen Last, falls diese durch zu hohe Leistungsaufnahme beschädigt werden könnte.

3.4 Manuelle Bedienung

3.4.1 Einschalten des Gerätes

Das Gerät sollte möglichst immer am Netzschalter (Vorderseite) eingeschaltet werden. Alternativ kann es über eine externe Trennvorrichtung (Hauptschalter, Schütz) mit entsprechender Strombelastbarkeit netzseitig geschaltet werden.

Nach dem Einschalten zeigt das Gerät für einige Sekunden in der Anzeige das Herstellerlogo und weitere Informationen (Seriennummer usw.) an und ist danach betriebsbereit. Im Einstellmenü (siehe Abschnitt *"3.4.3. Konfiguration im Einstellmenü (Menu)"*) befindet sich im Untermenü **"Allgemein**" eine Option **"DC-Ausgang nach Power ON**", mit der der Anwender bestimmen kann, wie der Zustand des DC-Ausgangs nach dem Einschalten des Gerätes sein soll. Werkseitig ist diese Option auf **"AUS**" gesetzt. **"AUS**" bedeutet, der DC-Ausgang wäre nach dem Einschalten des Gerätes immer aus und **"Wiederherstellen**" bedeutet, daß der letzte Zustand des DC-Ausgangs wiederhergestellt wird, so wie er beim letzten Ausschalten war, also entweder ein oder aus. Sämtliche Sollwerte werden grundsätzlich gespeichert und wiederhergestellt.

3.4.2 Ausschalten des Gerätes

Beim Ausschalten des Gerätes werden der Zustand des Ausganges und die zuletzt eingestellten Sollwerte gespeichert. Weiterhin wird ein "PF" gemeldet. Dieser kann ignoriert werden. Der Leistungsausgang wird sofort ausgeschaltet und nach ein paar Sekunden die Lüfter, das Gerät ist nach einigen weiteren Sekunden dann komplett aus.

3.4.3 Konfiguration im Einstellmenü (Menu)

Das Einstellmenü dient zur Konfiguration aller Betriebsparameter, die nicht ständig benötigt werden. Es kann per

Druck auf die Taste Menu erreicht werden, aber nur, wenn der DC-Ausgang **ausgeschaltet** ist. Siehe Grafiken unten.

Ist der Ausgang eingeschaltet, ist mit der Taste nur der Zugriff auf DC-Ausgangsparameter sowie Statusinformationen möglich.

Die Navigation erfolgt in den Untermenüs mittels der Tasten

lungen) werden mit den Drehknöpfen eingestellt. Dabei ist die Zuordnung der Drehknöpfe immer gleich: linker Drehknopf - Parameter links, rechter Drehknopf - Parameter rechts.

0.00	0.00A			
80.0 <u>0</u> V	12 <u>0</u> .00A			
•				
Einstellun9en	Profile	Kommunikation		
Ubersicht	Info HW,S₩	HMI-Setup		

Die Menüstruktur ist auf der folgenden Seite als Schema dargestellt. Einige Einstellparameter sind selbsterklärend, andere nicht. Diese werden auf weiteren Seiten im Einzelnen erläutert.

und Enter. Parameter (Werte, Einstel-

www.elektroautomatik.de ea1974@elektroautomatik.de

3.4.3.1 Menü "Allgemein"

Element	S.	Beschreibung		
Fernsteuerung erlauben	1	Bei Wahl " Nein " kann das Gerät weder über eine der digitalen, noch über die analoge Schnittstelle fernbedient werden. Die Sperre der Fernsteuerung wird im Statusfeld der Hauptseite mit " Lokal " angezeigt. Siehe auch Abschnitt <i>1.9.4.1</i> .		
AnalogschnittstBereich	2	 Wählt den Spannungsbereich für die analogen Sollwerteingänge, Istwertausgänge und den Referenzspannungsausgang der rückseitigen Analogschnittstelle. 05 V = Bereich entspricht 0100% Sollwert/Istwert, Referenzspg. 5 V 010 V = Bereich entspricht 0100% Sollwert/Istwert, Referenzspg. 10 V Siehe auch Abschnitt "3.5.4. Fernsteuerung über Analogschnittstelle (AS)". 		
Analogschnittst. Rem-SB	3	Legt mit " Normal " (Standard) fest, daß die Funktion des Eingangs "REM-SB" so ist wie in <i>"3.5.4.3. Spezifikation der Analogschnittstelle"</i> beschrieben. Mit Auswahl " Invertiert " wird die Funktion logisch invertiert. Sie auch Beispiel a) in <i>"3.5.4.6. Anwendungsbeispiele"</i>		
Analog Rem-SB Verhalten	4	 Der Pin "REM-SB" der analogen Schnittstelle kann auch ohne aktivierte Fernsteuerung über die AS genutzt werden, um den DC-Ausgang zu steuern. Diese Einstellung legt fest, wie: DC AUS = Mit REM-SB kann der DC-Ausgang nur ausgeschaltet werden DC EIN/AUS = Wenn der DC-Ausgang bereits eingeschaltet war, kann er mit dem Pin aus- und wiedereingeschaltet werden. 		
DC-Ausg. nach Power ON	5	 Bestimmt, wie der Zustand des DC-Ausgangs nach dem Einschalten des Gerätes sein soll. AUS = DC-Ausgang ist nach dem Einschalten des Gerätes immer aus Wiederherst. = Zustand des DC-Ausgangs wird wiederhergestellt, so wie er beim letzten Ausschalten des Gerätes war 		
DC-Ausg. nach PF-Alarm	6	 Legt fest, wie sich der DC-Ausgang des Gerätes nach einem Powerfail-Alarm (siehe 3.3.1) verhalten soll: AUS = DC-Ausgang bleibt aus AUTO = DC-Ausgang schaltet automatisch wieder ein, wenn er vor dem Auftreten des Alarm auch eingeschaltet war 		
Share-Bus-Modus	7	Standardwert: Slave Zugehörig zur Parallelschaltung mehrerer Geräte über Share-Bus, wo die Share-Bus-Verbindung verwendet werden sollte. Bei Parallelschaltung kann irgendeine Einheit Master sein.		

3.4.3.2 Menü "Abgleichen"

Von hier aus kann eine Kalibrierungsroutine für die Ausgangswerte Spannung und Strom, jeweils Soll- und Istwert getrennt, gestartet werden. Mehr dazu siehe "4.4. Gerät abgleichen (Nachjustierung)"

Element	Beschreibung
Spannung	Startet den halbautomatischen Kalibrierungsvorgang für die Ausgangsspannung U
Sense-Sp.	Startet den halbautomatischen Kalibrierungsvorgang für den Meßeingang "Sense" (Fernfühlung)
Strom	Startet den halbautomatischen Kalibrierungsvorgang für den Ausgangsstrom I.
Abgleichdatum	In dem damit erreichbaren Fenster kann das Datum des letzten Abgleichs eingegeben werden (Jahr, Monat, Tag)
Speichern	Dieser Menüpunkt bewirkt die Speicherung der durch die Kalibrierung ermittelten neuen Ab- gleichdaten und Rücksprung zum darübergelegenen Menü

3.4.3.3 Menü "Reset"

Bewirkt bei Wahl "Ja" und Bestätigung mit Taste Enter die Zurücksetzung aller Einstellungen (Parameter, Sollwerte) auf Auslieferungszustand.

3.4.3.4 Menü "Profile"

Siehe "3.8 Nutzerprofile laden und speichern" auf Seite 45.

3.4.3.5 Menüs "Übersicht" und "Info HW, SW"

Diese Menüseiten zeigen Informationen über die aktuellen Sollwerte (U, I, P), zugehörigen Schutzparametern (OVP, OCP, OPP), sowie Einstellgrenzen ("Limits") und eine Alarmhistorie, die eventuell aufgetretene Alarme seit dem letzten Einschalten des Gerätes zählt. Weiterhin gerätebezogene Daten wie Serienummer, Artikelnummer usw.

3.4.3.6 Menü "Kommunikation"

Hier werden Einstellungen zu der auf der Rückseite des Gerätes befindlichen Ethernet/LAN-Schnittstelle getroffen. Der USB-Port benötigt keine Einstellungen. Das Gerät hat bei Auslieferung oder nach einer Zurücksetzung folgende **Standard-Netzwerkparameter** im Untermenüs "**IP-Einstellungen 1**" und "**IP-Einstellungen 2**":

- DHCP: aus
- IP: 192.168.0.2
- Subnetzmaske: 255.255.255.0
- Gateway: 192.168.0.1
- Port: 5025
- DNS: 0.0.0.0
- Hostname: Client
- Domäne: Workgroup

Diese Parameter können nach Belieben den lokalen Erfordernissen entsprechend konfiguriert werden. Weiterhin gibt es generelle Kommunikationseinstellungen, die den Protokollen ModBus und SCPI, sowie Timing zugeordnet sind.

Untermenü "IP-Einst. 1"

Element	Beschreibung
IP-Adresse abrufen	Manual (Standard): nimmt die Standard-Netzwerkparameter (nach Auslieferung oder Reset) bzw. die zuletzt eingestellten. Diese Parameter werden durch Auswahl " DHCP " nicht überschrieben und sind nach Wechsel von " DHCP " zurück zu " Manual " wieder wie vorher.
	DHCP : nach Umstellung auf DHCP und Bestätigung mit Taste Enter wird das Gerät ver- suchen, von einem DHCP-Server die Netzwerkparameter (IP, Subnetzmaske, Gateways, DNS) zugewiesen zu bekommen. Sollte das nicht erfolgen, werden die für " Manual " ein- gestellten Parameter verwendet und im Übersichtsbildschirm "Einstellungen anzeigen" würde dann " DHCP (Fehler) " angezeigt, statt " DHCP (aktiv) "
IP-Adresse	Verfügbar, wenn "Manual" gewählt wurde. Standardwert: 192.168.0.2
	Dauerhafte Einstellung einer fixen IP-Adresse für das Gerät im üblichen IP-Adressformat
Subnetzmaske	Verfügbar, wenn "Manual" gewählt wurde. Standardwert: 255.255.255.0
	Dauerhafte Einstellung einer fixen Subnetzmaske im üblichen IP-Adressformat
Gateway	Verfügbar, wenn "Manual" gewählt wurde. Standardwert: 192.168.0.1
	Dauerhafte Einstellung einer fixen Gateway-Adresse im üblichen IP-Adressformat

Untermenü "IP-Einst. 2"

Element	Beschreibung
Port	Standardwert: 5025 Hier wird der zur IP-Adresse gehörige Port eingestellt, über den TCP/IP-Zugriff bei Fern-
	steuerung über Ethernetschnittstelle stattfindet
DNS-Adresse	Standardwert: 0.0.0.0 Geben Sie hier die IP des Domain Name Servers (kurz: DNS) an, der im Netzwerk vor-
	verwenden zu können

Untermenü "Kom.-Proto." (Kommunikationsprotokolle)

Element	Beschreibung
Aktiviert	Standardwert: SCPI&ModBus
	Aktivieren / Deaktivieren der Kommunikationsprotokolle SCPI oder ModBus
	Jeweils eins von beiden kann deaktiviert werden, wenn nicht benötigt.

Untermenü "Kom.-Timeout" (Kommunikations-Timeout)

Element	Beschreibung
Timeout USB (ms)	Standardwert: 5
	Kommunikations-Timeout für den USB-Port in Millisekunden. Stellt die Zeit ein, die max. zwischen der Übertragung von zwei Bytes oder Blöcken von Bytes einer Nachricht ablaufen darf. Mehr dazu in der externen Dokumentation "Programming ModBus & SCPI".
Timeout ETH (s)	Standardwert: 5
	Socket-Verbindungs-Timeout für den Ethernet-Port in Sekunden. Stellt die Zeit ein, nach der
	das Gerät automatisch die Socket-Verbindungs trennt, wenn keinerlei Kommunikation stattfand.

Menü "HMI-Setup" 3.4.3.7

Diese Einstellungen beziehen sich ausschließlich auf die Bedieneinheit (HMI) und deren Anzeige. In der Tabelle unten werden der Einfachheit halber alle einstellbaren Elemente aufgelistet, egal in welchem der Untermenüs des HMI-Setups diese einsortiert sind:

Element	Beschreibung
Sprache	Umschaltung der Sprache in der Anzeige zwischen "Deutsch" und "English"
Helligkeit	Hiermit kann sich der Anwender die Helligkeit der Hintergrundbeleuchtung der Anzeige nach seinem besten Empfinden einstellen (Einstellbereich 110, Standard: 10)
Anzeigemodus	Hier kann der Anzeigemodus der Soll- und Istwerte in der Hauptanzeige umgeschaltet werden. Siehe <i>"3.4.5. Soll- und Istwertanzeige wechseln"</i> für Einzelheiten
Tastenton	Aktiviert bzw. deaktiviert die Tonausgabe bei Betätigung einer Taste. Dieser Ton kann als Bestätigung dienen, daß die Betätigung der Taste angenommen wurde.
Alarmton	Aktiviert bzw. deaktiviert die zusätzliche akustische Signalisierung eines Gerätealarms. Siehe auch "3.6. Alarme und Überwachung".
HMI-Sperre	Siehe "3.7. Bedieneinheit (HMI) sperren".

3.4.4 **Einstellgrenzen (Limits)**

Standardmäßig sind alle Sollwerte (U, I, P) zwischen 0% und 100% frei einstellbar. Das kann in einigen Fällen hinderlich sein, besonders wenn man empfindliche Anwendungen gegen versehentlich zu hoch eingestellte Spannung schützen möchte.

Mit den Einstellgrenzen (engl.: Limits) können jeweils für Spannung (U) und Strom (I) untere und obere Einstellgrenzen festgelegt werden, die den einstellbaren Bereich des jeweiligen Sollwertes einschränken.

Für die Leistung (P) kann nur eine obere Einstellgrenze festgelegt werden.

Die hier gesetzten Einstellgrenzen gelten für alle Wege der Einstellung von Sollwerten, also auch bei digitaler und analoger Fernsteuerung. Bei der Fernsteuerung bleibt der globale Bereich 0...100% (digital) bzw. 0...10 V / 0...5 V (analog) erhalten, dabei jeweils eingeschränkt auf die hier gesetzten Grenzen.

Ein Beispiel: für ein Modell mit 80 V, 100 A und 3 kW definieren Sie, wie oben im Bild gezeigt, U-min = 10 V und U-max = 75 V. Bei analoger Fernsteuerung ergibt sich der aktive Bereich für den Spannungssollwert am Pin VSEL somit als 1,25 V...9,375 V (bei gewähltem Eingangsbereich 0...10 V). Das Gerät würde nach Umschaltung auf analoge Fernsteuerung immer mindestens 10V herausgeben, selbst wenn nichts an VSEL angeschlossen wäre.

Werte außerhalb der Einstellgrenzen werden nicht akzeptiert und bei digitaler Fernsteuerung mit einer Fehlermeldung abgewiesen bzw. bei analoger Fernsteuerung ignoriert und der Sollwert auf Minimum/Maximum festgehalten (Clipping).

► So konfigurieren Sie die Einstellgrenzen

- 1. Schalten Sie den DC-Ausgang aus und betätigen Sie Taste (Menu, um das Menü aufzurufen.
- 2. Betätigen Sie Enter, um Menü "Einstellungen" aufzurufen. Navigieren Sie dann zu "Limit-Einst." und betätigen Sie erneut Enter
- 3. Im Bildschirm können Sie nun die Einstellwerte U-min, U-max, I-min, I-max und P-max mit den Drehknöpfen einstellen. Zum Wechsel zwischen den Parametern sind die Pfeiltasten oder zu betätigen.
- 4. Übernehmen Sie die Änderung(en) mit Enter bzw. verwerfen Sie sie mit ESC

Die Einstellgrenzen sind an die Sollwerte gekoppelt. Das bedeutet, daß z. B. die obere Einstellgrenze (max) nicht kleiner eingestellt werden kann als der zugehörige Sollwert aktuell gesetzt ist. Beispiel: Wenn man die obere Einstellgrenze I-max des Strom auf 90 A einstellen möchte und der Stromsollwert ist noch auf 100 A eingestellt, dann müßte man den Stromsollwert zunächst auf 90 A oder geringer einstellen.

Umgekehrt gilt das gleichermaßen für die untere Einstellgrenze I-min.

3.4.5 Soll- und Istwertanzeige wechseln

Standardmäßig zeigt das PS 9000 1U Gerät in der linken Hälfte der Anzeige den Spannungssollwert und Spannungsistwert, sowie in der rechten Hälfte den Stromsollwert und Stromistwert. Damit Sie alternativ den Leistungssollwert ständig zur Verfügung haben, kann der Anzeigemodus der Soll- und Istwerte umgeschaltet werden.

	Modus UI			
80.0	80.00V 🛛 35.00A			
80.0 <u>0</u> V			12 <u>0</u> .00A	I

Nur Anzeige Spannung (U) und Strom (I). Standard-Modus.

Der Leistungssollwert ist dann entweder über das Menü oder Schnellmenü einstellbar oder nach Umschaltung zwischen Sollwert I und P mit den Tasten

Modus UP

34.8	2V	CP	25	600W
80.0 <u>0</u> V				2 <u>5</u> 00W

Alternativ zu den Soll- und Istwerten für den Strom (I) werden Soll- und Istwert der Leistung (P) angezeigt.

Der Stromsollwert ist dann entweder über das Menü oder Schnellmenü einstellbar oder nach Umschaltung zwischen Sollwert P und I mit den Tasten

► So wechseln Sie den Anzeigemodus im Menü

- 1. Schalten Sie den DC-Ausgang aus und betätigen Sie Taste Menu , um das Menü aufzurufen.
- 2. Navigieren Sie im Menü zu "HMI-Setup" und betätigen Sie Enter. Dann weiter zu "Seiten-Einst." und wieder Enter betätigen.
- 3. Stellen Sie den Parameter "Anzeigemodus" auf die gewünschte Auswahl (siehe oben).
- 4. Übernehmen Sie die Änderung(en) mit Enter bzw. verwerfen Sie sie mit ESC

So wechseln Sie den Anzeigemodus direkt

1. Bei Normalanzeige (siehe Bilder oben) betätigen Sie die Pfeiltasten 1 oder 1, um zwischen den Anzeigemodi **UI** und **UP** beliebig zu wechseln.

Je nach getroffener Wahl wird dem rechten Drehknopf ein anderer Sollwert zum Einstellen zugeordnet, während der linke Drehknopf immer die Spannung stellt.

3.4.6 Sollwerte manuell einstellen

Die Einstellung der Sollwerte von Spannung, Strom und auch Leistung ist die grundlegende Bedienmöglichkeit eines Stromversorgungsgerätes und daher sind die beiden Drehknöpfe auf der Vorderseite des Gerätes bei manueller Bedienung stets zwei von diesen drei Sollwerten zugewiesen, standardmäßig jedoch Spannung und Strom.

Die Sollwerte können bei manueller Bedienung nur mit den beiden Drehknöpfen eingestellt werden.

Die Einstellung von Sollwerten setzt den Sollwert sofort, egal ob der Ausgang ein- oder ausgeschaltet ist.

Die Einstellung der Sollwerte kann nach oben oder unten hin begrenzt sein durch die Einstellgrenzen. Siehe auch "3.4.4 Einstellgrenzen (Limits)" auf Seite 35. Bei Erreichen einer der Grenzen wird in der Anzeige im Statusfeld (Mitte, untere Hälfte) für etwa zwei Sekunden ein Hinweis "Limit: U-max" usw. eingeblendet.
So können Sie manuell Sollwerte U, I, oder P einstellen

- 1. Prüfen Sie zunächst, ob der Sollwert (U, I, P), den Sie einstellen wollen, bereits einem der Drehknöpfe zugeordnet ist. Die Zuordnung kann durch die Wahl eines anderen Anzeigemodus geändert werden. Siehe dazu "3.4.5. Soll- und Istwertanzeige wechseln".
- 2. Bei aktuell gewähltem Modus UI und solange die Hauptanzeige zu sehen ist drehen Sie den linken Drehknopf, um die Spannung einzustellen und den rechten Drehknopf, um den Strom einzustellen. Im Modus UP drehen Sie den rechten Drehknopf, um die Leistung einzustellen, sofern unten rechts momentan der

Leistungssollwert mit Einheit Watt angezeigt wird. Mittels der Pfeiltasten oder kann auf den Stromsollwert umgeschaltet werden.

3. Der gewünschte Sollwert innerhalb kann der festgelegten Grenzen eingestellt werden. Zum Wechsel der Stelle drücken Sie auf den jeweiligen Drehknopf. Das verschiebt den Cursor (unterstrichene Stelle) im Uhrzeigersinn:

3.4.7 Das Schnellmenü

Das Schnellmenü bietet bei eingeschaltetem Ausgang zwei Menüpunkte zur schnellen Auswahl, die über das normale Menü auch zu erreichen wären, aber nur bei ausgeschaltetem Ausgang.

Das Schnellmenü kann über Taste Menu erreicht werden und sieht so aus:

80.00V	CV	35.00A
Anzeigemodus:	UI	•

Navigation wie sonst auch mit den Pfeiltasten

Über das Schnellmenü kann z. B. die Bedienfeldsperre mit drei Tastendrücken aktiviert werden.

Achtung! Wird die Bedienfeldsperre über das Schnellmenü aktiviert, ist eventuell die zusätzlich Sperre mit PIN aktiv, je nach Einstellung im MENU. Dies wird hier nicht ersichtlich!

und Enter

3.4.8 DC-Ausgang ein- oder ausschalten

Der DC-Ausgang des Gerätes kann manuell oder ferngesteuert aus- oder eingeschaltet werden. Bei manueller Bedienung kann dies jedoch durch die Bedienfeldsperre verhindert sein.

> Das manuelle oder ferngesteuerte (digital) Einschalten des DC-Ausgangs kann auch durch den Eingangspin REM-SB der eingebauten Analogschnittstelle gesperrt sein. Siehe dazu auch 3.4.3.1 und Beispiel a) in 3.5.4.6.

So schalten Sie den DC-Ausgang manuell ein oder aus

- Sofern das Bedienfeld (HMI) nicht komplett gesperrt ist, betätigen Sie Taste On O. Anderenfalls werden 1. Sie zunächst gefragt, die Sperre aufzuheben.
- 2. Jenachdem, ob der Ausgang vor der Betätigung der Taste ein- oder ausgeschaltet war, wird der entgegengesetzte Zustand aktiviert, sofern nicht durch einen Alarm oder den Zustand "Fern" gesperrt. Der aktuelle

Zustand wird an der Taste mit der grünen LED angezeigt (leuchtet = Ausgang ein).

So schalten Sie den DC-Ausgang über die analoge Schnittstelle ferngesteuert ein oder aus

Siehe Abschnitt "3.5.4 Fernsteuerung über Analogschnittstelle (AS)" auf Seite 39.

So schalten Sie den DC-Ausgang über eine digitale Schnittstelle ferngesteuert ein oder aus

Siehe externe Dokumentation "Programmieranleitung ModBus & SCPI", falls Sie eigene Software verwen-1. den, bzw. siehe externe Dokumentation der LabView VIs oder von vom Hersteller zur Verfügung gestellter Software.

3.5 Fernsteuerung

3.5.1 Allgemeines

Fernsteuerung ist grundsätzlich über die eingebaute analoge oder eine der eingebauten digitalen Schnittstellen USB, Ethernet/LAN möglich. Wichtig ist dabei, daß entweder nur die analoge oder eine digitale im Eingriff sein kann. Das bedeutet, wenn man zum Beispiel versuchen würde bei aktiver analoger Fernsteuerung (Pin Remote, Status "Fern Analog" in der Anzeige) auf Fernsteuerung per digitaler Schnittstelle umzuschalten, würde das Gerät auf der digitalen Schnittstelle einen Fehler zurückmelden. Im umgekehrten Fall würde die Umschaltung per Pin Remote einfach ignoriert. In beiden Fällen ist jedoch Monitoring, also das Überwachen des Status' bzw. das Auslesen von Werten, immer möglich.

3.5.2 Bedienorte

Bedienorte sind die Orte, von wo aus ein Gerät bedient wird. Grundsätzlich gibt es da zwei: am Gerät (manuelle Bedienung) und außerhalb (Fernsteuerung). Folgende Bedienorte sind definiert:

Bedienort laut Anzeige	Erläuterung
-	Wird keiner der anderen Bedienorte im Statusfeld angezeigt, ist <u>manuelle</u> Bedienung
	Bedienort wird nicht extra angezeigt.
Fern	Fernsteuerung ist über eine der Schnittstellen ist aktiv
Lokal	Fernsteuerung ist gesperrt, Gerät kann nur manuell bedient werden

Fernsteuerung kann über die Einstellung "**Fernsteuerung erlauben**" (siehe "3.4.3.1. Menü "Allgemein"") erlaubt oder gesperrt werden. Im gesperrten Zustand wird im Statusfeld in der Anzeige (Mitte, untere Hälfte) der Status "**Lokal**" angezeigt. Die Aktivierung der Sperre kann dienlich sein, wenn normalerweise eine Software oder eine Elektronik das Gerät ständig fernsteuert, man aber zwecks Einstellung am Gerät oder auch im Notfall am Gerät hantieren muß, was bei Fernsteuerung sonst nicht möglich wäre.

Die Aktivierung der Sperre bzw. des Zustandes "Lokal" bewirkt folgendes:

- Falls Fernsteuerung über digitale Schnittstelle aktiv ist ("**Fern**"), wird die Fernsteuerung sofort beendet und muß später auf der PC-Seite, sofern "**Lokal**" nicht mehr aktiv ist, erneut übernommen werden
- Falls Fernsteuerung über analoge Schnittstelle aktiv ist (auch "**Fern**"), wird die Fernsteuerung nur solange unterbrochen bis "**Lokal**" wieder beendet, sprich die Fernsteuerung wieder erlaubt wird, weil der Pin "Remote" an der Analogschnittstelle weiterhin das Signal "Fernsteuerung = ein" vorgibt. Ausnahme: der Pegel des Pins "Remote" wird während der Phase "**Lokal**" auf HIGH geändert, also auf "Fernsteuerung = aus".

3.5.3 Fernsteuerung über eine digitale Schnittstelle

3.5.3.1 Schnittstellenwahl

Das Gerät unterstützt nur die eingebauten Schnittstellen USB und Ethernet. Für die USB-Schnittstelle wird ein Standardkabel mitgeliefert, sowie ein Windows-Treiber auf CD. Diese Schnittstelle benötigt keine Einstellungen im Setup-Menü.

Für die Ethernetschnittstelle sind dagegen die üblichen Netzwerkeinstellungen wie DHCP oder, bei manueller IP-Vergabe, die IP-Adresse usw. zu treffen, sofern nicht die Standardparameter bereits akzeptabel sind.

Die GPIB-Schnittstelle erfordert die Auswahl einer eindeutigen, nicht doppelt vorhandenen Adresse, falls das Gerät mit weiteren GPIB-Geräten verbunden wird.

3.5.3.2 Allgemeines

Zur Installation des Netzwerkanschlusses siehe "1.9.7. Ethernetport".

Die Schnittstellen benötigen nur wenige oder keine Einstellungen für den Betrieb bzw. können bereits mit den Standardeinstellungen direkt verwendet werden. Die zuletzt getroffenen Einstellungen werden dauerhaft gespeichert, können aber auch über den Menüpunkt "**Reset**" auf die Standardwerte zurückgebracht werden.

Über die digitalen Schnittstellen können in erster Linie Sollwerte (Strom, Spannung, Leistung), sowie Gerätezustände gesetzt oder ausgelesen werden. In zweiter Linie sind fast alle über das HMI einstellbaren Werte (Schutz, Limits), sowie einige Betriebsparameter über Fernsteuerung einstellbar.

Bei Wechsel auf Fernsteuerung werden die zuletzt am Gerät eingestellten Werte beibehalten, bis sie geändert werden. Somit wäre eine reine Spannungssteuerung durch Vorgabe von Spannungssollwerten möglich, wenn die anderen Sollwerte unverändert blieben.

3.5.3.3 Programmierung

Details zur Programmierung der Schnittstellen, die Kommunikationsprotokolle usw. sind in der externen Dokumentation "Programmieranleitung ModBus & SCPI" zu finden, die mit dem Gerät auf einer CD mitgeliefert wird.

3.5.4 Fernsteuerung über Analogschnittstelle (AS)

3.5.4.1 Allgemeines

Die fest eingebaute, bis 1500 V DC galvanische getrennte, 15-polige analoge Schnittstelle (kurz: AS) befindet sich auf der Rückseite des Gerätes und bietet folgende Möglichkeiten:

- Fernsteuerung von Strom, Spannung und Leistung
- Fernüberwachung Status (CC/CP, CV)
- Fernüberwachung Alarme (OT, OVP)
- Fernüberwachung der Istwerte
- Ferngesteuertes Ein-/Ausschalten des DC-Ausganges

Das Stellen der **drei** Sollwerte über analoge Schnittstelle geschieht immer gleichzeitig. Das heißt, man kann nicht z. B. die Spannung über die AS vorgeben und Strom und Leistung am Gerät mittels Drehknopf einstellen oder umgekehrt.

Der OVP-Sollwert, sowie weitere Überwachungsgrenzen und Alarmschwellen können über die AS nicht ferngestellt werden und sind daher vor Gebrauch der AS am Gerät auf die gegebene Situation anzupassen. Die analogen Sollwerte können über eine externe Spannung eingespeist oder durch am Pin 3 ausgegebene Referenzspannung erzeugt werden. Sobald die Fernsteuerung über analoge Schnittstelle aktiviert wurde, zeigt die Anzeige die Sollwerte an, wie Sie über die analoge Schnittstelle vorgegeben werden.

Die AS kann mit den gängigen Spannungsbereichen 0...5 V oder 0...10 V für jeweils 0...100% Nennwert betrieben werden. Die Wahl des Spannungsbereiches findet im Geräte-Setup statt, siehe Abschnitt *"3.4.3. Konfiguration im Einstellmenü (Menu)"*. Die am Pin 3 (VREF) herausgegebene Referenzspannung wird dabei angepaßt und ist dann, je nach Wahl, 5 V oder 10 V. Es gilt dann folgendes:

0-5 V: Referenzspannung = 5 V, 0...5 V Sollwert (VSEL, CSEL, PSEL) entsprechen 0...100% Nennwert, 0...100% Istwert entsprechen 0...5 V an den Istwertausgängen (CMON, VMON).

0-10 V: Referenzspannung = 10 V, 0...10 V Sollwert (VSEL, CSEL, PSEL) entsprechen 0...100% Nennwert, 0...100% Istwert entsprechen 0...10 V and den Istwertausgängen (CMON, VMON).

Vorgabe von zu hohen Sollwerten (z. B. >5 V im gewählten 5 V-Bereich bzw. >10 V im gewählten 10 V-Bereich) wird abgefangen, in dem der jeweilige Sollwert auf 100% bleibt.

Bevor Sie beginnen: Unbedingt lesen, wichtig!

- Fernsteuerung des Gerätes erfordert die Umschaltung auf Fernsteuerbetrieb mit Pin "REMOTE" (5). Einzige Ausnahme ist der Pin REM-SB, der ab KE-Firmware 2.03 auch einzeln betrieben werden kann
- Bevor die Hardware verbunden wird, die die analoge Schnittstelle bedienen soll, ist zu prüfen, daß diese keine höheren Spannungen als spezifiziert auf die Pins geben kann
- Sollwerteingänge (VSEL, CSEL, PSEL) dürfen nicht unbeschaltet bleiben, da sonst schwebend (floating)
- Es müssen immer alle drei Sollwerte vorgegeben werden. Sollwerte, die nicht gestellt werden sollen, wie z. B. die Leistung (PSEL) können fest auf 100% gelegt werden (Brücke nach VREF oder anders)

Die Analogschnittstelle ist zum DC-Ausgang hin galvanisch getrennt. Daher:

Niemals eine der Massen der Analogschnittstelle mit DC- oder DC+ Ausgang verbinden!

3.5.4.2 Quittieren von Alarmmeldungen

Alarmmeldungen des Gerätes (siehe 3.6.2) erscheinen immer in der Anzeige, einige davon auch als Signal auf der analogen Schnittstelle (siehe 3.5.4.3), zum Beispiel der als kritisch geltende Überspannungsalarm (angezeigt als OV oder OVP).

Tritt während der Fernsteuerung über analoge Schnittstelle ein Gerätealarm auf, schaltet der DC-Ausgang genauso aus wie bei manueller Bedienung. Bei Übertemperatur (OT) und Überspannung (OV) kann das über die Signalpins der AS erfaßt werden, bei anderen Alarmen, wie z. B. Power Fail (PF), nicht. Diese Alarme können nur durch Auswertung der Istwerte gegenüber den Sollwerten erfaßt werden.

Die Alarme OT, OV, PF, OCP und OPP gelten als zu quittierende Fehler (siehe auch *"3.6.2. Gerätealarme hand-haben"*). Sie können durch Aus- und Wiedereinschalten des DC-Ausgangs per Pin REM-SB quittiert werden, also eine HIGH-LOW-HIGH-Flanke (mind. 50ms für LOW).

Pin	Name	Тур*	Bezeichnung	Standardpegel	Elektrische Eigenschaften		
1	VSEL	AI	Sollwert Spannung	010 V bzw. 05 V ent- sprechen 0100% von U _{Nenn}	Genauigkeit < 0,2%		
2	CSEL	AI	Sollwert Strom	010 V bzw. 05 V ent- sprechen 0100% von I _{Nenn}	Eingangsimpedanz R _i >40 k100 k		
3	VREF	AO	Referenzspannung	10 V oder 5 V	Genauigkeit < 0,2% bei I _{max} = +5 mA Kurzschlussfest gegen AGND		
4	DGND	POT	Bezugspotential für alle digitalen Signale		Für Steuer- und Meldesignale		
5	REMOTE	DI	Umschaltung interne / externe Steuerung	Extern = LOW, U _{Low} <1 V Intern = HIGH, U _{High} >4 V Intern = Offen	Spannungsbereich = 030 V I_{Max} = -1 mA bei 5 V $U_{LOW nach HIGH typ.}$ = 3 V Empf. Sender: Open collector gegen DGND		
6	от	DO	Übertemperaturalarm / Power fail ***	Alarm = HIGH, U _{High} > 4 V kein Alarm = LOW, U _{Low} <1 V	Quasi-Open-Collector mit Pull-up gegen Vcc ** Bei 5 V am Pin fließen max. +1 mA I_{Max} = -10 mA bei U _{CE} = 0,3 V U _{Max} = 30 V Kurzschlussfest gegen DGND		
7	-	-	-	-	-		
8	PSEL	AI	Sollwert Leistung	010 V bzw. 05 V ent- sprechen 0100% von P _{Nenn}	Genauigkeit < 0,2% Eingangsimpedanz R _i >40 k100 k		
9	VMON	AO	Istwert Spannung	010 V bzw. 05 V ent- sprechen 0100% von U _{Nenn}	Genauigkeit < 0,2% bei I _{Max} = +2 mA		
10	CMON	AO	Istwert Strom	010 V bzw. 05 V ent- sprechen 0100% von I _{Nenn}	Kurzschlussfest gegen AGND		
11	AGND	POT	Bezugspotential für alle analogen Signale		Für -SEL, -MON, VREF Signale		
12	-	-	-	-	-		
13	REM-SB	DI	Ausgang aus (Ausgang ein) (Alarm quittieren ****)	Aus = LOW, U _{Low} <1 V Ein = HIGH, U _{High} >4 V Ein = Offen	Spannungsbereich = 030 V I _{Max} = +1 mA bei 5 V Empfohlener Sender: Open-Collector gegen DGND		
14	OVP	DO	Überspannungsalarm	$OVP = HIGH, U_{High} > 4 V$ kein OVP = LOW, U _{Low} <1 V	Quasi-Open-Collector mit Pull-up gegen Vcc ** Bei 5 V am Pin fließen max. +1 mA		
15	CV	DO	Anzeige Spannungs- regelung aktiv	CV = LOW, U _{Low} <1 V CC/CP = HIGH, U _{High} >4 V	I_{max} = -10 mA bei U_{ce} = 0,3 V, U_{max} = 030 V Kurzschlussfest gegen DGND		

3.5.4.3 Spezifikation der Analogschnittstelle

* AI = Analoger Eingang, AO = Analoger Ausgang, DI = Digitaler Eingang, DO = Digitaler Ausgang, POT = Potential ** Interne Vcc ca. 14,3 V *** Ausfall Netz, Netzunter- bzw. -überspannung oder PFC-Fehler **** Nur während Fernsteuerung

Die Genauigkeitsangabe der Sollwerteingänge ist nur auf den Pin bezogen und addiert sich zur Genauigkeit des zugehörigen Sollwertes am DC-Ausgang (siehe techn. Daten

3.5.4.4 Übersicht Sub-D-Buchse

3.5.4.5 Prinzipschaltbilder der Pins

3.5.4.6 Anwendungsbeispiele

a) DC-Ausgang ein- oder ausschalten über Pin "REM-SB"

Ein digitaler Ausgang, z. B. von einer SPS, kann diesen Eingang (Pin) unter Umständen nicht sauber ansteuern, da eventuell nicht niederohmig genug. Prüfen Sie die Spezifikation der steuernden Applikation. Siehe auch die Prinzipschaltbilder oben.

Dieser Eingang wird bei Fernsteuerung zum Ein- und Ausschalten des DC-Ausganges des Gerätes genutzt, kann ab KE-Firmwareversion 2.03 aber auch ohne aktivierte Fernsteuerung genutzt werden.

Es wird empfohlen, einen niederohmigen Kontakt wie einen Schalter, ein Relais oder Transistor zum Schalten des Pins gegen Masse (DGND) zu benutzen.

Folgende Situationen können auftreten:

Fernsteuerung wurde aktiviert

Wenn Fernsteuerung über Pin "REMOTE" aktiviert ist, gibt nur "REM-SB" den Zustand des DC-Ausgangs des Gerätes gemäß Tabelle in *3.5.4.3* vor. Die logische Funktion und somit die Standardpegel können durch eine Einstellung im Setup-Menü des Gerät invertiert werden. Siehe *3.4.3.1*.

Wird der Pin nicht beschaltet bzw. der angeschlossene Kontakt ist offen, ist der Pin HIGH. Bei Einstellung "Analogschnittstelle REM-SB = normal" entspricht das der Vorgabe "DC-Ausgang einschalten". Das heißt, sobald mit Pin "REMOTE" auf Fernsteuerung umgeschaltet wird, schaltet der DC-Ausgang ein!

• Fernsteuerung wurde nicht aktiviert

In diesem Modus stellt der Pin eine Art **Freigabe** der Taste "On/Off" am Bedienfeld des Gerätes bzw. des Befehls "DC-Ausgang ein/aus" (bei digitaler Fernsteuerung) dar. Daraus ergeben sich folgende mögliche Situationen:

DC- Ausgang	+	Pin "REM-SB"	+	Parameter "REM-SB"	→	Verhalten
ist aus	+	HIGH	+	normal	→	DC-Ausgang nicht gesperrt. Er kann mit Taste On/Off oder Befehl (dig. Fernsteuerung) eingeschaltet werden.
		LOW	+	invertiert		
	+	HIGH	+	invertiert		DC-Ausgang gesperrt. Er kann nicht mit Taste On/Off oder Befeh
		LOW	+	normal	◄	Anzeige im Display bzw. eine Fehlermeldung erzeugt.

Ist der DC-Ausgang bereits eingeschaltet, bewirkt der Pin die Abschaltung dessen bzw. später erneutes Einschalten, ähnlich wie bei aktivierter Fernsteuerung:

DC- Ausgang	→	Pin "REM-SB"	+	Parameter "REM-SB"	→	Verhalten
ist ein	→	HIGH	+	normal	+	Der DC-Ausgang bleibt eingeschaltet. Er kann mit der Taste On/
		LOW	+	invertiert		schaltet werden
	→	HIGH	+	invertiert	•	Der DC-Ausgang wird ausgeschaltet und bleibt gesperrt, solange
		LOW	+	normal		des Zustandes des Pins.

b) Fernsteuerung von Strom und Spannung

Erfordert aktivierte Fernsteuerung (Pin "Remote" = LOW).

Über je ein Potentiometer werden die Sollwerte VSEL und CSEL aus beispielsweise der Referenzspannung VREF erzeugt. Das Netzgerät kann somit wahlweise in Konstantstrom oder Konstantspannung arbeiten. Gemäß der Vorgabe von max. 5 mA für den Ausgang VREF sollten hier Potentiometer von mindestens 10 kOhm benutzt werden.

Der Leistungssollwert wird hier fest auf VREF (≙100%) gelegt und beeinflußt somit Konstantstrom- oder Konstantspannungsbetrieb nicht.

Bei Einspeisung der Steuerspannungen von einer externen Spannungsquelle wäre die Wahl des Eingangsspannungsbereiches für Sollwerte (0...5 V oder 0...10 V) zu beachten.

Bei Benutzung des Eingangsspannungsbereiches 0...5 V für 0...100% Sollwert halbiert sich die effektive Auflösung bzw. verdoppelt sich die minimale Schrittweite für Sollwerte/Istwerte.

Beispiel mit Potis

Beispiel mit ext. Spannungsquelle

c) Istwerte erfassen

Über die AS werden die DC-Ausgangswerte von Strom und Spannung mittels 0...10 V oder 0...5 V abgebildet. Zur Erfassung dienen z. B. handelsübliche Multimeter o.ä.

3.6 Alarme und Überwachung

3.6.1 Begriffsdefinition

Grundsätzlich ist bei Gerätealarmen (siehe "3.3. Alarmzustände") nur von gemeldeten Zuständen wie Überspannung oder Übertemperatur die Rede, die im Zusammenhang mit teils einstellbaren Überwachungsgrenzen auftreten können.

Diese Alarme werden immer mindestens als ablesbare Meldung in der Anzeige, sowie als abfragbarer Status bei der digitalen Fernsteuerung bzw. Überwachung und, falls aktiviert, als akustisches Warnsignal (Summer) vom Gerät ausgegeben. Weiterhin werden die wichtigsten Gerätealarme immer auch als Signal auf bestimmten Pins der analogen Schnittstelle herausgegeben.

Außerdem ist eine Alarmhistorie verfügbar, die zwecks Statistik und nachträglicher Abrufbarkeit eventuell aufgetretene Alarme seit dem letzten Einschalten des Gerätes zählt.

3.6.2 Gerätealarme handhaben

Bei Auftreten eines Gerätealarms wird üblicherweise zunächst der DC-Ausgang ausgeschaltet. Manche Alarme müssen zwecks Kenntnisnahme bestätigt werden, was allerdings erst geht, wenn sie nicht mehr anliegen, sprich die Ursache des Alarms beseitigt ist. Andere quittieren sich selbst, wenn die Ursache verschwindet (Überhitzung, Netzunterspannung).

So bestätigen Sie einen Alarm in der Anzeige (während manueller Bedienung)

- 1. Betätigen Sie Taste Enter oder On O einmal.
- So bestätigen Sie einen Alarm an der analogen Schnittstelle (während analoger Fernsteuerung)
 - 1. Schalten Sie den DC-Ausgang über Pin REM-SB aus (logischer Pegel für AUS) und erneut wieder ein. Für Pegel und Logik siehe Beispiel a) in *"3.5.4.6. Anwendungsbeispiele".*

So bestätigen Sie einen Alarm im auslesbaren Alarmstatus (während digitaler Fernsteuerung)

1. Lesen Sie per Befehl den Fehlerspeicher (SCPI-Sprache) bzw. senden Sie einen bestimmten Rücksetzbefehl (ModBus-Protokoll).

Diese Gerätealarme können konfiguriert werden, indem die Auslöseschwelle eingestellt wird:

Alarm	Bedeutung	Beschreibung	Einstellbereich	Meldeorte
OVP	OverVoltage Protection	Überspannungsschutz. Löst einen Alarm aus, wenn die Ausgangsspannung am DC-Ausgang die eingestellte Schwelle erreicht. Dies kann durch das Netzgerät selbst verursacht werden oder durch Einwirkung von außen. Außerdem wird der DC-Ausgang ausgeschal- tet.	0 V1,1*U _{Nenn}	Anzeige, Analogschnittst., Digitale Schnitt- stellen
ОСР	OverCurrent Protection	Überstromschutz. Löst einen Alarm aus, wenn der Ausgangsstrom am DC-Ausgang die eingestellte Schwelle erreicht. Außerdem wird der DC-Ausgang ausgeschaltet.	0 A1,1*I _{Nenn}	Anzeige, Digitale Schnitt- stellen
ОРР	OverPower Protection	Überleistungsschutz. Löst einen Alarm aus, wenn die Ausgangsleistung am DC-Ausgang die eingestellte Schwelle erreicht. Außerdem wird der DC-Ausgang ausgeschaltet.	0 W1,1*P _{Nenn}	Anzeige, Digitale Schnitt- stellen

Diese Alarme können nicht konfiguriert werden, da hardwaremäßig bedingt:

Alarm	Bedeutung	Beschreibung	Meldeorte
PF	Power Fail	Netzunter- oder überspannung. Löst einen Alarm aus, wenn die AC- Versorgung außerhalb der Spezifikationen des Gerätes arbeiten sollte (Spannung/Frequenz) oder wenn das Gerät von der AC-Versorgung getrennt wird, z. B. durch Ausschalten am Netzschalter. Außerdem wird der DC-Ausgang ausgeschaltet.	Anzeige, Digitale Schnitt- stellen
от	OverTempe- rature	Übertemperatur. Löst einen Alarm aus, wenn die Innentemperatur des Gerätes eine bestimmte Schwelle erreicht. Außerdem wird der DC- Ausgang ausgeschaltet.	Anzeige, Analogschnittst., Digitale Schnitt- stellen

► So konfigurieren Sie die Gerätealarme OVP, OCP und OPP

- 2. Schalten Sie den DC-Ausgang aus und betätigen Sie Taste Menu , um das Menü aufzurufen.
- **3.** Navigieren Sie im Menü zu "**Einstellungen**" und betätigen Sie Enter. Dann weiter zu "**Schutz-Einst.**" und wieder Enter betätigen.
- 4. Stellen Sie hier die Grenzen für die Gerätealarme gemäß Ihrer Anwendung ein, falls die Standardwerte nicht passend sind.
- 5. Übernehmen Sie die Änderung(en) mit Enter bzw. verwerfen Sie sie mit ESC

Durch die Funktion "**Reset**" (Gerät zurücksetzen) werden diese drei Auslöseschwellen wieder auf ihre Standardwerte von 110% Nennwert gebracht.

► So konfigurieren Sie den "Alarmton"

- 1. Schalten Sie den DC-Ausgang aus und betätigen Sie Taste Menu , um das Menü aufzurufen.
- 2. Navigieren Sie im Menü zu "HMI-Setup" und betätigen Sie Enter. Dann weiter zu "Alarmton" und wieder Enter betätigen.
- 3. Stellen Sie Parameter "Alarmton" auf EIN oder AUS, wie gewünscht.
- 4. Übernehmen Sie die Änderung(en) mit Enter bzw. verwerfen Sie sie mit ESC

3.7 Bedieneinheit (HMI) sperren

Um bei manueller Bedienung die versehentliche Verstellung eines Wertes zu verhindern, können die Drehknöpfe und auch die Tasten gesperrt werden, so daß keine Verstellung eines Wertes per Drehknopf angenommen wird, ohne die Sperre vorher wieder aufzuheben. Man hat die Wahl zwischen einer einfachen Sperre und einer, für die man eine PIN eingeben muß, um die Sperre zu aktivieren bzw. zu deaktivieren.

► So sperren Sie das Bedienfeld

- 1. Schalten Sie den DC-Ausgang aus und betätigen Sie Taste Menu , um das Menü aufzurufen.
- 2. Navigieren Sie im Menü zu "HMI-Setup" und betätigen Sie Enter. Dann weiter zu "HMI-Sperre" und wieder Enter betätigen.
- 3. Treffen Sie Ihre Wahl bei Parameter "HMI-Sperre". Die Einstellung "Alles sperren" würde nach dem Verlassen des Menüs bedeuten, daß man nicht mal den DC-Ausgang einschalten könnte. Mit Einstellung "EIN/AUS zulassen" ginge das wiederum. Falls Sie zusätzlich noch eine PIN eingeben möchten, um zu verhindern, daß jemand Anderes die Sperre aufheben kann, können Sie das über "Benutzer-PIN ändern" tun.
- 4. Die Sperre wird aktiviert, indem der Parameter "HMI-Sperre" mit Taste ^{Enter} bestätigt wird. Das Gerät verläßt daraufhin das Menü und springt in die Hauptanzeige. Der Status der HMI-Sperre wird in der Hauptanzeige durch "Gesperrt" und ein Schloßsymbol angezeigt.

Alternativ kann das HMI auch bei eingeschaltetem DC-Ausgang gesperrt werden, über das Schnellmenü. Mehr dazu in *"3.4.7. Das Schnellmenü"*.

Sobald bei gesperrtem HMI der Versuch unternommen wird, etwas am Bedienfeld zu betätigen, erscheint in der Anzeige eine Abfrage, ob man entsperren möchte.

► So entsperren Sie das Bedienfeld

- **1.** Betätigen Sie einen der Drehknöpfe oder drücken Sie irgendeine Taste (außer Taste **On**).
- 2. Es erscheint eine Abfrage: HMI gesperrt Zum Entsperren 'Enter' drücken.
- **3.** Entsperren Sie das HMI mittels Taste Enter innerhalb von 5 Sekunden. Ansonsten wird die Abfrage wieder ausgeblendet und das HMI bleibt weiterhin gesperrt. Sofern eine PIN aktiviert wurde, erscheint eine zweite Abfrage, in der die PIN eingegeben muß, ansonsten wird das Bedienfeld nicht freigegeben.

Profil 4

Profil 5

3.8 Nutzerprofile laden und speichern

Das Menü "**Profile**" dient zur Auswahl eines Profils, um es zu Laden, bzw. zum Wechsel zwischen einem Standardprofil und fünf Nutzerprofilen. Ein Profil ist eine Sammlung aller Einstellungen und aller Sollwerte. Bei Auslieferung des Gerätes bzw. nach einem Zurücksetzungsvorgang haben alle sechs Profile dieselben Einstellungen und sämtliche Sollwerte sind auf 0. Werden vom Anwender dann Einstellungen getroffen und Werte verändert, so geschieht das in einem Arbeitsprofil, das auch über das Ausschalten hinweg gespeichert wird. Dieses Arbeitsprofil kann in eins der fünf Nutzerprofile gespeichert bzw. aus diesen fünf Nutzerprofilen oder aus dem Standardprofil heraus geladen werden. Das Standardprofil selbst kann nur geladen werden.

Der Sinn von Profilen ist es, z. B. einen Satz von Sollwerten, Einstellgrenzen und Überwachungsgrenzen schnell zu laden, ohne diese alle jeweils immer neu einstellen zu müssen. Da sämtliche Einstellungen zum HMI mit im Profil gespeichert werden, also auch die Sprache, wäre beim Wechsel von einem Profil zum anderen auch ein Wechsel der Sprache des HMI möglich.

Bei Aufruf der Profilmenüseite und Auswahl eines Profil können dessen wichtigsten Einstellungen, wie Sollwerte, Einstellgrenzen usw. betrachtet, aber nicht verstellt werden.

So speichern Sie die aktuellen Werte und Einstellungen (Arbeitsprofil) in ein Nutzerprofil

- 1. Schalten Sie den DC-Ausgang aus und betätigen Sie Taste

 Menu
 , um das Menü aufzurufen.

 Profil 1
 Profil 3
- 2. Navigieren Sie im Menü zu "Profile" und betätigen Sie Enter.
- **3.** In der nun erscheinenden Auswahl (siehe oben) wählen Sie zwischen Nutzerprofil 1-5 aus, in welches Sie speichern wollen. Betätigen Sie Enter.
- **4.** In dem Untermenü wählen Sie "**Einst. in Profil n speichern**" und überschreiben Sie das Profil mit den aktuellen Einstellungen, indem Sie Enter betätigen.

So laden Sie ein Nutzerprofil

1. Schalten Sie den DC-Ausgang aus und betätigen Sie Taste Menu, um das Menü aufzurufen.

			Profi
2.	Navigieren Sie im Menü zu "Profile" und betätigen Sie	Enter.	

StdProfil	Profil 2	Profil 4
Profil 1	Profil 3	Profil 5

- **3.** In der nun erscheinenden Auswahl (siehe oben) wählen Sie das Nutzerprofil (1-5) aus, das Sie laden wollen. Bestätigen Sie mit Enter.
- **4.** Sie können nun über den Menüpunkt "**Profil n Übersicht**" die gespeicherten Einstellungen des Profils einsehen und prüfen, ob es das richtige zum Laden ist.
- 5. Danach wählen Sie im "Profil n laden" und durch Betätigung der Taste Enter werden dessen Einstellungen in das Arbeitsprofil geladen.

3.9 Weitere Anwendungen

3.9.1 Parallelschaltung mit Share Bus

Mehrere Geräte gleicher Art und gleichen Modells können zu einer Parallelschaltung verbunden werden, um eine höhere Gesamtleistung zu erzielen. Dabei werden alle Netzgeräte an ihren DC-Ausgängen verbunden, sowie zusätzlich über den Share-Bus. Der Share-Bus dient zur Ausregelung des Ausgangsspannung und daher auch des Ausgangsstromes, damit eine gleichmäßige Lastaufteilung erreicht wird.

In der Parallelschaltung muß dann ein Gerät als bestimmende Einheit festgelegt werden, die dann als "Share Bus Master" die "Share Bus Slaves" über den Share-Bus treibt. Dabei bleibt für den Master die volle Bedienbarkeit erhalten, auch bei Fernsteuerung über analoge oder digitale Schnittstelle. Die Slaves jedoch sind nur eingeschränkt bedienbar. Deren Sollwerte dienen dann nur als Obergrenzen, geregelt bzw. gestellt wird über den Share-Bus. Dabei ist ein Slave zwar fernsteuerbar, aber nicht vollständig wie der Master. Jedoch können Slaves ganz normal überwacht werden (Istwerte, Status), egal ob analog oder digital.

> Über den Share-Bus wird nur die Regelgröße U (Spannung) bestimmt. Das heißt, die DC-Ausgänge der Share-Bus-Slaves müssen manuell oder auch ferngesteuert ein- und ausgeschaltet werden, was bei analoger Fernsteuerung besonders einfach wird, wenn die Pins REM-SB der analogen Schnittstellen parallel verbunden werden. Bei digitaler Fernsteuerung und Nutzung des Ethernetports können alle DC-Ausgänge gleichzeitig geschaltet werden, wenn man Broadcastnachrichten verschickt.

3.9.1.1 Verkabelung der DC-Ausgänge

Der DC-Ausgang jedes beteiligten Gerätes wird hier einfach mit dem des nächsten Gerätes verbunden usw. Dabei sind möglichst kurze Kabel mit ausreichendem Querschnitt zu benutzen. Der Querschnitt richtet sich nach dem Gesamtstrom der Parallelschaltung.

3.9.1.2 Verkabelung des Share-Bus'

Der Share-Bus wird mittels einer zweipoligen, möglichst verdrillten Leitung von Gerät zu Gerät verbunden. Der Querschnitt ist dabei unkritisch. Wir empfehlen, 0.5 mm² bis 1 mm² zu verwenden.

Der Share-Bus ist gepolt. Achten Sie auf polrichtige Verkabelung!

Es können max. 10 Geräte über den Share-Bus verbunden werden.

3.9.1.3 Geräte für Share-Bus-Betrieb konfigurieren

Für den korrekten Share-Bus-Betrieb bei Parallelschaltung muß noch das Gerät, über welches das Gesamtsystem bedient werden soll, als Share-Bus-Master konfiguriert werden. Standardmäßig sind diese Netzgeräte als Share-Bus-Slaves eingestellt, so daß Konfiguration bei den Slaves entfallen kann.

Es darf immer nur eins der am Share-Bus verbundenen Geräte als Master eingestellt sein, sonst funktioniert der Share-Bus nicht.

So konfigurieren ein Gerät als Share-Bus-Master

1. Schalten Sie den DC-Ausgang aus und betätigen Sie Taste Menu , um das Menü aufzurufen. Navigieren Sie im Menü zu "Einstellungen" und betätigen Sie Enter

Sie im Menu zu "Einstellungen und betätigen Sie Enter

- 1. Navigieren Sie im Untermenü zu "Allgemein" und betätigen Sie Enter
- 2. Navigieren Sie mit der Pfeiltaste rechten Drehknopf auf "Master".
- 3. Übernehmen Sie die Änderung(en) mit Enter bzw. verwerfen Sie sie mit ESC

3.9.1.4 Bedienung des Share-Bus-Parallel-Systems

Nach erfolgreicher Konfiguration des Master-Gerätes und der Slave-Geräte sollten an Slave-Geräten noch die Sollwerte und Schutzeinstellungen überprüft und ggf. angepaßt werden, so daß sie bei allen Slaves gleich sind.

Die Slaves sind normal manuell bedienbar, reagieren jedoch nicht auf die Verstellung von Sollwerten, solange der Share-Bus verbunden ist und sofern ein Sollwert nicht niedriger eingestellt wird als beim Master-Gerät.

Das Master-Gerät ist ganz normal bedienbar.

3.9.1.5 Alarm- und andere Problemsituationen

Beim Share-Bus-Betrieb können, durch die Verbindung mehrerer Geräte und deren Zusammenarbeit, zusätzliche Problemsituationen entstehen, die beim Betrieb einzelner Geräte nicht auftreten würden. Es wurden für solche Fälle folgende Festlegungen getroffen:

- Falls ein oder mehrere Slave-Geräte AC-seitig ausfallen (ausgeschaltet am Netzschalter, Netzunterspannung) arbeiten sie nach der Wiederkehr automatisch wieder als Slaves weiter. Die restlichen Geräte arbeiten übergangslos weiter, jedoch reduziert sich die Gesamtleistung des Parallel-Systems
- Falls das Master-Gerät ausfällt oder wegen eines Defekt bzw. Überhitzung den DC-Ausgang abschaltet, bringt das gesamte Parallel-System keine Leistung mehr
- Falls mehrere Master-Geräte oder gar keines definiert wurde, kann das Share-Bus-Parallel-System nicht initialisiert werden

In Situationen, wo ein oder mehrere Geräte einen Gerätealarm wie OV oder PF erzeugen, gilt Folgendes:

• Jeder Gerätealarm eines Slaves wird nur auf der Anzeige des Slaves angezeigt.

3.9.2 Reihenschaltung

Reihenschaltung zweier oder mehrerer Geräte ist grundsätzlich zulässig. Es sind aus Sicherheits- und Isolationsgründen jedoch einige Dinge zu beachten:

- Beide Ausgangspole (DC- und DC+) sind über sog. X-Kondensatoren an PE (Gehäuse) gekoppelt
 - Kein DC-Minuspol eines Gerätes in der Reihenschaltung darf auf ein Potential >400 V gegenüber Erde (PE) angehoben werden!
 - Der Sharebus darf nicht verdrahtet werden!
 - Fernfühlung darf nicht verdrahtet werden!
 - Reihenschaltung darf nur mit Geräten gleichen Typs, also z. B. Netzgerät PS 9080-100 1U mit Netzgerät PS 9080-100 1U bzw. ähnlichen Modellen, wie PS 9080-120 2U, hergestellt werden

Die Reihenschaltung wird von der Firmware und Hardware der Geräte nicht zusätzlich unterstützt. Das bedeutet, die Geräte müssen, was die Sollwerte und den Zustand des DC-Ausgangs angeht, alle einzeln eingestellt und bedient werden, entweder manuell oder per Fernsteuerung. Bei Fernsteuerung ist eine nahezu synchrone Ansteuerung möglich, wenn über die Ethernetports per Broadcast-Sendung Sollwert- oder Setzbefehle an mehrere Geräte gleichzeitig gehen.

Verdeutlichung zur maximalen Anhebung irgendeines DC-Minus-Ausgang auf 400 V gegenüber PE, bei drei identischen Geräten mit je 200 V Nennspannung:

3.9.3 Betrieb als Batterielader

Ein Netzgerät kann, mit Einschränkungen, auch als Batterielader betrieben werden. Es fehlt dabei die Batterieüberwachung, eine eventuelle Trennung in Form eines Relais oder Schützes, sowie eine Ladeautomatik.

Folgendes gilt es zu beachten:

- Kein Verpolungsschutz! Gerät wird durch eine verpolt angeschlossene Batterie beschädigt, auch wenn es nicht eingeschaltet ist.
- Das Gerät hat intern eine aktive Entladeschaltung, die die Kapazitäten am Ausgang definiert entladen soll, damit die Ausgangsspannung nach dem Ausschalten des DC-Ausgangs schnell sinkt. Diese Schaltung würde bei ausgeschaltetem DC-Ausgang eine dauerhaft angeschlossene Batterie konstant entladen, eventuell sogar bis Tiefentladung. Ist das Gerät an sich jedoch ausgeschaltet, passiert das nicht. Es empfiehlt sich daher, den DC-Ausgang nur für das Ab- und Anklemmen der Batterie auszuschalten und ansonsten Erhaltungsladung zu betreiben.

4. Instandhaltung & Wartung

4.1 Wartung / Reinigung

Die Gerät erfordern keine Wartung. Reinigung kann, jenachdem in welcher Umgebung sie betrieben werden, früher oder später für die internen Lüfter nötig sein. Diese dienen zur Kühlung der internen Komponenten, die durch die zwangsweise entstehende, jedoch geringe Verlustleistung erhitzt werden. Stark verdreckte Lüfter können zu unzureichender Luftzufuhr führen und damit zu vorzeitiger Abschaltung des DC-Ausgangs wegen Überhitzung bzw. zu vorzeitigen Defekten.

Die Reinigung der internen Lüfter kann mit einem Staubsauger oder ähnlichem Gerät erfolgen. Dazu ist das Gerät zu öffnen.

4.2 Fehlersuche / Fehlerdiagnose / Reparatur

Im Fall, daß sich das Gerät plötzlich unerwartet verhält, was auf einen möglichen Defekt hinweist, oder es einen offensichtlichen Defekt hat, kann und darf es nicht durch den Anwender repariert werden. Konsultieren Sie bitte im Verdachtsfall den Lieferanten und klären Sie mit ihm weitere Schritte ab.

Üblicherweise wird es dann nötig werden, das Gerät an den Hersteller zwecks Reparatur (mit Garantie oder ohne) einzuschicken. Im Fall, daß eine Einsendung zur Überprüfung bzw. Reparatur ansteht, stellen Sie sicher, daß...

- Sie vorher Ihren Lieferanten kontaktiert und mit ihm abgeklärt haben, wie und wohin das Gerät geschickt werden soll
- es in zusammengebautem Zustand sicher für den Transport verpackt wird, idealerweise in der Originalverpackung.
- eine möglichst detaillierte Fehlerbeschreibung beiliegt.
- bei Einsendung zum Hersteller in ein anderes Land alle für den Zoll benötigten Papiere beiliegen.

4.2.1 Defekte Netzsicherung tauschen

Die Absicherung des Gerätes erfolgt über eine Schmelzsicherung (T16 A, 250 V, 35 mm), die sich im Gerät befindet.

Diese geht normalerweise nur im Fall eines Defektes des AC-Eingangskreises kaputt, kann aber testweise ersetzt werden, um festzustellen, ob doch kein Defekt vorliegt. Da das Gerät mit einem Garantiesiegel versehen ist, das durch das Öffnen gebrochen würde, muß in so einer Situation während der Garantiezeit zuerst der Hersteller kontaktiert werden, um im Einzelfall zu entscheiden, welche Maßnahmen zu erfolgen haben.

Außerhalb der Garantiezeit kann das Gerät problemlos, aber auf eigenes Risiko, geöffnet werden. Das erfolgt durch vorheriges Abziehen der Netzleitung und darauf folgendes Öffnen des Oberteils (je 5x Schraube seitlich, 1x Schraube hinten).

Es muß stets eine Sicherung gleichen Typs eingesetzt werden.

4.3 Firmwareaktualisierung (Updates)

4.3.1 Aktualisierung der Bedieneinheit (HMI)

Die Bedieneinheit (HMI) kann nur über einen PC und eine kleine Hilfssoftware, ein "Update Tool", aktualisiert werden. Dieses Tool ist entweder auf der beiliegenden CD oder auf der Webseite des Geräteherstellers zu finden bzw. auf Anfrage erhältlich, ebenso wie dazu benötigte Firmware-Datei. Weitere Instruktion sind in der Dokumentation des Update Tools zu finden.

4.3.2 Aktualisierung der Kommunikationseinheit (KE)

Die Kommunikationseinheit (KE) sollte nur über einen PC und eine Software, ein "Update Tool", aktualisiert werden. Dieses Tool ist entweder auf der beiliegenden CD oder auf der Webseite des Geräteherstellers zu finden bzw. auf Anfrage erhältlich, ebenso wie dazu benötigte Firmware-Datei.

Falls dieses "Update Tool" nicht zur Verfügung steht oder die Aktualisierung damit aus irgendeinem Grund nicht erfolgen konnte, kann die Aktualisierung über eine Alternativmethode erfolgen. Benötigte Hilfsmittel: 1x Sub-D-Stecker 15-polig (für die analoge Schnittstelle), etwas Draht, ein Lötkolben, die Firmware-Datei (*.bin).

So aktualisieren Sie das Gerät per Hand

1. Falls noch nicht vorhanden, bereiten Sie den Stecker (Bild zeigt Rückseite) vor:

Brücke zwischen Pin 5 und 6 Brücke zwischen Pin 13 und 14

- 2. Stecken Sie den Stecker auf die analoge Schnittstelle und verbinden sie ein USB-Kabel, z. B. das mitgelieferte, zwischen der USB-Buchse an der Geräterückseite und einem geeigneten PC. Schalten Sie das Gerät ein.
- **3.** Der PC öffnet daraufhin ein Wechsellaufwerk namens "FW UPDATE", z. B. mit Laufwerksbuchstabe G:. Falls nicht, warten Sie ein paar Sekunden und wiederholen ggf. Schritte 1 und 2.
- **4.** Öffnen Sie das neue Laufwerk mit einem Programm wie den Windows Explorer. In dem Laufwerk muß eine Datei namens "firmware.bin" sein. Löschen Sie diese.
- 5. Kopieren Sie die neue Firmware-Datei (*.bin), die Sie für Ihr Gerät von der Webseite des Geräte-Herstellers geladen oder auf Anfrage erhalten haben, in das Laufwerk. Warten Sie, bis der Kopiervorgang abgeschlossen ist.
- 6. Schalten Sie das Gerät und entfernen Sie noch den Stecker von der analogen Schnittstelle.
- 7. Schalten Sie das Gerät wieder ein während des Startvorgangs zeigt es in einem Informationsfenster u. A. die neue Firmwareversion, z. B. als "KE: 2.04" an. Dies ist die neue Firmwareversion der KE.

Die Gerät ist damit aktualisiert.

4.4 Gerät abgleichen (Nachjustierung)

4.4.1 Einleitung

Die Geräte der Serie PS 9000 1U verfügen über eine Nachjustierungsfunktion, die im Rahmen einer Kalibrierung dazu dient, Abweichungen zwischen den Stellwerten und tatsächlichen Werten bis zu einem gewissen Grad zu kompensieren. Gründe, die eine Nachjustierung der Gerätestellwerte nötig machen, gibt es einige: Bauteilalterung, Bauteilverschleiß, extreme Umgebungsbedingungen, häufige Benutzung.

Um festzustellen, ob die zulässige Toleranz bei Stellwerten überschritten wurde, erfordert es präzise externe Meßgeräte, deren Meßfehler weitaus geringer sein muß als der des Gerätes, jedoch höchstens die Hälfte der Toleranz des Gerätes betragen darf. Erst dann kann ein Vergleich zwischen Stellwert und tatsächlichem Ausgangswert gezogen werden.

Also wenn Sie z. B. den Strom des Modells PS 9080-100 1U bei den max. 100 A kalibrieren wollten, wobei der Strom in den technischen Daten mit einem max. Fehler von 0,2% angegeben ist, dürfte der zu verwende Meßshunt max. 0,1% Fehler haben, sollte jedoch möglichst noch besser sein. Auch und gerade bei hohen Strömen darf der Meßvorgang nicht zu lange dauern bzw. der Meßshunt nicht zu 100% belastet werden, weil er dann seinen eigenen max. Fehler voraussichtlich überschreiten wird. Bei z. B. 100 A wäre daher ein Shunt zu empfehlen, der für mindestens 25% mehr Strom ausgelegt ist.

Bei Strommessung über Shunts addiert sich außerdem der Fehler des Meßgeräts (Multimeter am Shunt) zu dem des Shunts. Die Summe der Fehler darf bzw. sollte die max. Fehlertoleranz des Gerätes nicht überschreiten.

4.4.2 Vorbereitung

Für eine erfolgreiche Messung und Nachkalibrierung werden bestimmte Meßmittel und Umgebungsbedingungen benötigt:

- Ein Meßmittel (Multimeter) für die Spannungsmessung, das im Meßbereich, in dem die Nennspannung des PS-Gerätes zu messen wäre, eine Fehlertoleranz besitzt, die maximal nur halb so groß ist wie die Spannungsfehlertoleranz des Netzgerätes. Dieses Meßmittel kann u. U. auch für die Messung der Shuntspannung benutzt werden
- Falls der Strom zu kalibrieren ist: geeigneter Meßshunt, der für mindestens 125% des Maximalstromes des Netzgerätes ausgelegt ist und der eine Fehlertoleranz besitzt, die maximal nur halb so groß ist wie die Stromfehlertoleranz des PS
- Normale Umgebungstemperatur von ca. 20-25°C
- Betriebswarmes PS-Gerät, das z. B. 10 Minuten mit 50% Leistung betrieben wurde
- Eine einstellbare Last, wie z. B. eine elektronische, die mind. 102% Spannung und Strom der Maximalwerte des zu kalibrierenden PS-Gerätes aufnehmen kann und die abgeglichen ist

Bevor es losgehen kann, sind noch einige Maßnahmen zu treffen:

- Das PS-Gerät mit der Last verbinden und warmlaufen lassen
- Für das Anschließen des Fernfühlungseingangs (SENSE) ein Verbindungskabel zum DC-Ausgang vorbereiten, aber noch nicht stecken
- Jegliche Fernsteuerung beenden
- Shunt zwischen Netzgerät und Last installieren und so plazieren, daß er durch Luftbewegung oder einen Lüfter gekühlt wird.
- Das Meßmittel am DC-Ausgang oder am Shunt anschließen, jenachdem ob zuerst Spannung oder Strom kalibriert werden soll

4.4.3 Abgleichvorgang

Nach der Vorbereitung kann der Abgleich starten. Wichtig ist jetzt die Reihenfolge. Generell müssen nicht immer alle drei Parameter abgeglichen werden, es wird aber empfohlen. Es gilt dabei:

Während die Ausgangsspannung abgeglichen wird, darf der Fernfühlungseingang nicht verbunden sein.

Die Erläuterung des Abgleichvorgangs erfolgt anhand des Beispiel-Modells PS 9080-100 1U. Andere Modelle sind auf gleiche Weise zu behandeln, mit entsprechenden Werten für Spannung und Strom des Netzgerätes.

4.4.3.1 Sollwerte

So gleichen Sie die Ausgangsspannung ab

- Spannungsmeßgerät am DC-Ausgang anschließen. Die Last auf etwas unter 5% des Nennstromes des Netzgerätes, hier z. B. 4 A, einstellen.
- 2. In der Anzeige des PS in das Menu wechseln, dann mit Taste Enter bestätigen. Mit den Pfeiltasten navigieren zu **"Abgleich"**. In der folgenden Übersicht **"Spannung"** wählen und Enter, danach **"Ausgang"** und zweimal mit Enter bestätigen. Das Gerät schaltet dann den DC-Ausgang ein.
- **3.** In nächsten Bildschirm wird eine bestimmte Ausgangsspannung gesetzt und gemessen (**U-mon**). Diese Anzeige lediglich mit Enter bestätigen.
- 4. Danach ist eine manuelle Eingabe erforderlich. Stellen Sie hier die mit dem externen Meßmittel gemessene Ausgangsspannung bei **Messwert:** mit dem rechten Drehknopf ein. Vergewissern Sie sich, daß der Wert richtig eingegeben wurde. Dann mit Enter bestätigen.

5. Wiederholen Sie Punkte 3. und 4. für die nächsten Schritte (insgesamt vier).

Sollte ein mit dem externen Meßmittel gemessener Wert zu stark von einem der durch das Gerät gemessenen Werte (**U-mon**) abweichen, wird der Abgleich keinen Erfolg haben und der Parameter kann vom Anwender nicht abgeglichen werden.

► So gleichen Sie den Ausgangsstrom ab

- 1. Die Last auf etwa 102% Nennstrom des PS-Gerätes, in diesem Beispiel dann rechnerisch 102 A einstellen.
- 2. In der Anzeige des PS in das Menu wechseln, dann mit Taste Enter bestätigen. Mit den Pfeiltasten navigieren zu "Abgleich". In der folgenden Übersicht "Strom" wählen und Enter, danach "Ausgang" und zweimal mit Enter bestätigen. Das Gerät schaltet dann den DC-Ausgang ein.
- **3.** In nächsten Bildschirm wird ein bestimmter Ausgangsstrom gesetzt und gemessen (**I-mon**). Diese Anzeige lediglich mit Enter bestätigen.
- 4. Danach ist eine manuelle Eingabe erforderlich. Stellen Sie hier den mit dem externen Meßmittel (Shunt) gemessenen Ausgangsstrom bei **Messwert:** mit dem rechten Drehknopf ein. Vergewissern Sie sich, daß

der Wert richtig eingegeben wurde. Dann mit Enter bestätigen.

5. Wiederholen Sie Punkte 3. und 4. für die nächsten Schritte (insgesamt vier).

Sollte ein mit dem externen Meßmittel gemessener Wert zu stark von einem der durch das Gerät gemessenen Werte (**I-mon**) abweichen, wird der Abgleich keinen Erfolg haben und der Parameter kann vom Anwender nicht abgeglichen werden.

Falls Fernfühlung (Sense) generell genutzt wird, sollte die Fernfühlungsspannung auch abgeglichen werden. Die Vorgehensweise ist dabei identisch mit dem Spannungsabgleich, außer daß hierbei der Fernfühlungseingang (Sense) mit dem DC-Ausgang des PS-Gerätes polrichtig verbunden sein muß.

So gleichen Sie die Ausgangsspannung für den Fernfühlungsbetrieb (Sense) ab

- 1. Die Last auf etwa 3% des Nennstromes des Netzgerätes, hier ~3 A, einstellen. Den Fernfühlungseingang (Sense) mit der Last verbinden. Dabei auf richtige Polarität achten.
- 2. Klemmen Sie ein externes Multimeter parallel zum DC-Anschluß an der Last.
- 3. n der Anzeige des PS in das Menu wechseln, dann mit Taste Enter bestätigen. Mit den Pfeiltasten navigieren zu "Abgleich". In der folgenden Übersicht "Sense-Spg." wählen und Enter, danach "Ausgang" und zweimal mit Enter bestätigen. Das Gerät schaltet dann den DC-Ausgang ein.
- **4.** In nächsten Bildschirm wird eine bestimmte Ausgangsspannung gesetzt und gemessen (**U-mon**). Diese Anzeige lediglich mit Enter bestätigen.
- 5. Danach ist eine manuelle Eingabe erforderlich. Stellen Sie hier die mit dem externen Meßmittel gemessene Fernfühlungsspannung bei **Messwert:** mit dem rechten Drehknopf ein. Vergewissern Sie sich, daß der Wert richtig eingegeben wurde. Dann mit ENTER bestätigen.
- 6. Wiederholen Sie Punkte 4. und 5. für die nächsten Schritte (insgesamt vier).

Spannung	Strom	Speichern
Sense-Spg.	Ab9leichdatum	

4.4.3.2 Istwerte

Die Vorgehensweise beim Abgleich der Istwerte für die Ausgangsspannung, den Ausgangsstrom und die Ausgangsspannung bei Fernfühlungsbetrieb ist weitgehend identisch mit der der Sollwerte. Der Unterschied ist nur, daß hierbei nichts eingegeben werden muß, sondern nur angezeigte Meßwerte bestätigt werden müssen, wie in der Anzeige dazu aufgefordert. Bitte beachten Sie, den angezeigten Meßwert jeweils erst nach etwa mindestens 2 Sekunden zu bestätigen, weil eine Einpendelung des Meßwertes gewartet wird.

4.4.3.3 Speichern und beenden

Zum Schluß kann noch über den Menüpunkt "Abgleichdatum" das Datum des Abgleichs im Format JJJJ / MM

/ TT eingegeben und mit Taste Enter übernommen, oder auch nur abgerufen werden.

Danach sollten die Abgleichwerte unbedingt noch über den Menüpunkt "Speichern" + Enter gespeichert werden.

Verlassen des Abgleichmenüs, ohne Menüpunkt "Speichern" mit Enter aufzurufen, verwirft alle ermittelten Abgleichdaten und die Abgleichprozedur müßte wiederholt werden!

4.5 Ersatzableitstrommessung nach DIN VDE 0701-1

Die nach DIN VDE 0701-1 durchgeführte Ersatzableitstrommessung führt unter Umständen zu Ergebnissen, die außerhalb der Norm liegen. Grund: die Messung wird in erster Linie an sog. Netzfiltern am Wechselspannungseingang der Geräte durchgeführt. Diese Filter sind oft **symmetrisch** aufgebaut. Das heißt, es ist unter Anderem jeweils ein Y-Kondensator von N und L nach PE geführt. Da bei der Messung N und L verbunden werden und der nach PE abfließende Strom gemessen wird, liegen somit **zwei** Kondensatoren parallel, was den gemessenen Ableitstrom **verdoppelt**.

Dies ist nach geltender Norm zulässig, bedeutet für die Messung aber, daß der ermittelte Wert **halbiert** werden muß, um dann festzustellen, ob er der Norm entspricht.

Zitat aus der Norm, Abschnitt 5.7.4:

"...Bei Geräten mit zweipoliger Abschaltung und symmetrischer kapazitiver Schaltung darf der Meßwert bei diesem Verfahren halbiert werden..."

Grafische Verdeutlichung der symmetrischen Schaltung:

Beispieldarstellung aus der Norm, Bild C.4a, ortsveränderliche Geräte der Schutzklasse I

5. Zubehör und Optionen

5.1 Übersicht

Zubehör und Optionen werden, sofern nötig, mit eigener Dokumentation geliefert und werden in diesem Dokument nicht näher erläutert.

6. Service & Support

6.1 Übersicht

Reparaturen, falls nicht anders zwischen Anwender und Lieferant ausgemacht, werden durch den Hersteller durchgeführt. Dazu muß das Gerät im Allgemeinen an den Hersteller eingeschickt werden. Es wird keine RMA-Nummer benötigt. Es genügt, das Gerät ausreichend zu verpacken, eine ausführliche Fehlerbeschreibung und, bei noch bestehender Garantie, die Kopie des Kaufbelegs beizulegen und an die unten genannte Adresse einzuschicken.

6.2 Kontaktmöglichkeiten

Bei Fragen und Problemen mit dem Betrieb des Gerätes, Verwendung von optionalen Komponenten, mit der Dokumentation oder Software kann der technische Support telefonisch oder per E-Mail kontaktiert werden.

Adressen	E-Mailadressen	Telefonnummern
EA Elektro-Automatik GmbH	Alle Themen:	Zentrale: 02162 / 37850
Helmholtzstr. 31-33	ea1974@elektroautomatik.de	Support: 02162 / 378566
41747 Viersen	_	
Deutschland		

EA-Elektro-Automatik GmbH & Co. KG

Entwicklung - Produktion - Vertrieb

Helmholtzstraße 31-33 41747 Viersen

Telefon: 02162 / 37 85-0 Telefax: 02162 / 16 230 ea1974@elektroautomatik.de www.elektroautomatik.de

Operating Guide

PS 9000 1U DC Laboratory Power Supply

Attention! This document is only valid for devices with firmware "KE: 2.06" and "HMI: 2.03", or higher. For availability of updates for your device check our website or contact us.

Doc ID: PS91UEN Revision: 03 Date: 07/2015 CE

TABLE OF CONTENTS

1 GENERAL

1.1	About this document	5
1.1.1	Retention and use	5
1.1.2	Copyright	5
1.1.3	Validity	5
1.1.4	Explanation of symbols	5
1.2	Warranty	5
1.3	Limitation of liability	5
1.4	Disposal of equipment	6
1.5	Product key	6
1.6	Intended usage	6
1.7	Safety	7
1.7.1	Safety notices	7
1.7.2	Responsibility of the user	7
1.7.3	Responsibility of the operator	8
1.7.4	User requirements	8
1.7.5	Alarm signals	9
1.8	Technical data	9
1.8.1	Approved operating conditions	9
1.8.2	General technical data	9
1.8.3	Specific technical data	10
1.8.4	Views	14
1.9	Construction and function	18
1.9.1	General description	18
1.9.2	Block diagram	18
1.9.3	Scope of delivery	18
1.9.4	The control panel (HMI)	19
1.9.5	Sense connector (remote sensing)	20
1.9.6	USB port	21
1.9.7	Ethernet port	21
1.9.8	Analog interface	21
1.9.9	Share Bus-Connection	21

2 INSTALLATION & COMMISSIONING

2.1	Transport and storage	22
2.1.1	Transport	22
2.1.2	Packaging	22
2.1.3	Storage	22
2.2	Unpacking and visual check	22
2.3	Installation	22
2.3.1	Safety procedures before installation and	
	use	22
2.3.2	Preparation	22
2.3.3	Installing the device	23
2.3.4	Connection to AC supply	23
2.3.5	Connection to DC loads	24
2.3.6	Grounding of the DC output	25
2.3.7	Connection of remote sensing	25
2.3.8	Connecting the "Share" bus	25
2.3.9	Connecting the analog interface	26
2.3.10	Connecting the USB port	26
2.3.11	Initial commission	26
2.3.12	Initial network setup	27

2.3.13	Commission after a firmware update or a	
	long period of non-use2	27

3 OPERATION AND APPLICATION

3.1	Important notes	28
3.1.1	Personal safety	28
3.1.2	General	28
3.2	Operating modes	28
3.2.1	Voltage regulation / Constant voltage	28
3.2.2	Current regulation / constant current / cur	rent
	limiting	28
3.2.3	Power regulation / constant power / power	er
	limiting	29
3.3	Alarm conditions	30
3.3.1	Power Fail	30
3.3.2	Overtemperature	30
3.3.3	Overvoltage	30
3.3.4	Overcurrent	30
3.3.5	Overpower	30
3.4	Manual operation	31
3.4.1	Switching on the device	31
3.4.2	Switching off the device	31
3.4.3	Configuration in the setup menu	31
3.4.4	Adjustment limits	35
3.4.5	Display modes for actual and set values .	36
3.4.6	Manual adjustment of set values	36
3.4.7	The quick menu	37
3.4.8	Switching the DC output on or off	37
3.5	Remote control	38
3.5.1	General	38
3.5.2	Control locations	38
3.5.3	Remote control via a digital interface	38
3.5.4	Remote control via the analog interface	
	(AI)	39
3.6	Alarms and monitoring	43
3.6.1	Definition of terms	43
3.6.2	Device alarm handling	43
3.7	Control panel (HMI) lock	44
3.8	Loading and saving a user profile	45
3.9	Other applications	46
3.9.1	Parallel operation in Share Bus mode	46
3.9.2	Series connection	47
3.9.3	Operation as battery charger	47

4 SERVICE AND MAINTENANCE

4.1	Maintenance / cleaning	
4.2	Fault finding / diagnosis / repair	
4.2.1	Replacing a defect mains fuse	48
4.3	Firmware updates	49

4.3.1	Update of control panel (HMI)	49
4.3.2	Update of communication unit (KE)	49
4.4	Calibration (readjustment)	50
4.4.1	Preface	50
4.4.2	Preparation	50
4.4.3	Calibration procedure	50

5 ACCESSORIES AND OPTIONS

6 SERVICE & SUPPORT

6.1	General	52
6.2	Contact options	52

1. General

1.1 About this document

1.1.1 Retention and use

This document is to be kept in the vicinity of the equipment for future reference and explanation of the operation of the device. This document is to be delivered and kept with the equipment in case of change of location and/or user.

1.1.2 Copyright

Reprinting, copying, also partially, usage for other purposes as foreseen of this manual are forbidden and breach may lead to legal process.

1.1.3 Validity

This manual is valid for the following equipment including derived variants.

Model	Article nr.	Model	Article nr.
PS 9080-50 1U	06230400	PS 9080-100 1U	06230405
PS 9200-25 1U	06230401	PS 9200-50 1U	06230406
PS 9360-15 1U	06230402	PS 9360-30 1U	06230407
PS 9500-10 1U	06230403	PS 9500-20 1U	06230408
PS 9750-06 1U	06230404	PS 9750-12 1U	06230409

Changes and modifications for special models will be listed in a separate document.

1.1.4 Explanation of symbols

Warning and safety notices as well as general notices in this document are shown in a box with a symbol as follows:

Symbol for a life threatening danger
Symbol for general safety notices (instructions and damage protection bans) or important infor- mation for operation
Symbol for general notices

1.2 Warranty

EA Elektro-Automatik guarantees the functional competence of the applied technology and the stated performance parameters. The warranty period begins with the delivery of free from defects equipment.

Terms of guarantee are included in the general terms and conditions (TOS) of EA Elektro-Automatik.

1.3 Limitation of liability

All statements and instructions in this manual are based on current norms and regulations, up-to-date technology and our long term knowledge and experience. The manufacturer accepts no liability for losses due to:

- Usage for purposes other than designed
- Use by untrained personnel
- Rebuilding by the customer
- Technical changes
- Use of not authorized spare parts

The actual delivered device(s) may differ from the explanations and diagrams given here due to latest technical changes or due to customized models with the inclusion of additionally ordered options.

1.4 Disposal of equipment

A piece of equipment which is intended for disposal must, according to European laws and regulations (ElektroG, WEEE) be returned to the manufacturer for scrapping, unless the person operating the piece of equipment or another, delegated person is conducting the disposal. Our equipment falls under these regulations and is accordingly marked with the following symbol:

1.5 Product key

Decoding of the product description on the label, using an example:

Special models are always derived from standard models and can vary in output voltage and current from those given.

1.6 Intended usage

The equipment is intended to be used, if a power supply or battery charger, only as a variable voltage and current source, or, if an electronic load, only as a variable current sink.

Typical application for a power supply is DC supply to any relevant user, for a battery charger the charging of various battery types and for electronic loads the replacement of an ohmic resistor by an adjustable DC current sink in order to load relevant voltage and current sources of any type.

- Claims of any sort due to damage caused by non-intended usage will not be accepted.
- All damage caused by non-intended usage is solely the responsibility of the operator.

1.7 Safety

1.7.1 Safety notices

	 Mortal danger - Hazardous voltage Electrical equipment operation means that some parts can be under dangerous voltage. Therefore all parts under voltage must be covered! All work on connections must be carried out under zero voltage (output not connected to load) and may only be performed by qualified and informed persons. Improper actions can cause fatal injury as well as serious material damage! Never touch cables or connectors directly after unplugging from mains supply as the danger of electric shock remains! Never touch the contacts on DC output terminal directly after switching off the DC output, because there still can dangerous voltage present, sinking more or less slowly depending on the load! There also can be dangerous potential between negative DC output to PE or positive DC output to PE due to charged X capacitors.
	The equipment must only be used as intended
	• The equipment is only approved for use within the connection limits stated on the product label.
	 Do not insert any object, particularly metallic, through the ventilator slots
	 Avoid any use of liquids near the equipment. Protect the device from wet, damp and conden- sation.
	 For power supplies and battery chargers: do not connect users, particularly low resistance, to devices under power; sparking may occur which can cause burns as well as damage to the equipment and to the user.
	 For electronic loads: do not connect power sources to equipment under power, sparking may occur which can cause burns as well as damage to the equipment and to the source.
\wedge	• ESD regulations must be applied when plugging interface cards or modules into the relative slot
	 Interface cards or modules may only be attached or removed after the device is switched off. It is not necessary to open the device.
	 Do not connect external power sources with reversed polarity to DC input or outputs! The equipment will be damaged.
	• For power supply devices: avoid where possible connecting external power sources to the DC output, and never those that can generate a higher voltage than the nominal voltage of the device.
	 For electronic loads: do not connect a power source to the DC input which can generate a volt- age more than 120% of the nominal input voltage of the load. The equipment is not protected against over voltage and may be irreparably damaged.
	 Never insert a network cable which is connected to Ethernet or its components into the master- slave socket on the back side of the device!

1.7.2 Responsibility of the user

The equipment is in industrial operation. Therefore the operators are governed by the legal safety regulations. Alongside the warning and safety notices in this manual the relevant safety, accident prevention and environmental regulations must also be applied. In particular the users of the equipment:

- must be informed of the relevant job safety requirements
- must work to the defined responsibilities for operation, maintenance and cleaning of the equipment
- before starting work must have read and understood the operating manual
- must use the designated and recommended safety equipment.

Furthermore, anyone working with the equipment is responsible for ensuring that the device is at all times technically fit for use.

1.7.3 Responsibility of the operator

Operator is any natural or legal person who uses the equipment or delegates the usage to a third party, and is responsible during its usage for the safety of the user, other personnel or third parties.

The equipment is in industrial operation. Therefore the operators are governed by the legal safety regulations. Alongside the warning and safety notices in this manual the relevant safety, accident prevention and environmental regulations must also be applied. In particular the operator has to

- be acquainted with the relevant job safety requirements
- identify other possible dangers arising from the specific usage conditions at the work station via a risk assessment
- introduce the necessary steps in the operating procedures for the local conditions
- regularly control that the operating procedures are current
- update the operating procedures where necessary to reflect changes in regulation, standards or operating conditions.
- define clearly and unambiguously the responsibilities for operation, maintenance and cleaning of the equipment.
- ensure that all employees who use the equipment have read and understood the manual. Furthermore the users are to be regularly schooled in working with the equipment and the possible dangers.

• provide all personnel who work with the equipment with the designated and recommended safety equipment Furthermore, the operator is responsible for ensuring that the device is at all times technically fit for use.

1.7.4 User requirements

Any activity with equipment of this type may only be performed by persons who are able to work correctly and reliably and satisfy the requirements of the job.

• Persons whose reaction capability is negatively influenced by e.g. drugs, alcohol or medication may not operate the equipment.

• Age or job related regulations valid at the operating site must always be applied.

Danger for unqualified users

Improper operation can cause person or object damage. Only persons who have the necessary training, knowledge and experience may use the equipment.

Delegated persons are those who have been properly and demonstrably instructed in their tasks and the attendant dangers.

Qualified persons are those who are able through training, knowledge and experience as well as knowledge of the specific details to carry out all the required tasks, identify dangers and avoid personal and other risks.

1.7.5 Alarm signals

The equipment offers various possibilities for signalling alarm conditions, however, not for danger situations. The signals may be optical (on the display as text) acoustic (piezo buzzer) or electronic (pin/status output of an analog interface). All alarms will cause the device to permanently or temporarily switch off the DC output.

The meaning of the signals is as follows:

Signal OT	Overheating of the device
(OverTemperature)	DC output will be switched off temporarily
	Non-critical
Signal OVP	• Overvoltage shutdown of the DC output due to high voltage entering the device or gen-
(OverVoltage)	erated by the device itself due to a defect or because the adjusted OVP threshold was lower than the actual output voltage
	Critical! The device and/or the load could be damaged
Signal OCP	 Shutdown of the DC output due to excess of the preset limit
(OverCurrent)	 Non-critical, protects the load from excessive current consumption
Signal OPP	 Shutdown of the DC output due to excess of the preset limit
(OverPower)	 Non-critical, protects the load from excessive power consumption
Signal PF	DC output shutdown due to AC undervoltage or defect of the AC input circuit
(Power Fail)	 Critical on overvoltage! AC input circuit could be damaged

1.8 Technical data

1.8.1 Approved operating conditions

- Use only inside dry buildings
- Ambient temperature 0-50°C
- Operational altitude: max. 2000 m above sea level
- Max 80% RH up to 30°C, linear decrease to 50% RH at 50°C

1.8.2 General technical data

Display: Dot matrix, 240pt x 64pt

Controls: 2 rotary knobs with button function, 6 pushbuttons

The nominal values for the device determine the maximum adjustable ranges.

1.8.3 Specific technical data

	Model 1U						
1500 W	PS 9080-50	PS 9200-25	PS 9360-15	PS 9500-10	PS 9750-06		
AC Input							
Input voltage	100264 V AC	100264 V AC	100264 V AC	100264 V AC	100264 V AC		
Input connection	1ph,N,PE	1ph,N,PE	1ph,N,PE	1ph,N,PE	1ph,N,PE		
Input frequency	50/60 Hz	50/60 Hz	50/60 Hz	50/60 Hz	50/60 Hz		
Input fuse (internal)	T16 A	T16 A	T16 A	T16 A	T16 A		
Leak current	< 3.5 mA	< 3.5 mA	< 3.5 mA	< 3.5 mA	< 3.5 mA		
Power factor	~ 0.99	~ 0.99	~ 0.99	~ 0.99	~ 0.99		
Idle mode power consumption	~ 70 W	~ 70 W	~ 70 W	~ 70 W	~ 70 W		
DC Output							
Max. output voltage U _{Max}	80 V	200 V	360 V	500 V	750 V		
Max. output current I _{Max}	50 A	25 A	15 A	10 A	6 A		
Max. output power P _{Max}	1500 W	1500 W	1500 W	1500 W	1500 W		
Overvoltage protection range	088 V	0220 V	0396 V	0550 V	0825 V		
Overcurrent protection range	055 A	027,5 A	017,6 A	011 A	06,6 A		
Overpower protection range	01650 W	01650 W	01650 W	01650 W	01650 W		
Temperature coefficient	Voltage / current	: 100 ppm/K	•	•	•		
Voltage regulation							
Adjustment range	081.6 V	0204 V	0367.2 V	0510 V	0765 V		
Accuracy ⁽¹ (at 23 ± 5°C)	< 0.1% U _{Nenn}	< 0.1% U _{Nenn}	< 0.1% U _{Nenn}	< 0.1% U _{Nenn}	< 0.1% U _{Nenn}		
Line regulation at $\pm 10\% \Delta U_{AC}$	< 0.02% U _{Nenn}	< 0.02% U _{Nenn}	< 0.02% U _{Nenn}	< 0.02% U _{Nenn}	< 0.02% U _{Nenn}		
Load regulation at 0100% load	< 0.05% U _{Nenn}	< 0.05% U _{Nenn}	< 0.05% U _{Nenn}	< 0.05% U _{Nenn}	< 0.05% U _{Nenn}		
Rise time 1090% ΔU	Max. 15 ms	Max. 15 ms	Max. 15 ms	Max. 15 ms	Max. 15 ms		
Compensation 10%->90% load	< 1.7 ms	< 1.4 ms	< 2.2 ms	< 2 ms	< 2 ms		
Display: Resolution	See section "1.9.	See section "1.9.4.4. Resolution of the displayed values"					
Display: Accuracy (3	≤ 0.2% U _{Nom}	≤ 0.2% U _{Nom}	≤ 0.2% U _{Nom}	≤ 0.2% U _{Nom}	≤ 0.2% U _{Nom}		
Ripple ⁽²	< 100 mV _{PP} < 5.2 mV _{RMS}	< 293 mV _{PP} < 51 mV _{RMS}	< 195 mV _{PP} < 33 mV _{RMS}	< 293 mV _{PP} < 63 mV _{RMS}	< 260 mV _{PP} < 40 mV _{RMS}		
Remote sensing compensation	Max. 5% U _{Nenn}	Max. 5% U _{Nenn}	Max. 5% U _{Nenn}	Max. 5% U _{Nenn}	Max. 5% U _{Nenn}		
Fall time (at no load) after switching DC output off	Down from 100%	6 to <60 V: less th	an 10 s	1	•		
Current regulation							
Adjustment range	051 A	025.5 A	015.3 A	010.2 A	06.12 A		
Accuracy ⁽¹ (at 23 ± 5°C)	< 0.2% I _{Nom}	< 0.2% I _{Nom}	< 0.2% I _{Nom}	< 0.2% I _{Nom}	< 0.2% I _{Nom}		
Line regulation at $\pm 10\% \Delta U_{AC}$	< 0.05% I _{Nom}	< 0.05% I _{Nom}	< 0.05% I _{Nom}	< 0.05% I _{Nom}	< 0.05% I _{Nom}		
Load regulation at 0100% ΔU _{OUT}	< 0.15% I _{Nom}	< 0.15% I _{Nom}	< 0.15% I _{Nom}	< 0.15% I _{Nom}	< 0.15% I _{Nom}		
Ripple ⁽²	< 75 mA _{PP}	< 29 mA _{PP}	< 10 mA _{PP}	< 9.2 mA _{PP}	< 4.1 mA _{PP}		
Display: Resolution	See section "1.9.	4.4. Resolution of	f the displayed val	ues"			
Display: Accuracy (3	≤ 0.2% I _{Nom}	≤ 0.2% I _{Nom}	≤ 0.2% I _{Nom}	≤ 0.2% I _{Nom}	≤ 0.2% I _{Nom}		
Power regulation							
Adjustment range	01530 W	01530 W	01530 W	01530 W	01530 W		
Accuracy ⁽¹ (at 23 ± 5°C)	< 1% P _{Nom}	< 1% P _{Nom}	< 1% P _{Nom}	< 1% P _{Nom}	< 1% P _{Nom}		
Line regulation at $\pm 10\% \Delta U_{AC}$	< 0.05% P _{Nom}	< 0.05% P _{Nom}	< 0.05% P _{Nom}	< 0.05% P _{Nom}	< 0.05% P _{Nom}		
Load regulation at 10-90% ΔU*ΔI	< 0.75% P _{Nom}	< 0.75% P _{Nom}	< 0.75% P _{Nom}	< 0.75% P _{Nom}	< 0.75% P _{Nom}		
Display: Resolution	See section "1.9.4.4. Resolution of the displayed values"						
Efficiency at 100% U _{DC}	~ 91%	~ 93%	~ 94%	~ 94%	~ 95%		
Efficiency at 100% I _{DC}	~ 89%	~ 90%	~ 92%	~ 92%	~ 94%		

(1 Related to the nominal values, the accuracy defines the maximum deviation between an adjusted values and the true (actual) value.

Example: a 80 V model has min. 0.1% voltage accuracy, that is 80 mV. When adjusting the voltage to 5 V, the actual value is allowed to differ max. 80 mV, which means it might be between 4.92 V and 5.08 V.

(2 RMS value: LF 0...300 kHz, PP value: HF 0...20MHz

(3 The display error adds to the error of the related actual value on the DC output

4 500 \W		Model 1U					
1500 W	PS 9080-50	PS 9200-25	PS 9360-15	PS 9500-10	PS 9750-06		
Analog interface (1							
Туре	Sub-D, 15 pole,	female			•		
Set value inputs	U, I, P	U, I, P	U, I, P	U, I, P	U, I, P		
Actual value output	U, I	U, I	U, I	U, I	U, I		
Control signals	DC on/off, Remote on/off	DC on/off, Remote on/off	DC on/off, Remote on/off	DC on/off, Remote on/off	DC on/off, Remote on/off		
Status signals	CV, OVP, OT	CV, OVP, OT	CV, OVP, OT	CV, OVP, OT	CV, OVP, OT		
Galvanic isolation to the device	e Max. 1500 V DC	Max. 1500 V DC	Max. 1500 V DC	Max. 1500 V DC	Max. 1500 V DC		
Insulation	Allowed float (po	otential shift) on the	e DC output:				
Negative terminal to PE Ma	ax. ±400 V DC	±400 V DC	±400 V DC	±400 V DC	±400 V DC		
Positive terminal to PE Ma	ax. +480 V DC	+600 V DC	+760 V DC	+900 V DC	+1150 V DC		
Miscellaneous							
Cooling	Temperature cor	ntrolled fans, front	inlet, rear exhaust				
Ambient temperature	050°C						
Storage temperature	-2070°C	-2070°C					
Humidity	< 80%, not cond	< 80%, not condensing					
Standards	EN 61010, EN 6	EN 61010, EN 61326					
Overvoltage category	2	2					
Protection class	1	1					
Pollution degree	2	2					
Operational altitude	< 2000 m	< 2000 m					
Digital interfaces							
Featured	1x USB-B, 1x Et	1x USB-B, 1x Ethernet					
Galvanic isolation from device	Max. 1500 V DC	Max. 1500 V DC					
USB specification	USB 2.0, socket	USB 2.0, socket type B, VCOM driver					
USB response time	SCPI: max. 5 ms	SCPI: max. 5 ms, ModBus: max. 5 ms					
Ethernet specification	RJ45, 10/100Mb	RJ45, 10/100Mbit, TCP/IP, ICMP, HTTP, DHCP					
Ethernet response time	SCPI: max. 7 ms	SCPI: max. 7 ms, ModBus: 9-17 ms					
Terminals							
Rear side	Share Bus, DC o	Share Bus, DC output, AC input, remote sensing, analog interface, USB-B, Ethernet					
Dimensions							
Enclosure (WxHxD)	19" x 1U x 463 n	19" x 1U x 463 mm					
Total (WxHxD)	483 x 44 x min. 8	565 mm					
Weight	~ 10.5 kg	~ 10.5 kg	~ 10.5 kg	~ 10.5 kg	~ 10.5 kg		
Article number	06230400	06230401	06230402	06230403	06230404		

(1 For technical specifications of the analog interface see "3.5.4.3 Analog interface specification" on page 40

3000 W	Model 1U						
	PS 9080-100	PS 9200-50	PS 9360-30	PS 9500-20	PS 9750-12		
AC Input							
Input voltage	207264 V AC	207264 V AC	207264 V AC	207264 V AC	207264 V AC		
Input connection	1ph,N,PE	1ph,N,PE	1ph,N,PE	1ph,N,PE	1ph,N,PE		
Input frequency	50/60 Hz	50/60 Hz	50/60 Hz	50/60 Hz	50/60 Hz		
Input fuse (internal)	T16 A	T16 A	T16 A	T16 A	T16 A		
Leak current	< 3.5 mA	< 3.5 mA	< 3.5 mA	< 3.5 mA	< 3.5 mA		
Power factor	~ 0.99	~ 0.99	~ 0.99	~ 0.99	~ 0.99		
Idle mode power consumption	~ 70 W	~ 70 W	~ 70 W	~ 70 W	~ 70 W		
DC Output							
Max. output voltage U _{Max}	80 V	200 V	360 V	500 V	750 V		
Max. output current I _{Max}	100 A	50 A	30 A	20 A	12 A		
Max. output power P _{Max}	3000 W	3000 W	3000 W	3000 W	3000 W		
Overvoltage protection range	088 V	0220 V	0396 V	0550 V	0825 V		
Overcurrent protection range	0110 A	055 A	033 A	022 A	013,2 A		
Overpower protection range	03300 W	03300 W	03300 W	03300 W	03300 W		
Temperature coefficient	Voltage / current: 100 ppm/K						
Voltage regulation							
Adjustment range	081.6 V	0204 V	0367.2 V	0510 V	0765 V		
Accuracy ⁽¹ (at 23 ± 5°C)	< 0.1% U _{Nenn}	< 0.1% U _{Nenn}	< 0.1% U _{Nenn}	< 0.1% U _{Nenn}	< 0.1% U _{Nenn}		
Line regulation at $\pm 10\% \Delta U_{AC}$	< 0.02% U _{Nenn}	< 0.02% U _{Nenn}	< 0.02% U _{Nenn}	< 0.02% U _{Nenn}	< 0.02% U _{Nenn}		
Load regulation at 0100% load	< 0.05% U _{Nenn}	< 0.05% U _{Nenn}	< 0.05% U _{Nenn}	< 0.05% U _{Nenn}	< 0.05% U _{Nenn}		
Rise time 1090% ΔU	Max. 15 ms	Max. 15 ms	Max. 15 ms	Max. 15 ms	Max. 15 ms		
Compensation 10%->90% load	< 1.7 ms	< 1.4 ms	< 2.2 ms	< 2 ms	< 2 ms		
Display: Resolution	See section 1.9.4.4. Resolution of the displayed values"						
Display: Accuracy ⁽³	≤ 0.2% U _{Nom}	≤ 0.2% U _{Nom}	≤ 0.2% U _{Nom}				
Ripple ⁽²	< 76 mV _{PP}	< 234 mV _{PP}	< 156 mV _{PP}	< 234 mV _{PP}	< 260 mV _{PP}		
Pomoto consing componention	< 4.2 IIIV _{RMS}	< 40 IIIV _{RMS}	Max 5% II	Max 5% II	Max 5% II		
Fall time (at no load) after	Down from 100% to <60 V: less than 10 s						
	0 102 4	0 51 0		0.204.0	0 12 24 4		
	0102 A	05TA	030.6 A	020.4 A	012.24 A		
Accuracy ($(at 23 \pm 5^{\circ}C)$	< 0.2% I _{Nenn}	< 0.2% I _{Nenn}	< 0.2% I _{Nenn}	< 0.2% I _{Nenn}	< 0.2% I _{Nenn}		
Line regulation at $\pm 10\% \Delta O_{AC}$	< 0.05% I _{Nenn}	< 0.05% I _{Nenn}	< 0.05% I _{Nenn}	< 0.05% I _{Nenn}	< 0.05% I _{Nenn}		
	< 0.15% I _{Nenn}	< 0.15% I _{Nenn}	< 0.15% I _{Nenn}	< 0.15% I _{Nenn}	< 0.15% I _{Nenn}		
	< 114 mA _{PP}	< 29 mA _{PP}	$ < 10 \text{ mA}_{PP}$	< 9.2 mA _{PP}	< 4.1 mA _{PP}		
	See section "7.9.	4.4. Resolution of	the displayed val				
Display: Accuracy (8	≤ 0.2% I _{Nom}	≤ 0.2% I _{Nom}	≤ 0.2% I _{Nom}	≤ 0.2% I _{Nom}	≤ 0.2% I _{Nom}		
Power regulation							
Adjustment range	03060 W	03060 W	03060 W	03060 W	03060 W		
Accuracy ⁽¹ (at 23 ± 5°C)	< 1% P _{Nenn}	< 1% P _{Nenn}	< 1% P _{Nenn}	< 1% P _{Nenn}	< 1% P _{Nenn}		
Line regulation at $\pm 10\% \Delta U_{AC}$	< 0.05% P _{Nenn}	< 0.05% P _{Nenn}	< 0.05% P _{Nenn}	< 0.05% P _{Nenn}	< 0.05% P _{Nenn}		
Load regulation at 10-90% ΔU*ΔI	$< 0.75\% P_{Nenn}$ $ < 0.75\% P_{Nenn}$ $ < 0.75\% P_{Nenn}$ $ < 0.75\% P_{Nenn}$ $ < 0.75\% P_{Nenn}$						
Display: Resolution	See section "1.9.4.4. Resolution of the displayed values"						
Efficiency at 100% U _{DC}	~ 91%	~ 93%	~ 94%	~ 94%	~ 95%		
Efficiency at 100% I _{DC}	~ 89%	~ 90%	~ 92%	~ 92%	~ 94%		

(1 Related to the nominal values, the accuracy defines the maximum deviation between an adjusted values and the true (actual) value.

Example: a 80 V model has min. 0.1% voltage accuracy, that is 80 mV. When adjusting the voltage to 5 V, the actual value is allowed to differ max. 80 mV, which means it might be between 4.92 V and 5.08 V.

(2 RMS value: LF 0...300 kHz, PP value: HF 0...20MHz

(3 The display error adds to the error of the related actual value on the DC output

2000 14/	Model 1U							
3000 VV	PS 9080-100	PS 9200-50	PS 9360-30	PS 9500-20	PS 9750-12			
Analog interface (1								
Туре	Sub-D, 15 pole,	Sub-D, 15 pole, female						
Set value inputs	U, I, P	U, I, P	U, I, P	U, I, P	U, I, P			
Actual value output	U, I	U, I	U, I	U, I	U, I			
Control signals	DC on/off, Remote on/off	DC on/off, Remote on/off	DC on/off, Remote on/off	DC on/off, Remote on/off	DC on/off, Remote on/off			
Status signals	CV, OVP, OT	CV, OVP, OT	CV, OVP, OT	CV, OVP, OT	CV, OVP, OT			
Galvanic isolation to the device	Max. 1500 V DC	Max. 1500 V DC	Max. 1500 V DC	Max. 1500 V DC	Max. 1500 V DC			
Insulation	Allowed float (po	Allowed float (potential shift) on the DC output:						
Negative terminal to PE Ma	k. ±400 V DC	±400 V DC	±400 V DC	±400 V DC	±400 V DC			
Positive terminal to PE Ma	k. +480 V DC	+600 V DC	+760 V DC	+900 V DC	+1150 V DC			
Miscellaneous								
Cooling	Temperature controlled fans, front inlet, rear exhaust							
Ambient temperature	050°C							
Storage temperature	-2070°C							
Humidity	< 80%, not cond	< 80%, not condensing						
Standards	EN 61010, EN 61326							
Overvoltage category	2	2						
Protection class	1							
Pollution degree	2	2						
Operational altitude	< 2000 m	< 2000 m						
Digital interfaces								
Featured	1x USB-B, 1x Ethernet							
Galvanic isolation from device	Max. 1500 V DC	Max. 1500 V DC						
USB specification	USB 2.0, socket	USB 2.0, socket type B, VCOM driver						
USB response time	SCPI: max. 5 ms, ModBus: max. 5 ms							
Ethernet specification	RJ45, 10/100Mbit, TCP/IP, ICMP, HTTP, DHCP							
Ethernet response time	SCPI: max. 7 ms, ModBus: 9-17 ms							
Terminals								
Rear side	Share Bus, DC c	Share Bus, DC output, AC input, remote sensing, analog interface, USB-B, Ethernet						
Dimensions								
Enclosure (WxHxD)	19" x 1U x 463 mm							
Total (WxHxD)	483 x 44 x min. 8	483 x 44 x min. 565 mm						
Weight	~ 11 kg	~ 11 kg	~ 11 kg	~ 11 kg	~ 11 kg			
Article number	06230405	06230406	06230407	06230408	06230409			

(1 For technical specifications of the analog interface see "3.5.4.3 Analog interface specification" on page 40

EA Elektro-Automatik GmbH Helmholtzstr. 31-33 • 41747 Viersen Germany

Figure 5 - Top view

Figure 6 - Control Panel

Overview of the elements of the operating panel

For a detailed description see section "1.9.4. The control panel (HMI)".

(1)	Display						
(')	Used for indication of set values, menus, conditions, actual values and status.						
	Left hand rotary knob, with pushbutton function						
(2)	Turn: adjusts v	Turn: adjusts various set values which are related to the DC output voltage.					
	Push: selects t	he decimal position of a value to be changed (cursor)					
	Button bank						
	Button Menu	Activates the setup menu for various device settings (see "3.4.3. Configuration in the setup					
	menu")						
	Button 1:	Navigates through menus, submenus and parameters (direction: up / left) or changes view mode					
(3)	Button 丰 :	Navigates through menus, submenus and parameters (direction: down / right) or changes view mode					
	Button Enter:	Submits altered parameters or set values in submenus, as well enters submenus. Can					
		also be used to acknowledge alarms.					
	Button ESC :	Cancels changes of parameters in the setup menu or leaves submenus					
	Right hand ro	tary knob, with pushbutton function					
(4)	Turn: adjusts various set values which are related to the DC output current, the DC output power. Also adjusts parameters in the setup menu.						
	Push: selects the decimal position of a value to be changed (cursor)						
	On/Off Button for DC output On •						
(5)	Used to toggle the state of the	the DC output between on and off, also used to acknowledge alarms. The LED indicates DC output, no matter if the device is manually controlled or remotely (LED on = output on).					

1.9 Construction and function

1.9.1 General description

The electronic high performance power supplies of the PS 9000 1U series are especially suitable for test systems and industrial controls due to their compact construction in a 19" enclosure with 2 height units (2U).

For remote control using a PC or PLC the devices are provided as standard with a USB-B slot and an Ethernet port on the back side as well as a galvanically isolated analog interface. All interfaces are galvanically isolated up to 1500 V DC.

In addition, the devices offer as standard the possibility for parallel connection in Share bus operation for constant current sharing. Operating in this way allows up to 10 units to be combined to a single system with a total power of up to 30 kW.

All models are controlled by microprocessors. These enable an exact and fast measurement and display of actual values.

1.9.2 Block diagram

The block diagram illustrates the main components inside the device and their relationships.

There are digital, microprocessor controlled components (KE, DR, BE), which can be target of firmware updates.

1.9.3 Scope of delivery

- 1 x Power supply device
- 1 x AC cord (IEC type plug, 250 V, 16 A)
- 1 x Printed operating guide
- 1 x Share Bus plug
- 1 x Remote sensing plug
- 1 x 1.8 m USB cable
- 1 x CD "Drivers & Tools"

1.9.4 The control panel (HMI)

The HMI (Human Machine Interface) consists of a display, two rotary knobs with pushbutton function and six pushbuttons.

1.9.4.1 Display

The graphic display is divided into a number of areas. In normal operation the left upper half is used to show actual values and the lower half is used to display status information and set values:

Actual values area (upper half)

In normal operation the DC output values (large numbers) of voltage and current resp. of power are displayed, depending on the selected view mode. The display format of values is according to what's listed in *1.9.4.4*.

Furthermore, the actual regulation mode **CV**, **CC** or **CP** (see *"*3.2. *Operating modes"*) is displayed here, as well as alarms with abbreviations (**OT**, **OVP**, **OCP**, **PF**, **OPP**). For details refer to *"*3.3. *Alarm conditions"*.

• Set values area (lower half, left and right side)

The set values of voltage and current (mode: U/I) resp. of voltage and power (mode: U/P) are displayed here and are adjustable with the left hand and right hand rotary knobs when operating the device manually. While doing so, the digit to adjust can be selected by pushing the corresponding rotary knob, in order to move the cursor. The left hand rotary knob is always assigned to the DC output voltage and related parameters like OVP or U-max, whereas the right hand rotary knobs is either assigned to the DC output current and related parameters or to the DC output power. In remote control condition, no matter if analog or digital, the set values given from remote are displayed here.

Logically, the values are increased by clockwise turning and decreased by anti-clockwise turning, unless they are somehow limited by a maximum value or an adjustment limit (see *"3.4.4. Adjustment limits"*).

Display	Unit	Range	Description
Actual voltage	V	0-125% U _{Nom}	Actual values of DC output voltage
Set value voltage	V	0-102% U _{Nom}	Set value for limiting the DC output voltage
Actual current	A	0.1-125% I _{Nom}	Actual value of DC output current
Set value current	A	0-102% I _{Nom}	Set value for limiting the DC output current
Actual power	W	0-125% P _{Nom}	Actual value of output power, P = U * I
Set value power	W	0-102% P _{Nom}	Set value for limiting DC output power
Adjustment limits	A, V, kW	0-102% Nominal val.	U-max, I-min etc., related to the physical units
Protection settings	A, V, kW	0-110% Nominal val.	OVP, OCP etc., related to the physical units

General display and settings ranges:

• Status area (lower half, middle)

This area shows the control location mode (see *"3.5.2. Control locations"*) or another status (see table below). In case pushbutton Menu is activated while the output is on, the quick menu (see *"3.4.7. The quick menu"*) will be displayed:

This area furthermore displays various status texts:

Display	Description
Locked	The HMI is locked
Remote	The device is under remote control from
Analog	the built-in analog interface
USB	the built-in USB port or a plug in interface module
Ethernet	the built-in Ethernet/LAN port
Local	The device has been locked by the user explicitly against remote control

1.9.4.2 Rotary knobs

 \bigcirc

As long as the device is in manual operation, the two rotary knobs are used to adjust set values, as well as setting the parameters in the settings menu. For a detailed description of the individual functions see section *"3.4 Manual operation" on page 31*.

1.9.4.3 Pushbutton function of the rotary knobs

The rotary knobs also have a pushbutton function which is used in all menu options for value adjustment to move the cursor by rotation as shown:

1.9.4.4 Resolution of the displayed values

In the display, set values can be adjusted in fixed increments. The number of decimal places depends on the device model. The values have 4 or 5 digits, while actual and set values related to the same physical unit always have the same number of digits.

Adjustment resolution and number of digits of set values in the display:

Va OVP, U-	je, , U-max	Current, OCP, I-min, I-max			Power, OPP, P-max			
Nominal	Digits	Min. incre- ment	Nominal	Digits	Min. incre- ment	Nominal	Digits	Min. incre- ment
80 V	4	0.01 V	6 A	4	0.001 A	1500 W	4	1 W
200 V	5	0.01 V	10 A / 12 A	5	0.001 A	3000 W	4	1 W
360 V / 500 V	4	0.1 V	15 A / 20 A	5	0.001 A			
750 V	4	0.1 V	25 A	5	0.001 A			
			30 A / 50 A	4	0.01 A			
			100 A	5	0.01 A			

In manual operation every set value can be set in the increments given above. In this case the actual output values set by the device will lie within percentage tolerances as shown in the technical data sheets. These will influence the actual values.

1.9.5 Sense connector (remote sensing)

During constant voltage operation (CV) and in case the adjusted output voltage has to be held constant on the load and not on the power supply's DC output, remote sensing can be used in order to compensate for the voltage drop on cables up to a certain limit. The maximum possible compensation is given in the technical data.

1.9.6 USB port

The USB-B port on the back side of the device is provided for communication with the device and for firmware updates. The included USB cable can be used to connect the device to a PC (USB 2.0, USB 3.0). The driver is delivered on the included CD or is available as download and installs a virtual COM port. Details for remote control can be found in external documentation, a general programming guide, on the web site of the manufacturer or on the included CD.

The device can be addressed via the USB port either using the international standard ModBus protocol or by SCPI language. The device recognises the message protocol used automatically.

If remote control is in operation the USB port has no priority over either the analog interface or the Ethernet interface and can, therefore, only be used alternatively to these. However, monitoring is always available.

1.9.7 Ethernet port

The Ethernet port on the back side of the device (standard version of device only) is provided for communication with the device in terms of remote control or monitoring. The user has basically two options of access:

1. A website (HTTP, port 80) which is accessible in a standard browser under the IP or the host name given for the device. This website offers to configuration page for network parameters, as well as a input box for SCPI commands.

2. TCP/IP access via a freely selectable port (except 80 and other reserved ports). The standard port for this device is 5025, default IP is 192.168.0.2. Via TCP/IP and this port, communication to the device can be established in most of the common programming languages.

Using the Ethernet port, the device can either be controlled by commands from SCPI or ModBus protocol, while automatically detecting the type of message.

The network setup can be done manually or by DHCP. The transmission speed is set to "Auto negotiation" and means it can use 10MBit/s or 100MBit/s. 1GB/s is not supported. Duplex mode is always full duplex.

If remote control is in operation the Ethernet port has no priority over either the analog interface or the USB interface and can, therefore, only be used alternatively to these. However, monitoring is always available.

1.9.8 Analog interface

This 15 pole Sub-D socket on the back side of the device is provided for remote control of the device via analog signals or switching conditions.

If remote control is in operation this analog interface can only be used alternately to the digital interface. However, monitoring is always available.

The input voltage range of the set values and the output voltage range of the monitor values, as well as reference voltage level can be switched in the settings menu of the device between 0-5 V and 0-10 V, in each case for 0-100%.

1.9.9 Share Bus-Connection

The 2 pole WAGO socket ("Share") on the back side of the device is provided for connection to equally named sockets on compatible power supplies series to achieve a balanced load current distribution during parallel connection of up to 10 units. Following power supply series are compatible:

• PS 9000 2U/3U

2. Installation & commissioning

2.1 Transport and storage

2.1.1 Transport

- The handles on the front side of the device are not for carrying!
- Do not transport when switched on or connected!
- When relocating the equipment use of the original packing is recommended
- The device should always be carried and mounted horizontally
- Use suitable safety clothing, especially safety shoes, when carrying the equipment, as due to its weight a fall can have serious consequences.

2.1.2 Packaging

It is recommended to keep the complete transport packaging for the lifetime of the device for relocation or return to the manufacturer for repair. Otherwise the packaging should be disposed of in an environmentally friendly way.

2.1.3 Storage

In case of long term storage of the equipment it is recommended to use the original packaging or similar. Storage must be in dry rooms, if possible in sealed packaging, to avoid corrosion, especially internal, through humidity.

2.2 Unpacking and visual check

After every transport, with or without packaging, or before commissioning, the equipment should be visually inspected for damage and completeness using the delivery note and/or parts list (see section *"1.9.3. Scope of delivery"*). An obviously damaged device (e.g. loose parts inside, damage outside) must under no circumstances be put in operation.

2.3 Installation

2.3.1 Safety procedures before installation and use

- When using a 19" rack, rails suitable for the width of the housing and the weight of the device are to be used. (see *"1.8.3. Specific technical data"*)
- Before connecting to the mains ensure that the connection is as shown on the product label. Overvoltage on the AC supply can cause equipment damage.

2.3.2 Preparation

Mains connection for a PS 9000 1U series device is done via the included 2 meters long 3 pole mains cord. In case a different AC wiring is required, make sure that the other cable has a minimum cross section of 1.5 mm² (AWG 12).

Dimensioning of the DC wiring to the load/consumer has to reflect the following:

- The cable cross section should always be specified for at least the maximum current of the device.
- Continuous operation at the approved limit generates heat which must be removed, as well as voltage loss which depends on cable length and heating. To compensate for these the cable cross section should be increased and the cable length reduced.

2.3.3 Installing the device

- Select the location for the device so that the connection to the load is as short as possible!
- Leave sufficient space behind the equipment, minimum 30cm, for ventilation!
- The device is not stackable!
 - Do not put anything with a total weight of more than 1kg on top of the device!

A device in a 19" housing will usually be mounted on suitable rails and installed in 19" racks or cabinets. The depth of the device and its weight must be taken into account. The handles on the front are for sliding in and out of the cabinet. Slots on the front plate are provided for fixing the device (fixing screws not included).

Acceptable and inacceptable installation positions:

2.3.4 Connection to AC supply

 The device can be connected to any wall socket or multi-socket outlet, as long as those feature a safety contact (PE) and are capable for 16 A.
 When connecting the device to a multi-socket outlet, along with other electric devices, it is important to consider the total power consumption of all devices on the outlet, so that the maximum current (power ÷ mininum voltage) does not exceed the definition for the wall socket, the multi-socket outlet and/or main distribution
Before plugging in the input plug ensure that the device is switched off by its mains switch!

The device is delivered with a 3 pole mains cord (L, N, PE). If the device is going to be connected to a standard 2-phase or 3-phase supply, following leads and phases are required:

Nominal power	Phases	Supply type	
1.5 kW / 3 kW	L1 or L2 or L3, N, PE	At least wall socket 16 A	

The default input values of all models in this series are: 230 V, 16 A, 50 Hz. It is internally fused with 16 A. The 16 A input definition is due to the AC input current depending on the higher intake at low AC voltage (for minimum input voltage see technical specs).

2.3.5 Connection to DC loads

• Connection to and operation with transformerless DC-AC inverters (for example solar inverters) is restricted, because the inverter can shift the potential of negative output (DC-) against PE (ground), which is generally limited to max. 400 V DC.

The DC load output is on the rear side of the device and is **not** protected by a fuse. The cross section of the connection cable is determined by the current consumption, cable length and ambient temperature.

For cables up to 1.5 m and average ambient temperature up to 50°C, we recommend:

up to 10 A :	0,75 mm² (AWG18)	up to 15 A :	1,5 mm² (AWG14)
up to 30 A :	4 mm² (AWG10)	up to 40 A :	6 mm² (AWG8)
up to 60 A :	16 mm² (AWG4)	up to 100 A :	25 mm² (AWG2)

per lead (multi-conductor, insulated, openly suspended). Single cables of, for example, 70 mm² may be replaced by e.g. $2x35 \text{ mm}^2$ etc. If the cables are long then the cross section must be increased to avoid voltage loss and overheating.

2.3.5.1 DC terminal

The table below shows an overview of the various DC terminals. It is recommended that connection of load cables always utilises flexible cables with ring lugs.

M6 bolt on a nickel plated copper bar

Recommendation: Ring lugs with a 6 mm hole

2.3.5.2 Cable lead and plastic cover

A plastic cover for contact protection is included for the DC terminal. It should always be installed.

The connection angle and the required bending radius for the DC cable must be taken into account when planning the depth of the complete device, especially when installing in a 19" cabinet or similar. In case, the plastic DC cover is going to be used, only horizontal lead of the cables is possible.

2.3.6 Grounding of the DC output

Individually operated devices can always be grounded from the DC minus pole, i.e. can be directly connected to PE. The DC plus pole, however, if it is to be grounded, may only be so for output voltages up to 400 V, unless stated otherwise in the technical specifications.

For this reason, for all models which can provide an output voltage of more than 400 V, earthing of the DC plus pole is not recommended, because it will shift the potential of the DC minus pole in negative direction, up to the maximum output voltage. If the output voltage is not adjusted higher than 400 V, grounding the DC plus pole is allowed with restrictions.

Grounding of the DC-plus pole for any model with >400 V nominal voltage only at one's own risk! Risk of damaging the device! Risk of voiding warranty!
 Digital and analog interface are galvanically isolated from the DC output and should never be grounded, but under no circumstances if any of the DC output poles is grounded too, because this will cancel the galvanic isolation
 If grounding one of the DC output poles check if any pole of the load is already grounded. This could lead to a short circuit!

2.3.7 Connection of remote sensing

In order to compensate, to a certain degree, the voltage loss in a DC cable, the device provides the possibility to connect the remote sensing input "Sense" to the load. The device recognizes the remote sensing mode automatically and regulates the output voltage (only in CV operation) at the load rather than at its own DC output.

In the technical specifications (see section *"1.8.3. Specific technical data"*) the level of maximum possible compensation is given. If that is insufficient, the cable cross section must be increased.

Both pins "NC" of the Sense connector must not be wired!

- The cross section of the sense cables is noncritical. However, it should be increased with increasing cable length. Recommendation: for cables up to 5 m use at least 0.5 mm²
- Sense cables should be twisted and laid close to the DC cables to damp oscillation. If necessary, an additional capacitor should be installed at the load/consumer to eliminate oscillation
- The sense cables must be connected + to + and to at the load, otherwise both systems may be damaged

Figure 7 - Example for remote sensing wiring

2.3.8 Connecting the "Share" bus

The "Share" connector on the back side is intended to balance the current of multiple units in parallel operation, especially when using the integrated function generator of the master unit. For further information about this mode of operation can be found in section *"3.9.1. Parallel operation in Share Bus mode"*.

For the connection of the share bus the following must be paid attention to:

• Connection is only permitted between compatible devices (see "1.9.9. Share Bus-Connection" for details) and between a max. of 10 units

2.3.9 Connecting the analog interface

The 15 pole connector (Type: Sub-D, D-Sub) on the rear side is an analog interface. To connect this to a controlling hardware (PC, electronic circuit), a standard plug is necessary (not included in the scope of delivery). It is generally advisable to switch the device completely off before connecting or disconnecting this connector, but at least the DC output.

The analog interface is galvanically isolated from the device internally. Therefore do not connect any ground of the analog interface (AGND) to the DC minus output as this will cancel the galvanic isolation.

2.3.10 Connecting the USB port

In order to remotely control the device via this port, connect the device with a PC using the included USB cable and switch the device on.

2.3.10.1 Driver installation (Windows)

On the initial connection with a PC the operating system will identify the device as new hardware and will install the driver. The driver is a Communications Device Class (CDC) type and is usually integrated in current operating systems such as Windows 7 or XP and is therefore not provided additionally. There are, however, versions such as Windows 7 Embedded in which the class of driver is not installed or does not function.

On the included CD is a driver information file (*.inf) which can install the device as a virtual COM port (VCOM).

Following recognition, the USB equipment will first be listed in the Windows Device Manager as "other hardware" (Windows 7) and the driver may possibly not be fully installed. In this case take the following steps:

- 1. In Windows Device Manager click with right mouse button on the not fully installed hardware. Select "Update driver".
- 2. Windows will ask if the driver should be automatically searched or whether it should be located and installed manually. Select the latter (second choice in the dialogue window).
- 3. In the next dialogue window the driver source path will be determined. Click on "Search" and enter the folder of the USB driver from the "Drivers & Tools" CD or the path to the downloaded and unpacked driver. Allow Windows to install the driver. A message that the driver is not digitally signed can be submitted with "Ignore".

2.3.10.2 Driver installation (Linux, MacOS)

We cannot provide drivers or installation instructions for these operating systems. Whether a suitable driver is available is best carried out by searching the Internet.

2.3.10.3 Alternative drivers

In case the CDC drivers described above are not available on your system, or for some reason do not function correctly, commercial suppliers can help. Search the Internet for suppliers using the keywords "cdc driver windows" or "cdc driver linux" or "cdc driver macos".

2.3.11 Initial commission

For the first start-up after purchasing and installing the device, the following procedures have to be executed:

- Confirm that the connection cables to be used are of a satisfactory cross section
- Check that the default settings for set values, safety and monitoring functions and communication are suitable for your application and change them where necessary, as described in the manual
- In case of remote control via PC, read the additional documentation for interfaces and software
- In case of remote control via the analog interface, read the section in this manual concerning analog interfaces and, where needed, other appropriate documentation especially concerning the use of such interfaces

2.3.12 Initial network setup

The device is delivered with default network parameters (see *"3.4.3.6. Menu "Communication""*). The Ethernet/ LAN port is immediately ready for use after the initial commission. Default parameters:

IP: 192.168.0.2

Subnet mask: 255.255.255.0

Gateway: 192.168.0.1

Port: 5025

DHCP: off

For wiring, i.e. the hardware connection to a network, contact and ask your IT manager or any similar responsible person. Network cable of common type (CAT5 or better) can be used.

In order to set up the network parameter to your needs, you have three options: the setup menu or the device's website or the software "EA Power Control", which is available since April 2015 as download or included with your device. For the configuration in the setup menu please refer to *"3.4.3.6. Menu "Communication"*".

For the configuration via the device's website or EA Power Control, you need the device to be connected to a network or directly to a PC which can access the default IP 192.168.0.2.

► How to do the network setup on the device website

- **1.** In case the device display is in any kind of menu, lave menu to main display.
- 2. Open the device website in a browser by entering the default IP (http://192.168.0.2) or the default host name (http://Client, only possible if there is a running DNS in the network) into the URL box.
- **3.** After the website has been completely loaded, check the status field item "**Access**" to show the status "**free**". In case it shows different, the device is either already in remote control (**rem**) or blocked from remote control (**local**). If it shows "**local**", first remove the block. Refer to section *"*3.5.2. Control locations" to do that.
- **4.** If it says "**rem**" in the "**Access**" item, skip to step 4. Else enter command **syst:lock on** (attention! space before **on**) into the **SCPI command** box and send with return key. Check if item "**Access**" in status field changes to "**rem-eth**" (means: remote Ethernet).
- 5. Switch to page **CONFIGURATION** (upper left corner) and set up the network parameters as well as the port here resp. activate DHCP and submit the change with **SUBMIT** button.
- **6.** Wait a few seconds before testing the new IP by entering it in the browser's URL box. Opening the website again by using the host name is only possible after the device has restarted, because only then the new IP is reported to the DNS.

2.3.13 Commission after a firmware update or a long period of non-use

In case of a firmware update, return of the equipment following repair or a location or configuration change, similar measures should be taken to those of initial start up. Refer to *"2.3.11. Initial commission".*

Only after successful checking of the device as listed may it be operated as usual.

3. Operation and application

3.1 Important notes

3.1.1 Personal safety

- In order to guarantee safety when using the device, it is essential that only persons operate the device who are fully acquainted and trained in the required safety measures to be taken when working with dangerous electrical voltages
- For models which can generate a voltage which is dangerous by contact, or is connected to such, the included DC terminal cover, or an equivalent, must always be used
- Whenever the load and DC output are being re-configured, the device should be disconnected from the mains, not only the DC output switched off!

3.1.2 General

- Operation of a power supply without any load or a very small load (<0.5% of INom) is not considered as a normal operation mode
- Technical specifications can probably not be guaranteed when running a power supply without a load
- It is recommended to run a power supply always with at least 10% voltage and current load

3.2 Operating modes

A power supply is internally controlled by different control or regulation circuits, which shall bring voltage, current and power to the adjusted values and hold them constant, if possible. These circuits follow typical laws of control systems engineering, resulting in different operating modes. Every operating mode has its own characteristics which is explained below in short form.

3.2.1 Voltage regulation / Constant voltage

Voltage regulation is also called constant voltage operation (CV).

The DC output voltage of a power supply is held constant on the adjusted value, unless the output current or the output power according to $P = U_{OUT} * I_{OUT}$ reaches the adjusted current or power limit. In both cases the device will automatically change to constant current or constant power operation, whatever occurs first. Then the output voltage can not be held constant anymore and will sink to a value resulting from Ohm's law.

While the DC output is switched on and constant voltage mode is active, then the condition "CV mode active" will be indicated on the display by the abbreviation CV and this message will be passed as a signal to the analog interface, as well stored as status which can also be read as a status message via digital interface.

3.2.2 Current regulation / constant current / current limiting

Current regulation is also known as current limitation or constant current mode (CC).

The DC output current is held constant by the power supply, once the output current to the load reaches the adjusted limit. Then the power supply automatically switches The current flowing from the power supply is determined by the output voltage and the load's true resistance. As long as the output current is lower than the adjusted current limit, the device will be either in constant voltage or constant power mode. If, however, the power consumption reaches the set maximum power value, the device will switch automatically to power limiting and sets the output current according to $I_{MAX} = P_{SET} / U_{IN}$, even if the maximum current value is higher. The current set value, as determined by the user, is always an upper limit only.

While the DC output is switched on and constant current mode is active, then the condition "CC mode active" will be indicated on the display by the abbreviation CC and this message will be passed as a signal to the analog interface, as well stored as status which can also be read as a status message via digital interface.

3.2.3 Power regulation / constant power / power limiting

Power regulation, also known as power limiting or constant power (CP), keeps the DC output power of a power supply constant if the current flowing to the load in relation to the output voltage and the resistance of the load reaches the adjusted power value according to P = U * I resp. $P = U^2 / R$. The power limitation then regulates the output current according to I = sqr(P / R), where R is the load's resistance.

Power limiting operates according to the auto-range principle such that at lower output voltages higher current flows and vice versa in order to maintain constant power within the range P_N (see diagram to the right)

Constant power operation primarily impacts the output current. This means, the adjusted maximum output current can not be achieved if the maximum power value limits the output current according to I = P / U. The adjustable set value of current, as indicated in the display, is always only an upper limit.

100% UN 50% Auto-range IN 50% 100%

While the DC output is switched on and constant power mode is active, then the condition "CP mode active" will be shown on the display by the abbreviation **CP** and can also be read as a status message via digital interface.

3.2.3.1 Power derating

The power supplies of series PS 9000 1U offer an extended AC supply voltage range, but are dedicated for the use at typical 230 V_{AC}, $\pm 10\%$. Below a certain supply voltage, all models will automatically start to derate, i.e. reduce the maximum available output power. The derating happens on the AC input side and thus the device will not indicate the derating condition as "**CP**" (constant power resp. power limitation).

Depending on the nominal power of the particular model, the derating acts at different supply voltages:

- 3 kW models
 - Below approx. 207 V_{AC}: Derating to max. 2500 W output power
 - Below approx. 180 V_{AC} : Shutdown of the DC output
- 1.5 kW models
 - Below approx. 150 V_{AC} : Derating to max. 1000 W output power
 - Below approx. 90 V_{AC}: Shutdown of the DC output

3.3 Alarm conditions

This section only gives an overview about device alarms. What to do in case your device indicates an alarm condition is described in section "3.6. Alarms and monitoring".

As a basic principle, all alarm conditions are signalled optically (Text + message in the display), acoustically (if activated) and as a readable status via the digital interface. With any alarm occurring, the DC output of the device is switched off. In addition, the alarms OT and OVP are reported as signals on the analogue interface.

3.3.1 Power Fail

Power Fail (PF) indicates an alarm condition which may have various causes:

- AC input voltage too high (mains overvoltage) or too low (mains undervoltage, mains failure)
- Defect in the input circuit (PFC)

Switching off the device by the mains switch can not be distinguished from a mains blackout and thus the device will signalise a PF alarm every time the device is switched off. This can be ignored.

3.3.2 Overtemperature

An overtemperature alarm (OT) can occur if

• an excess temperature inside the device causes to switch off the DC output.

Internal overtemperature and subsequent temporary shutdown is usually caused by insufficient cooling (excess ambient temperature, fans and air inlets polluted). The fans will still cool down the unit until it can automatically switch on again to continue operation.

3.3.3 Overvoltage

An overvoltage alarm (OVP) will switch off the DC output and can occur if

- the power supply itself, as a voltage source, generates an output voltage higher than set for the overvoltage alarm limit (OVP, 0...110% U_{Nom}) or the connected load somehow returns voltage higher than set for the overvoltage alarm limit
- the OV threshold has been adjusted too close above the output voltage. If the device is in CC mode and if it then experiences a negative load step, it will make the voltage rise quickly, resulting in an voltage overshoot for a short moment which can already trigger the OVP

This function serves to warn the user of the power supply acoustically or optically that the device probably has generated an excessive voltage which could damage the connected load application.

The device is not fitted with protection from external overvoltage. Overvoltage can damage parts inside!

3.3.4 Overcurrent

An overcurrent alarm (OCP) will switch off the DC output and can occur if

• the output current in the DC output reaches the adjusted OCP limit.

This function serves to protect the connected load application so that this is not overloaded and possibly damaged due to an excessive current.

3.3.5 Overpower

An overpower alarm (OPP) will switch off the DC output and can occur if:

• the product of the output voltage and output current in the DC output reaches the adjusted OPP limit.

This function serves to protect the connected load application so that this is not overloaded and possibly damaged due to an excessive power consumption.

3.4 Manual operation

3.4.1 Switching on the device

The device should, as far as possible, always be switched on using the rotary switch on the front of the device. Alternatively this can take place using an external cutout (contactor, circuit breaker) of suitable current capacity.

After switching on, the display will show the manufacturers logo for a few seconds, plus some information like device model, firmware version(s), serial number and item number and will then be ready for use. In setup (see section *"3.4.3. Configuration in the setup menu"*) in the second level menu "**General**" is an option "**DC output after power ON**" in which the user can determine the condition of the DC output after power-up. Factory setting here is "**OFF**", meaning that the DC output on power-up is always switched off. Selection "**Restore**" means that the last condition of the DC output will be restored, either on or off. All set values are always saved and restored.

3.4.2 Switching off the device

On switch-off the last output condition and the most recent set values are saved. Furthermore, a "PF" alarm (power failure) will be reported, but can be ignored.

The DC output is immediately switched off and after a short while fans will shut down and after another few seconds the device will be completely powered off.

3.4.3 Configuration in the setup menu

The setup menu serves to configure all operating parameters which are not constantly required. It can be entered by pushing Menu, but only while the DC output is switched off. See figures below.

If the DC output is switched on the settings menu will not be shown, but the quick menu and some status information.

Menu navigation is done with the pushbuttons \downarrow , \uparrow and Enter. Parameters (values, settings) are set using the rotary knobs.

The assignments of the rotary knobs, if multiple values can be set in a particular menu, is always the same: parameters on the left-hand side -> left-hand knob, parameters on the right-hand side -> right-hand knob

0.00	V	0.00A			
80.0 <u>0</u> V	12 <u>0</u> .00A				
\checkmark					
Settin9s	Profiles	Communication			
Overview	About HW,SW	HMI Setup			

The menu structure is shown schematically on the next page. Some setting parameters are self-explanatory, others are not. The latter will be explained on the pages following.

www.elektroautomatik.de ea1974@elektroautomatik.de

3.4.3.1 Menu "General Settings"

Element	P .	Description
Allow remote control	1	Selection "NO" means that the device cannot be remotely controlled over any of the digital or analog interfaces. If remote control is not allowed, the status will be shown as " Local " in the status area on the main display. Also see section <i>1.9.4.1</i>
Analog interface range	2	Selects the voltage range for the analog set input values, actual output values and reference voltage output of the analog interface on the rear.
		 05 V = Range is 0100% set /actual values, reference voltage 5 V 010 V = Range is 0100% set /actual values, reference voltage 10 V See also section "3.5.4. Remote control via the analog interface (AI)"
Analog interface Rem-SB	3	Determines with "normal" (default), that the function and levels of input Rem-SB are as described in <i>"3.5.4.3. Analog interface specification"</i> . With selection "inverted", the described function is logically inverted. Also see example a) in <i>"3.5.4.6. Application examples"</i> .
Analog Rem-SB action	4	Since Firmware 2.03, the input REM-SB of the analog interface can be used to control the DC output of the device even without remote control via analog interface being activated. This setting determines the type of action:
		 DC OFF = Toggling the pin only switches the DC output off DC ON/OFF = If the DC output has been switched on before, toggling the pin can switch the output off and on again
DC output after power ON	5	Determines the condition of the DC output after power-up.
		 OFF = DC output is always off after switching on the device. Restore = DC output condition will be restored to the condition prior to switch off.
DC output after PF alarm	6	Determines how the DC output shall react after a power fail (PF) alarm has occurred:
		 OFF = DC output will be switched off and remain until user action AUTO = DC output will switch on again after the PF alarm cause is gone and if it was switched on before the alarm occurred
Share Bus mode	7	Default setting: Slave
		For parallel operation of multiple units, where using the Share bus connection is recommended. In parallel operation, any unit could be master.

3.4.3.2 Menu "Calibrate Device"

From within this menu, a calibration and readjustment procedure for output voltage and current, separate procedures for set value and actual value, can be started. For further details refer to *"4.4. Calibration (readjustment)*".

Element	Description
Voltage	Starts the semi-automatic calibration procedure for output voltage U
Sense volt.	Starts the semi-automatic calibration procedure for remote sensing input "Sense"
Current	Starts the semi-automatic calibration procedure for output current I
Cal. date	Here you can enter the date of the most recent calibration (year, month, day)
Save & exit	This menu item saves and leaves the setup menu to main display

3.4.3.3 Menu "Reset Device"

Entering this menu item will prompt for acknowledgement to reset the device completely to default settings and set values. Selection "**No**" will cancel the reset procedure, while selection "**Yes**", submitted by Enter button, will instantly reset the device.

3.4.3.4 Menu "Profiles"

See "3.8 Loading and saving a user profile" on page 45.

3.4.3.5 Menus "Overview" and "About HW, SW..."

This menu pages display an overview of the set values (U, I, P), related protection settings (OVP, OCP, OPP), limits settings and an alarm history (counter) of alarms that might have occurred since the last time the unit was switched on. Furthermore, you can find information about the device (model, serial number, firmware versions etc.).

3.4.3.6 Menu "Communication"

Here settings for the Ethernet port (on rear side of device) are made. The USB port there doesn't require any settings.

When delivered or after a complete reset, the Ethernet port has following **default settings** assigned:

- DHCP: off
- IP: 192.168.0.2
- Subnet mask: 255.255.255.0
- Gateway: 192.168.0.1
- Port: 5025
- DNS: 0.0.0.0
- Host name: Client
- Domain: Workgroup

Those settings can be changed anytime at will, in the setup menu or via the device website, which you can open from the current IP or host name (also see 2.3.12).

Submenu "IP Settings 1"

Element	Description
Get IP address	Manual (default): uses the default (after delivery or reset) or the last set network parameters. Those parameters are not overwritten by selection " DHCP " and remain when switching back from " DHCP " to " Manual "
	DHCP : after switching to DHCP and submitting the change with button the device will instantly try to get network parameters (IP, subnet mask, gateway, DNS) assigned from a DHCP server. If the attempt fails, the device will use the settings from " Manual " again. In this case, the overview in screen " View settings " will indicate the DCHP status as " DHCP (failed) ", otherwise as " DHCP(active) "
IP address	Only available with setting "Get IP address = Manual". Default value: 192.168.0.2
	Permanent manual setting of the device's IP address in standard IP format
Subnet mask	Only available with setting "Get IP address = Manual". Default value: 255.255.255.0
	Permanent manual setting of the subnet mask in standard IP format
Gateway	Only available with setting "Get IP address = Manual". Default value: 192.168.0.1
	Permanent manual setting of the gateway address in standard IP format

Submenu "IP Settings 2"

Element	Description
Port	Default value: 5025
	Adjust the socket port here, which belongs to the IP address and serves for TCP/P access when controlling the device remotely via Ethernet
DNS address	Default value: 0.0.0.0
	Permanent manual setting of the network address of a domain name server (short: DNS) which has to be present in order to translate the host name to the device's IP, so the device could alternatively access by the host name

Submenu "Com Proto." (communication protocols)

Element	Description
Enabled	Default value: SCPI&ModBus
	Enables or disables SCPI or ModBus communication protocols for the device. The change is
	immediately effective after submitting it with ENTER button. Only one of both can be disabled.

Submenu "Com Timeout" (communication timeout)

Element	Description
Timeout USB (ms)	Default value: 5
	Communication timeout in milliseconds. Defines the max. time between two subsequent bytes or blocks of a transferred message. For more information about the timeout refer to the external programming documentation "Programming ModBus & SCPI".
Timeout ETH (s)	Default value: 5
	Adjustable time, after which the device will automatically disconnect the socket connection,
	if there was no communication during that period

3.4.3.7 Menu "HMI Setup"

These settings refer exclusively to the control panel (HMI) and the display. The table lists all available settings for the HMI, no matter in which submenu they can be found.

Element	Description
Language	Selection of the display language between "Deutsch" and "English"
Brightness	The brightness, i.e. background illumination of the display can be adjusted here. Range is 110, default is 10.
View mode	The display mode of actual and set values can be switched here. Refer to <i>"3.4.5. Display modes for actual and set values</i> " for details
Key Sound	Activates or deactivates sounds when pushing a button on the HMI. It can usefully signal that the action has been accepted.
Alarm Sound	Activates or deactivates the additional acoustic signal of an alarm. See also "3.6. Alarms and monitoring".
HMI Lock	Activates the HMI lock. See "3.7. Control panel (HMI) lock" for details

3.4.4 Adjustment limits

By default, all set values (U, I, P) are freely adjustable from 0 to 100%.

This may be obstructive in some cases, especially for protection of applications against overcurrent. Therefore upper and lower limits for current and voltage can be set which limit the range of the adjustable set values. For power only an upper value limit can be set.

These limits apply to every kind setting a value. That also includes remote control via analog or digital interface. In remote control, the global range of 0...100% (digital) resp. 0...5 V / 0...10 V remains, only narrowed by the limits defined here.

An example: you would define the limits for a model with 80 V, 120 A and 3 kW as depicted in the screen above, with U-min = 10V and U-max = 75. In analog remote control, the active control voltage range for mode 0...10 V results as 1.25 V...9.375 V. As soon as the device is switched to analog remote control, it would put out minimum 10V, even there is nothing connected to voltage control input VSEL.

Beyond those limits, values given by digital commands are not accepted and will return an error (when using SCPI). Values given from analog control voltages are ignored (clipping).

▶ How to configure the adjustment limits

- **1.** Switch off the DC output and push button Menu to call the setup menu.
- 2. Push button Enter to call submenu "Settings". In the submenu navigate to "Limits" and push Enter again.
- **3.** In the screen you can now adjust the settings I-min, I-max, U-min, U-max and P-max with the rotary knobs. Switching between values for current and power is done with the arrow buttons and .
- 4. Accept the settings with Enter or discard them with ESC

The adjustment limits are coupled to the set values. It means, that the upper limit (-max) may not be set lower than the corresponding set value. Example: If you wish to set the limit for the current set value I-max to 90 A while the currently adjusted current set value is 100 A, then the set value first would have to be reduced to 90 A or less. The same applies vice versa when adjusting I-min.

3.4.5 Display modes for actual and set values

In general, the display of a PS 9000 1U device shows the actual output voltage and the related set value in the left half of the display and the actual output current and related set value in the right half. In order to have the power set value in direct access, the display mode can be switched.

Mode UP

CP

80.0<u>0</u>V

Only voltage (U) and current (I) are displayed. This is the default mode.

The set value of power is then only accessible in the setup menu or when switching to a different view mode with the arrow buttons or 1.

Alternatively to the actual and set values of current (I) and voltage (U) the actual and set values of power (P) are displayed.

The set value of current is then only accessible in the setup menu or when switching to a different view mode with the arrow buttons or 1.

► How to change the display mode in the menu

1. Switch off the DC output and push button Menu to call the setup menu.

500%

- 2. In the menu navigate to "HMI Setup" and push Enter. Then in the submenu navigate to "Page Setup" and push Enter again.
- **3.** Select the desired display mode (see above) with the right-hand rotary knob.
- 4. Accept the settings with Enter or discard them with ESC

► How to change the display mode directly

1. During normal display (as shown in the figures above), push any of the arrow buttons 1 to switch between the view modes.

Depending on your setting, the main display will change after leaving the setup menu and the right-hand rotary knob is then either assigned to set value of current or power

3.4.6 Manual adjustment of set values

Adjusting set values of voltage, current and power is a key feature of a power supply and hence the two rotary knobs on the front of the device are usually assigned to two of the three values, in manual operation. Default assignment is voltage and current.

During manual operation, these set values can only be adjusted with the rotary knobs.

Adjusting a value is immediately submitted, no matter if the output is switched on or off.

0

When adjusting the set values, upper or lower limits may come into effect. See section "3.4.4. Adjustment limits". Once a limit is reached, the display will show a note like "Limit: U-max" etc. for ~2 seconds.

► How to adjust values U, I or P with the rotary knobs

- 1. First check whether the value to be changed is assigned to one of the rotary knobs already. The assignment can be changed by selecting a different view mode. See *"3.4.5. Display modes for actual and set values"*.
- 2. With mode **UI** selected and as long as the main display is active, turn the left-hand knob to adjust output voltage and the right-hand knob to adjust the output current. In mode **UP**, turn the right-hand knob to adjust

the output power, as long as the power set value with unit W (Watts) is displayed. The arrow buttons

can be used to toggle between current and power set value.

3. Any set values can be adjusted with the adjustment limits. For switching the digit to adjust, push the rotary knob that you are currently using to adjust the value. Every push moves the cursor under the digit in clockwise order:

3.4.7 The quick menu

The quick menu is an alternative menu for quick access to offline features while the DC output is online.

It is accessible with the Menu button and looks like this:

Navigation in the menu is also done with arrow buttons

You can select the between view mode and the HMI lock, each with three button pushes.

Attention! If you activate the HMI from within the quick menu, the additional PIN lock might become active, depending on your settings in the MENU. There is no extra indication here!

and Enter

3.4.8 Switching the DC output on or off

The DC output of the device can be manually or remotely switched on and off. This can be restricted in manual operation by the control panel being locked.

ļ

Switching the DC output on during manual operation or digital remote control can be disabled by pin REM-SB of the built-in analog interface. For more information refer to 3.4.3.1 and example a) in 3.5.4.6.

How to manually switch the DC output on or off

- 1. As long as the control panel (HMI) is not fully locked press the button On O. Otherwise you are asked to disable the HMI lock first.
- 2. This button toggles between on and off, as long as a change is not restricted by an alarm or the device is locked in "remote". The current condition is displayed with the LED in the button On O (LED on = output on).

► How to remotely switch the DC output on or off via the analog interface

1. See section ",3.5.4 Remote control via the analog interface (AI)" on page 39.

▶ How to remotely switch the DC output on or off via the digital interface

1. See the external documentation "Programming Guide ModBus & SCPI" if you are using custom software, or refer to the external documentation of LabView VIs or other software, if available, provided by the manufacturer.

3.5 Remote control

3.5.1 General

Remote control is principally possible via any of the built-in interface ports USB, Ethernet/LAN or analog. Important here is that only the analog or any digital interface can be in control. It means that if, for example, an attempt were to be made to switch to remote control via the digital interface whilst analog remote control is active (pin Remote = LOW) the device would report an error at the digital interface. In the opposite direction a switch-over via pin Remote would be ignored. In both cases, however, status monitoring and reading of values are always possible.

3.5.2 Control locations

Control locations are those locations from where the device is controlled. Essentially there are two: at the device (manual operation) and outside (remote control). The following locations are defined:

Displayed location	Description
-	If neither of the other locations is displayed then manual control is active and access from
	the analog or digital interfaces is allowed. This location is not explicitly displayed
Remote	Remote control via any interface is active
Local	Remote control is locked, only manual operation is allowed.

Remote control may be allowed or inhibited using the setting "**Allow remote control**" (see "3.4.3.1. Menu "General Settings""). In <u>inhibited</u> condition the status "**Local**" will be displayed in the status area (lower half, middle) of the display. Activating the inhibit can be useful if the device is remotely controlled by software or some electronic device, but it is required to make adjustments at the device or deal with emergency, which would not be possible remotely.

Activating condition "Local" causes the following:

- If remote control via the digital interface is active ("**Remote**"), then remote control is immediately terminated and must be reactivated at the PC once "**Local**" is no longer active
- If remote control is via the analog interface is active ("**Remote**"), then remote operation is only interrupted until remote control is allowed again, because pin "Remote" continues to signal "remote control = on". Exception: if the level of pin "Remote" is changed to HIGH during the "Local" phase

3.5.3 Remote control via a digital interface

3.5.3.1 Selecting an interface

The device only supports the built-in digital interfaces USB and Ethernet. For USB, a standard USB cable is included in the delivery, as well as a driver for Windows on CD. The USB interface requires no setup.

The Ethernet interface typically requires network setup (manual or DHCP), but can also be used with its default parameters right from the start.

The GPIB interface requires you to select a unique address in case it is connected to other GPIB bus members.

3.5.3.2 General

For the network port installation refer to "1.9.7. Ethernet port".

The digital interface require little or no setup for operation and can be directly used with their default configuration. All specific settings will be permanently stored, but could also be reset to defaults with the setup menu item "**Reset**".

Via the digital interface primarily the set values (voltage, current, power) and device conditions can be set and monitored. Furthermore, various other functions are supported as described in separate programming documentation.

Changing to remote control will retain the last set values for the device until these are changed. Thus a simple voltage control by setting a target value is possible without changing any other values.

3.5.3.3 Programming

Programming details for the interfaces, the communication protocols etc. are to be found in the documentation "Programming Guide ModBus & SCPI" which is supplied on the included CD or which is available as download from the manufacturer's website.

3.5.4 Remote control via the analog interface (AI)

3.5.4.1 General

The built-in, up to 1500 V DC galvanically separated, 15-pole analog interface (short: AI) is on the rear side of the device offers the following possibilities:

- Remote control of current, voltage and power
- Remote status monitoring (CC/CP, CV)
- Remote alarm monitoring (OT, OVP)
- Remote monitoring of actual values
- Remote on/off switching of the DC output

Setting the <u>three</u> set values via the analog interface always takes place concurrently. It means, that for example the voltage can not be given via the AI and current and power set by the rotary knobs, or vice versa.

The OVP set value and other supervision (events) and alarm thresholds cannot be set via the AI and therefore must be adapted to the given situation before the AI is put in operation. Analog set values can be fed in by an external voltage or generated by the reference voltage on pin 3. As soon as remote control via the analog interface is activated, the values displayed will be those provided by the interface.

The AI can be operated in the common voltage ranges 0...5 V and 0...10 V in each case 0...100% of the nominal value. The selection of the voltage range can be done in the device setup. See section *"3.4.3. Configuration in the setup menu"* for details.

The reference voltage sent out from Pin 3 (VREF) will be adapted accordingly and is then:

0-5 V: Reference voltage = 5 V, 0...5 V set values (VSEL, CSEL, PSEL) correspond to 0...100% nominal values, 0...100% actual values correspond to 0...5 V at the actual value outputs (CMON, VMON).

0-10 V: .Reference voltage = 10 V, 0...10 V set values (VSEL, CSEL, PSEL) correspond to 0...100% nominal values, 0...100% actual values correspond to 0...10 V at the actual value outputs (CMON, VMON).

Input of excess set values (e.g. >5 V in selected 5 V range or >10 V in the 10 V range) are clipped by setting the set value at 100%.

Before you begin, please read. Important notes for use of the interface:

- Analog remote control of the device must be activated by switching pin "REMOTE" (5) first. Only exception is pin REM-SB, which can be used independently since KE firmware version 2.03
- Before the hardware is connected that will control the analog interface, it shall be checked that it can't provide voltage to the pins higher than specified
- Set value input, such as VSEL, CSEL and PSEL, must not be left unconnected (i.e. floating)
- It is always required to provide all three set values at once. In case any of the set values is not used for adjustment, it can be tied to a defined level or connected to pin VREF (solder bridge or different), so it gives 100%

The analog interface is galvanically separated from DC output. Therefore do not connect any ground of the analog interface to the DC- or DC+ output!

3.5.4.2 Acknowledging device alarms

Device alarms (see 3.6.2) are always indicated in the front display and some of them are also reported as signal on the analog interface socket (see 3.5.4.3), for example the overvoltage alarm (OV), which is considered as critical.

In case of a device alarm occurring during remote control via analog interface, the DC output will be switched off the same way as in manual control. While alarms OT and OV can be monitored via the corresponding pins of the interface, other alarms like power fail (PF) can't. Those could only be monitored and detected via the actual values of voltage and current being all zero contrary to the set values.

All device alarms (OT, OV, PF, OCP and OPP) have to be acknowledged, either by the user of the device or by the controlling unit. Also see *"3.6.2. Device alarm handling"*. Acknowledgement is done with pin REM-SB switching the DC output off and on again, means a HIGH-LOW-HIGH edge (min. 50ms for LOW).

0.0										
Pin	Name	Type*	Description	Default levels	Electrical properties					
1	VSEL	AI	Set voltage value	010 V or. 05 V corre- spond to 0100% of U _{Nom}	Accuracy < 0.2%					
2	CSEL	AI	Set current value	010 V or. 05 V corre- spond to 0100% of I _{Nom}	Input impedance R _i >40 k100 k					
3	VREF	AO	Reference voltage	10 V or 5 V	Tolerance < 0.2% at I _{max} = +5 mA Short-circuit-proof against AGND					
4	DGND	POT	Ground for all digital signals		For control and status signals.					
5	REMOTE	DI	Switching internal / remote control	Remote = LOW, U _{Low} <1 V Internal = HIGH, U _{High} >4 V Internal = Open	Voltage range = 030 V I_{Max} = -1 mA bei 5 V $U_{LOW to HIGH typ.}$ = 3 V Rec'd sender: Open collector against DGND					
6	от	DO	Overheating or power fail*** alarm	Alarm OT= HIGH, U _{High} > 4 V No Alarm OT= LOW, U _{Low} <1 V	Quasi open collector with pull-up against Vcc ** With 5 V on the pin max. flow +1 mA I_{Max} = -10 mA at U _{CE} = 0,3 V U_{Max} = 30 V Short-circuit-proof against DGND					
7	-	-	-	-	-					
8	PSEL	AI	Set power value	010 V or. 05 V corre- spond to 0100% von P _{Nom}	Accuracy < 0.2% Input impedance R _i >40 k100 k					
9	VMON	AO	Actual voltage	010 V or. 05 V corre- spond to 0100% von U _{Nom}	Accuracy < 0.2% at I _{Max} = +2 mA					
10	CMON	AO	Actual current	010 V or. 05 V corre- spond to 0100% von I _{Nom}	Short-circuit-proof against AGND					
11	AGND	POT	Ground for all analog signals		For -SEL, -MON, VREF Signals					
12	-	-	-	-	-					
			DC output OFF	Off = LOW. ULow <1 V	Voltage range = 030 V					
13	13 REM-SB	-SB DI	I (DC output ON)	On= HIGH, U _{High} >4 V	I _{Max} = +1 mA at 5 V					
									(ACK alarms ****)	On = Open
14	OVP	DO	Overvoltage alarm	Alarm OV = HIGH, $U_{High} > 4 V$ No alarm OV = LOW, $U_{Low} < 1 V$	Quasi open collector with pull-up against Vcc **					
15	CV	DO	Constant voltage regulation active	CV = LOW, U _{Low} <1 V CC/CP = HIGH, U _{High} >4 V	$I_{Max} = -10 \text{ mA at } U_{CE} = 0.3 \text{ V}, U_{Max} = 30 \text{ V}$ Short-circuit-proof against DGND					

3.5.4.3 Analog interface specification

* AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, POT = Potential ** Internal Vcc approx. 14.3 V *** Mains blackout, mains over- or undervoltage or PFC error **** Only during remote control

The accuracy of set values, as given in the table above, is only related to the input pin and adds to the general accuracy of the corresponding value on the DC output (see technical specs)

3.5.4.4 Overview of the Sub-D Socket

3.5.4.5 Simplified diagram of the pins

3.5.4.6 Application examples

a) Switching off the DC output via the pin "REM-SB"

A digital output, e.g. from a PLC, may be unable to cleanly pull down the pin as it may not be of low enough resistance. Check the specification of the controlling application. Also see pin diagrams above.

In remote control, pin REM-SB is be used to switch the DC output of the device on and off. From KE firmware version 2.03, this is also available without remote control being active.

It is recommended that a low resistance contact such as a switch, relay or transistor is used to switch the pin to ground (DGND).

Following situations can occur:

Remote control has been activated

During remote control via analog interface, only pin "REM-SB" determines the states of the DC output, according to the levels definitions in *3.5.4.3*. The logical function and the default levels can be inverted by a parameter in the setup menu of the device. See *3.4.3.1*.

If the pin is unconnected or the connected contact is open, the pin will be HIGH. With parameter "Analog interface REM-SB" being set to "normal", it requests "DC output on". So when activating remote control, the DC output will instantly switch on.

Remote control is not active

In this mode of operation pin "REM-SB" can serve as lock, preventing the DC output from being switched on by any means. This results in following possible situations:

DC- output	+	Pin "REM-SB"	+	Parameter "REM-SB"	→	Behaviour
	Ŧ	HIGH	+	normal		DC output not locked. It can be switched on by pushbutton "On/Off" (front panel) or via command from digital interface
*	T	LOW	+	inverted	7	(non paner) or via command nom digital interface.
is off	T	HIGH	+	inverted	rmal DC ou DC ou (front switch genera	DC output locked. It can not be switched on by pushbutton "On/ (front panel) or via command from digital interface. When tryin
		LOW	+	normal		

In case the DC output is already switched on, toggling the pin will switch the DC output off, similar to what it does in analog remote control:

DC output	→	Pin "REM-SB"	+	Parameter "REM-SB"	→	Behaviour
is on	→	HIGH	+	normal		DC output remains on, nothing is locked. It can be switched on
		LOW	+	inverted	7	
	→	HIGH	+	inverted	→	DC output will be switched off and locked. Later it can be switched
		LOW	+	normal		command can delete the request to switch on by pin.

b) Remote control of current and power

Requires remote control to be activated (Pin "Remote" = LOW)

The set values VSEL and CSEL are generated from the reference voltage VREF, using potentiometers for each. Hence the power supply can selectively work in current limiting or power limiting mode. According to the specification of max. 5 mA for the VREF output, potentiometers of at least 10 k Ω must be used.

The power set value PSEL is always tied to VREF and will thus be permanently 100%.

If the control voltage is fed in from an external source it is necessary to consider the input voltage ranges for set values (0...5 V oder 0...10 V).

Example with external voltage source

Example with potentiometers

CSEL VSEL

c) Reading actual values

Via the AI, the DC output values of current and voltage can be monitored. They can be read using a standard multimeter or anything else that records analog signals.

3.6 Alarms and monitoring

3.6.1 Definition of terms

Device alarms (see "3.3. Alarm conditions") are defined as conditions like overvoltage or overtemperature, signalled in any form to the user of the device in order to take notice.

Those alarms are always indicated in the front display as readable abbreviated text, as well as status readable via digital interface when controlling or just monitoring remotely and, if activated, emitted as audible signal (buzzer). Furthermore, the most important alarms are also signalled by output pins on the analog interface.

There is furthermore an alarm history available in the submenu "**Overview**". It counts alarms that occurred since the last time the unit was switched on, for statistics and later check.

3.6.2 Device alarm handling

A device alarm incident will usually lead to DC output switch-off. Some alarms must be acknowledged (see below), which can only happen if the cause of the alarm is not persistent anymore. Other alarms acknowledge themselves if the cause has vanished, like the OT and the PF alarm.

- ► How to acknowledge an alarm in the display (during manual control)
 - **1.** Push button Enter or On once.

► How to acknowledge an alarm on the analog interface (during analog remote control)

1. Switch off the DC output by pulling pin REM-SB to the level that corresponds to "DC output off", then switch it on again. See section *"3.5.4.6. Application examples*" for levels and logic.

► How to acknowledge an alarm in the alarm buffer/status (during digital control)

1. Read the error buffer (SCPI protocol) or send a specific command to acknowledge, i.e. reset alarms (ModBus).

Some device alarms are configurable by adjusting a threshold:

Alarm	Meaning	Description	Range	Indication
OVP	OverVoltage Protection	Triggers an alarm if the DC output voltage reaches the defined threshold. This can be caused by the device being faulty or by an external source. The DC output will be switched off.	0 V1.1*U _{Nom}	Display, analog IF, digital IF
ОСР	OverCurrent Protection	Triggers an alarm if the DC output current reaches the defined threshold. The DC output will be switched off.	0 A1.1*I _{Nom}	Display, digital IF
OPP	OverPower Protection	Triggers an alarm if the DC output power reaches the defined threshold. The DC output will be switched off.	0 W1.1*P _{Nom}	Display, digital IF

These device alarms can't be configured and are based on hardware:

Alarm	Meaning	Description	Indication
PF	Power Fail	AC supply over- or undervoltage. Triggers an alarm if the AC supply is out of specification or when the device is cut from supply, for example when switching it off with the power switch. The DC output will be switched off.	Display, digital IF
от	OverTem- perature	Triggers an alarm if the internal temperature reaches a certain limit. The DC output will be switched off.	Display, analog IF, digital IF

► How to configure the device alarms OVP, OCP and OPP

- **1.** Switch off the DC output and push button Menu to call the setup menu.
- 2. In the menu navigate to "Settings" and push Enter. Then in the submenu navigate to "Protection" and push Enter again.
- 3. Set the limits for the equipment alarm relevant to your application if the default value of 110% of nominal is unsuitable.
- 4. Accept the settings with Enter or discard them with ESC

Those thresholds are reset to defaults when using the function "**Reset**" in setup menu.

► How to configure the alarm sound

- 1. Switch off the DC output and push button Menu to call the setup menu.
- 2. In the menu navigate to "HMI Setup" and push Enter. Then in the submenu navigate to "Alarm Sound" and push Enter again.
- **3.** In the following screen set parameter "Alarm Sound" to either OFF or ON.
- 4. Accept the settings with Enter or discard them with ESC

3.7 Control panel (HMI) lock

In order to avoid the accidental alteration of a value during manual operation the rotary knobs or the key strip of the control panel (HMI) can be locked so that no alteration will be accepted without prior unlocking. You can choose between a simple lock and a PIN lock, which requires to enter the correct PIN every time someone wants to unlock the HMI.

► How to lock the HMI

- 1. Switch off the DC output and push button Menu to call the setup menu.
- 2. In the menu navigate to "HMI Setup" and push Enter. Then in the submenu navigate to "HMI Lock" and push Enter again.
- 3. Make your selection for parameter "HMI Lock". With selection "Lock all" everything on the HMI is locked and you can't even switch on the DC output. In order to be able to do at least that, use "ON/OFF possible".
- 4. The lock is activated as soon as you confirm your selection with Enter. The device will automatically exit the

menu and jump back to normal display with status "Locked" now being indicated.

Alternatively to the procedure above you can also lock the HMI while the DC output is switched on, by accessing the quick menu. Refer to *"3.4.7. The quick menu"*.

If an attempt is made to alter something whilst the HMI is locked, a requester appears in the display asking if the lock should be disabled.

► How to unlock the HMI

- 1. Rotate any knob or push any button except button On.
- 2. A request pop-up will appear: HMI locked Press 'Enter' to unlock.
- 3. Unlock the HMI by pushing Enter within 5 seconds, otherwise the pop-up will disappear and the HMI remains locked. In case the HMI lock with PIN has been activated before, you are then requested to enter the correct PIN, else the HMI will remain locked.

3.8 Loading and saving a user profile

The menu "**Profiles**" serves to select between a default profile and up to 5 user profiles. A profile is a collection of all settings and set values. Upon delivery, or after a reset, all 6 profiles have the same settings and all set values are 0. If the user changes settings or sets target values then these create a work profile which can be saved to one of the 5 user profiles. These profiles or the default one can then be switched. The default profile is read-only.

The purpose of a profile is to load a set of set values, settings limits and monitoring thresholds quickly without having to readjust these. As all HMI settings are saved in the profile, including language, a profile change can also be accompanied by a change in HMI language.

On calling up the menu page and selecting a profile the most important settings can be seen, but not changed.

▶ How to save the current values and settings (work profile) as a user profile

- Switch off the DC output and push button Menu to call the setup menu.
 Default prof.
 Profile 2
 Profile 4

 Profile 1
 Profile 3
 Profile 5
- 2. In the menu navigate to "Profiles" and push Enter
- **3.** In the submenu (see figure to the right) select a user profile (1-5) to save to and push Enter again.
- **4.** From the selection on screen chose "**Save settings into Profile n**" and overwrite that profile with the current settings and values by confirming with Enter.

► How to load a user profile

- Switch off the DC output and push button
 Menu
 to call the
 Default prof.
 Profile 2
 Profile 4

 Profile 1
 Profile 3
 Profile 5
- 2. In the menu navigate to "Profiles" and push Enter.
- 3. In the submenu (see figure to the right) select a user profile (1-5) to load and push Enter again.
- 4. In the screen you can now select "**View Profile n**" in order to check the stored settings and to decide, whether this profile is going to be loaded or not. Navigate to "**Load Profile n**" and confirm with Enter to finally load the profile into the work profile.

3.9 Other applications

3.9.1 Parallel operation in Share Bus mode

Multiple devices of same kind and model can be connected in parallel in order to create a system with higher total current and hence higher power. To achieve that, the units have to be connected with their DC outputs and their Share Bus. The Share Bus will balance the units in their internal voltage regulation and thus current regulation, which will result in a balanced load distribution.

In the parallel operation, a specific unit, a "Share Bus master", has to be picked as leading unit which drives the "Share Bus slaves". The master unit will remain fully controllable, also via analog or digital interface. The slaves, however, are restricted regarding set value adjustment. Their set values are just limits for the units while it is controlled via the Share Bus. A slave unit still can be controlled remotely, but not like a master unit. All slaves can be monitored (actual values, status), no matter via analog or digital interface.

The Share Bus only control the process variable U (voltage). It means, the DC outputs of slave units have to be switched on or off either manually or remotely, which is very easy in analog remote control, because the related pins REM-SB could simply be connected in parallel, too. In digital remote control and when using the Ethernet port, all DC outputs could be switched at the same time by sending broadcast messages.

3.9.1.1 Wiring the DC outputs

The DC output of every unit in the parallel operation is simply connected to the next unit using cables with cross section according to the maximum current and with short as possible length.

3.9.1.2 Wiring the Share bus

The Share bus is wired from unit to unit with an ideally twisted pair of cables with non-critical cross section. We recommend to use 0.5 mm^2 to 1.0 mm^2 .

The Share bus is poled. Take care for correct polarity of the wiring!

3.9.1.3 Configuring units for Share Bus operation

For correct Share Bus operation in parallel connection, the formerly picked master unit has to be configured as "Share Bus master". By default, these power supplies are set as "Share Bus slaves", so that this configuration step is not necessary for all slave units.

Only one unit in the Share Bus connection must be configured as Share Bus master, else the Share Bus won't work.

► How to configure a device as Share Bus master

- **1.** Switch off the DC output and push button Menu to call the setup menu. Push Enter again to enter submenu "**Settings**".
- 2. In the submenu navigate to "General" and push Enter once again.
- **3.** Use arrow button to navigate to item "**Share Bus mode**" on the 2nd page and switch to setting "**Master**" by using the right-hand rotary knob.
- 4. Accept the settings with Enter or discard them with ESC

3.9.1.4 Operating the Share Bus system

After successful configuration and initialisation of the master and slave units, it is recommended to check all set values and protection settings of all slaves and possibly adjust to identical values.

The slaves can be controlled manually as usual or remotely via the analog or via digital interfaces, but they don't react to set values changes the same way as the master. They can, if needed, be monitored by reading actual values and status.

The master unit is not restricted and can be used like a stand-alone unit.

3.9.1.5 Alarms and other problem situations

Parallel operation, due to the connection of multiple units and their interaction, can cause additional problem situations which do not occur when operating individual units. For such occurrences the following regulations have been defined:

- If one or more slave units are switched off on the AC side (power switch, supply undervoltage) and come back later, they're automatically included again in the system. The remaining units will continue to work without interruption, but the entire system will provide less power
- If the DC output of the master unit is switched off due to a defect or overheating, then the total parallel system can provide no output power
- If accidentally multiple or no units are defined as master the Share Bus parallel system cannot be initialised

In situations where one or multiple units generate a device alarm like OV, PF or OT following applies:

• Any alarm of a slave is indicated on the slave's display only

3.9.2 Series connection

Series connection of two or multiple devices is basically possible. But for reasons of safety and isolation, some restrictions apply:

	 Both, negative (DC-) and positive (DC+) output poles, are coupled to PE via type X capacitors None DC minus pole of any in the series connection must have a potential of >400 V against ground (PE)!
	 The Share Bus must not be wired and used!
	Remote sensing must not be used!
	 Series connection is only allowed with devices of the same kind and model, i.e. power supply with power supply like for example PS 9080-100 1U with PS 9080-100 1U or similar models

Series connection is not supported by the software and hardware of the device. It means, all units have to controlled

separately regarding set values and DC output status, whether it is manual control or digital remote control. In remote control, an almost synchronous control can be achieved by using the Ethernet ports and sending message as broadcast, so they address multiple units at once.

The figure below depicts the exemplary series connection of three identical devices with 200 V nominal output voltage and the maximum potential shift of any DC- output against PE:

3.9.3 Operation as battery charger

A power supply can be used as a battery charger, but with some restrictions, because it misses a battery supervision and a physical separation from the load in form of a relay or contactor, which is featured with some real battery chargers as a protection.

Following has to be considered:

- No false polarity protection inside! Connecting a battery with false polarity will damage the power supply severely, even if it is not powered.
- All models of this series have an internal circuit, i.e. base load, for faster discharge of voltage when switching the DC output off or ramping voltage down. This base load would, more or less slowly, discharge the battery while the DC output is switched off, means while it is not charging. This would, however, not occur when the power supply is not powered at all. It is thus recommended to leave the DC output switched on as long as the battery is connected (equals to trickle charge) and only switch if off for connecting/disconnecting a battery.

4. Service and maintenance

4.1 Maintenance / cleaning

The device needs no maintenance. Cleaning may be needed for the internal fans, the frequency of cleanse is depending on the ambient conditions. The fans serve to cool the components which are heated by the inherent power loss. Heavily dirt filled fans can lead to insufficient airflow and therefore the DC output would switch off too early due to overheating or possibly lead to defects.

Cleaning the internal fans can be performed with a vacuum cleaner or similar. For this the device needs to be opened.

4.2 Fault finding / diagnosis / repair

If the equipment suddenly performs in an unexpected way, which indicates a fault, or it has an obvious defect, this can not and must not be repaired by the user. Contact the supplier in case of suspicion and elicit the steps to be taken.

It will then usually be necessary to return the device to the supplier (with or without guarantee). If a return for checking or repair is to be carried out, ensure that:

- the supplier has been contacted and it is clarified how and where the equipment should be sent.
- the device is in fully assembled state and in suitable transport packaging, ideally the original packaging.
- a fault description in as much detail as possible is attached.
- if shipping destination is abroad, the necessary customs papers are attached.

4.2.1 Replacing a defect mains fuse

The device is protected by one fusible (T16 A, 250 V, 35 mm) which is located inside the device.

This fusible should only blow due to a defect in the AC input circuit, but could also blow when running the unit at extremely low AC supply voltage. It can be replaced for testing purposes, in order to find out whether it is only blown and nothing else is damaged or if there is a true defect, which cannot be repaired on location.

The device has a warranty seal which would break when opening the unit, so we recommend to contact us first in such a case during warranty period. According to the situation and problem description, we will decide what to do.

After warranty period it is allowed to open the unit at will and on your own risk. This is done by pulling the AC cord first, then removing all screws for the top cover (5 x screw each on left and right side, plus 1 x screw at the rear).

It is imperative to replace the fuse only with one of same type and values.

4.3 Firmware updates

4.3.1 Update of control panel (HMI)

The firmware of the control panel (HMI), if necessary, is updated via the USB port on the rear side. For this a software tool, a so-called "update tool" is needed which is available from the manufacturer (as download from the manufacturer's website or upon request), together with the firmware update.

4.3.2 Update of communication unit (KE)

The firmware of the communication unit (KE), if necessary, is updated via the USB port on the rear side. For this a software, a so-called "update tool" is required which is available from the manufacturer (as download from the manufacturer's website or upon request), together with the firmware update file.

In case the update tool is not available, or if the update could somehow not processed using the tool, there is an alternative procedure. Required tools: 1x Sub-D plug 15-pole, some wire, solder iron, update file (*.bin).

► How to manually update the device firmware:

1. Power off device. If not already available, prepare the 15 pole D-Sub plug like this (figure shows backside):

Bridge between pin 5 and 6 Bridge between pin 13 and 14

- 2. Plug the Sub-D onto the analog interface socket and connect the (included) USB-B cable between the USB port on the rear and the PC. Switch device on by mains switch.
- **3.** The PC should mount a new removable drive named "EA UPDATE", for example with driver lett G:. If not, wait some time and repeat steps 1 and 2.
- **4.** Open that new drive in Windows Explorer (or similar). It should contain one file "firmware.bin". Delete the file.
- **5.** Copy the new firmware file, which always has to be with extension *.bin, to that drive. Wait for the copy procedure to finish.
- 6. Switch the device off and remove the Sub-D plug from the analog interface socket.
- **7.** Restart the device by switching it on the display shows some information during the startup process, amongst them the new device firmware version as for example "KE: 2.04".

The firmware update is finished then.

4.4 **Calibration (readjustment)**

4.4.1 Preface

The devices of series PS 9000 1U feature a function to readjust the most important output values when doing a calibration and in case these values have moved out of tolerance. The readjustment is limited to compensate small differences of up to 1% or 2% of the max. value. There are several reasons which could make it necessary to readjust a unit: component aging, component deterioration, extreme ambient conditions, high frequent use

In order to determine if a value is out of tolerance, the parameter must be verified first with measurement tools of high accuracy and with at least half the error of the PS device. Only then a comparison between values displayed on the PS device and true DC output values is possible.

For example, if you want to verify and possibly readjust the output current of model PS 9080-100 1U which has 100 A maximum current, stated with a max. error of 0.2%, you can only do that by using a high current shunt with max. 0.1% error or less. Also, when measuring such high currents, it is recommended to keep the process short, in order to avoid the shunt heating up too much. It is furthermore recommended to use a shunt with at least 25% reserve.

When measuring the current with a shunt, the measurement error of the multimeter on the shunt adds to the error of the shunt and the sum of both must not exceed the max. error of the device under calibration.

4.4.2 Preparation

For a successful calibration and readjustment, a few tools and certain ambient conditions are required:

- A measurement device (multimeter) for voltage, with a max. error of half the PS's voltage error. That measurement device can also be used to measure the shunt voltage when readjusting the current
- If the current is also going to be calibrated: a suitable DC current shunt, ideally specified for at least 1.25 times the max. output current of the PS and with a max. error that is half or less than the max. current error of the PS device
- Normal ambient temperature of approx. 20-25°C
- Warmed up PS unit, which has been run for at least 10 minutes under 50% power
- An adjustable load, such as as electronic load, which is capable of consuming at least 102% of the max, voltage and current of the PS device

Before you can start calibrating, a few measures have to be taken:

- Let the PS device warm up in connection with the voltage / current source
- In case the remote sensing input is going to be calibrated, prepare a cable for the remote sensing connector to DC output, but leave it yet unconnected
- Abort any form of remote control, deactivate master-slave mode, set device to U/I mode
- Install the shunt between PS device and load and make sure the shunt is cooled somehow
- Connect external measurement device to the DC output or to the shunt, depending on whether the voltage is going to be calibrated first or the current

4.4.3 **Calibration procedure**

After the preparation, the device is ready to be calibrated. From now on, a certain sequence of parameter calibration is important. Generally, you don't need to calibrate all three parameters, but it is recommended to do so. Important:

When calibrating the output voltage, the remote input "Sense" on the rear of the device has to be disconnected.

The calibration procedure, as explained below, is an example with model PS 9080-100 1U. Other models are treated the same way, with values according to the particular PS model and the required load.

4.4.3.1 Set values

How to calibrate the DC output voltage

- **1.** Connect a multimeter to the DC output. Connect a load and set it to approx. 5% of the nominal current of the power supply as load current, in this example let's use 4 A.
- 2. Enter the setup menu with Menu , then push Enter

In the submenu navigate to "**Calibration**" using the arrow buttons. In the next screen select "**Voltage**" and then "**Output**" and confirm with Enter. The power supply will then switch the DC output on.

- **3.** In the next screen the device will set a certain output voltage and start to measure it (**U-mon**). Simply confirm here with Enter.
- 4. After this, the device requests you to enter the measured output voltage from the multimeter at **Measured** data:. Enter it using the right-hand rotary knob, just like would adjust a set value. Assure yourself the value is correct and submit with Enter.

is correct and submit with Effer.

5. Repeat steps 3. and 4. for the next three calibration steps (total of four steps).

Should the externally measured value be too different from the internally measured value (**U-mon**), then the calibration procedure will fail and the parameter can not be readjusted by the user.

► How to calibrate the DC output current

- 1. Set the load to approx. 102% nominal current of the PS device, for the sample model with 100 A this would be 102 A.
- 2. Enter the setup menu with Menu, then push Enter. In the submenu navigate to "Calibration" .using the arrow buttons. In the next screen select "Current" and then "Output" and confirm with Enter. The power supply will then switch the DC output on.
- **3.** In the next screen the device will set a certain current limit, being loaded by the load or sink, and start to measure the output current (**I-mon**). Simply confirm here with Enter.
- 4. After this, the device requests you to enter the output current, which you are measuring with the shunt, at **Measured data:**. Enter it using the right-hand rotary knob, just like would adjust a set value. Assure yourself

the value is correct and submit with Enter

5. Repeat steps 3. and 4. for the next three calibration steps (total of four steps).

Should the externally measured value be too different from the internally measured value (**I-mon**), then the calibration procedure will fail.

In case you are generally using the remote sensing feature, it is recommended to also readjust this parameter for best results. The procedure is identical to the calibration of voltage, except for it requires to have the sensing connector (Sense) on the rear to be plugged and connected with correct polarity to the DC output of the PS.

► How to calibrate the DC output voltage for remote sensing

- 1. Connect a load and set it to approx. 3% of the nominal current of the power supply as load current, in this example ~3 A. Connect the remote sensing input (Sense) to the load with correct polarity.
- **2.** Put external multimeter in DC connection on the load.
- 3. Enter the setup menu with Menu, then push Enter. In the submenu navigate to "Calibration". Push Enter again. In the next screen select "Sense volt." then "Output" and confirm twice with Enter. The power supply will then switch the DC output on.
- 4. In the next screen the device will set a certain output voltage and start to measure it (**U-mon**). Simply confirm here with Enter.
- 5. After this, the device requests you to enter the measured sensing voltage from the multimeter at **Measured** data:. Enter it using the right-hand rotary knob, just like would adjust a set value. Assure yourself the value is correct and submit with Enter.
- 6. Repeat steps 4. and 5. for the next three calibration steps (total of four steps).

Voltage calibration	Current calibration	Save and exit
Sense volt. calibration	Set calibration date	

4.4.3.2 Actual values

Actual values of output voltage (with and without remote sensing) and output current are calibrated almost the same way as the set values, but here you don't need to enter anything, just confirm the displayed values. Please proceed the above steps and instead of "**Output**" select "**Display**" in the submenus. After the device shows meas-

ured values on display, wait at least 2s for measured value to settle and then simply confirm with Enter, until you are through all steps.

4.4.3.3 Saving calibration data

After calibration you can furthermore enter the current date. To do so, navigate to menu item "Cal. date" and enter

the date in format YYYY / MM / DD and submit with Enter

Last but not least save the calibration data permanently confirming menu item "Save & exit" with Enter

Leaving the calibration selection menu without saving via "Save & exit" will discard calibration data and the procedure would have to be repeated!

5. Accessories and options

5.1 Overview

Accessories and options are, when necessary, delivered with their own documentation and are not detailed further in this document.

6. Service & Support

6.1 General

Repairs, if not otherwise arranged between supplier and customer, will be carried out by the manufacturer. For this the device must generally be returned to the manufacturer. No RMA number is needed. It is sufficient to package the equipment adequately and send it, together with a detailed description of the fault and, if still under guarantee, a copy of the invoice, to the following address.

6.2 Contact options

Questions or problems with operation of the device, use of optional components, with the documentation or software, can be addressed to technical support either by telephone or e-Mail.

Address	e-Mail	Telephone
EA Elektro-Automatik GmbH	All issues:	Switchboard: +49 2162 / 37850
Helmholtzstr. 31-33	ea1974@elektroautomatik.de	Support: +49 2162 / 378566
41747 Viersen		
Germany		

EA-Elektro-Automatik GmbH & Co. KG

Entwicklung - Produktion - Vertrieb

Helmholtzstraße 31-33 41747 Viersen

Telefon: 02162 / 37 85-0 Telefax: 02162 / 16 230 ea1974@elektroautomatik.de www.elektroautomatik.de