

Betriebsanleitung

Elektronische DC-Last

Achtung! Diese Anleitung gilt nur für Geräte mit einer Firmware ab "KE: 2.25" und "HMI: 2.15" und "DR: 1.6.5". Zwecks Verfügbarkeit von Updates bitte unsere Webseite aufsuchen oder anfragen.

Doc ID: EL9BDE Revision: 08 Date: 09/2018 (6

INHALT

ALLGEMEINES

1.1	Zu diesem Dokument	5
1.1.1	Aufbewahrung und Verwendung	5
1.1.2	Urheberschutz (Copyright)	5
1.1.3	Geltungsbereich	5
1.1.4	Symbole und Hinweise	5
1.2	Gewährleistung und Garantie	5
1.3	Haftungsbeschränkungen	5
1.4	Entsorgung des Gerätes	6
1.5	Produktschlüssel	6
1.6	Bestimmungsgemäße Verwendung	6
1.7	Sicherheit	7
1.7.1	Sicherheitshinweise	7
1.7.2	Verantwortung des Bedieners	8
1.7.3	Pflichten des Betreibers	8
1.7.4	Anforderungen an das Bedienpersonal	8
1.7.5	Alarmsignale	9
1.8	Technische Daten	9
1.8.1	Zulässige Betriebsbedingungen	9
1.8.2	Allgemeine technische Daten	9
1.8.3	Spezifische technische Daten	10
1.8.4	Ansichten (3U-Modelle)	18
1.8.5	Ansichten (6U-Modelle)	21
1.8.6	Bedienelemente	24
1.9	Aufbau und Funktion	25
1.9.1	Allgemeine Beschreibung	25
1.9.2	Blockdiagramm	25
1.9.3	Lieferumfang	26
1.9.4	Zubehör	26
1.9.5	Optionen	26
1.9.6	Die Bedieneinheit (HMI)	27
1.9.7	USB-Port Typ B (Rückseite)	30
1.9.8	Steckplatz für Schnittstellenmodule	30
1.9.9	Analogschnittstelle	30
1.9.10	Share-Bus-Anschluß	31
1.9.11	Sense-Anschluß (Fernfühlung)	31
1.9.12	Master-Slave-Bus	31

2 INSTALLATION & INBETRIEBNAHME

2.1	Transport und Lagerung32
2.1.1	Transport32
2.1.2	Verpackung32
2.1.3	Lagerung
2.2	Auspacken und Sichtkontrolle32
2.3	Installation32
2.3.1	Sicherheitsmaßnahmen vor Installation und
	Gebrauch32
2.3.2	Vorbereitung33
2.3.3	Aufstellung des Gerätes
2.3.4	Anschließen von DC-Quellen (3U-Modelle)34

2.3.5	Anschließen von DC-Quellen (6U-Modelle)35
2.3.6	Erdung des DC-Eingangs36
2.3.7	Anschließen des "Share-Bus"
2.3.8	Anschließen der Fernfühlung37
2.3.9	Anschließen des USB-Ports (Rückseite)37
2.3.10	Installation eines Schnittstellenmoduls38
2.3.11	Anschließen der analogen Schnittstelle38
2.3.12	Erstinbetriebnahme
2.3.13	Erneute Inbetriebnahme nach Firmwareup-
	dates bzw. längerer Nichtbenutzung

3 BEDIENUNG UND VERWENDUNG

3.1	Personenschutz	40
3.2	Regelungsarten	40
3.2.1	Spannungsregelung / Konstantspannung	40
3.2.2	Stromregelung / Konstantstrom / Strombe-	
	grenzung	41
3.2.3	Widerstandsregelung/Konstantwiderstand.	41
3.2.4	Leistungsregelung / Konstantleistung / Lei-	
	stungsbegrenzung	41
3.2.5	Regelverhalten und Stabilitätskriterium	42
3.3	Alarmzustände	43
3.3.1	Power Fail	43
3.3.2	Übertemperatur (Overtemperature)	43
3.3.3	Überspannung (Overvoltage)	43
3.3.4	Überstrom (Overcurrent)	43
3.3.5	Überleistung (Overpower)	43
3.4	Manuelle Bedienung	44
3.4.1	Einschalten des Gerätes	44
3.4.2	Ausschalten des Gerätes	44
3.4.3	Konfiguration im MENU	44
3.4.4	Einstellgrenzen ("Limits")	54
3.4.5	Bedienart wechseln	54
3.4.6	Sollwerte manuell einstellen	55
3.4.7	Ansichtsmodus der Hauptanzeige wech-	
	seln	56
3.4.8	Die Meßleisten	56
3.4.9	DC-Eingang ein- oder ausschalten	57
3.4.10	Datenaufzeichnung auf USB-Stick (Log-	
	ging)	57
3.5	Fernsteuerung	59
3.5.1	Allgemeines	59
3.5.2	Bedienorte	59
3.5.3	Fernsteuerung über eine digitale Schnittste	el-
	le	59
3.5.4	Fernsteuerung über Analogschnittstelle	
	(AS)	60
3.6	Alarme und Überwachung	64
3.6.1	Begriffsdefinition	64
3.6.2	Gerätealarme und Events handhaben	64
3.7	Bedieneinheit (HMI) sperren	67
3.8	Einstellgrenzen (Limits) sperren	67

3.9	Nutzerprofile laden und speichern68
3.10	Der Funktionsgenerator69
3.10.1	Einleitung69
3.10.2	Allgemeines
3.10.3	Arbeitsweise
3.10.4	Manuelle Bedienung70
3.10.5	Sinus-Funktion71
3.10.6	Dreieck-Funktion72
3.10.7	Rechteck-Funktion72
3.10.8	Trapez-Funktion73
3.10.9	DIN 40839-Funktion73
3.10.10	Arbiträr-Funktion74
3.10.11	Rampen-Funktion
3.10.12	UI- und IU-Tabellenfunktion (XY-Tabelle)78
3.10.13	Batterietest-Funktion80
3.10.14	MPP-Tracking-Funktion82
3.10.15	Fernsteuerung des Funktionsgenerators84
3.11	Weitere Anwendungen85
3.11.1	Parallelschaltung als Master-Slave (MS)85
3.11.2	Reihenschaltung
3.11.3	Zwei-Quadranten-Betrieb (2QB)

4 INSTANDHALTUNG & WARTUNG

4.1	Wartung / Reinigung	.91
4.2	Fehlersuche / Fehlerdiagnose / Reparatur	.91
4.2.1	Defekte Netzsicherung tauschen	.91
4.2.2	Firmware-Aktualisierungen	.91
4.3	Nachjustierung (Kalibrierung)	.92
4.3.1	Einleitung	.92
4.3.2	Vorbereitung	.92
4.3.3	Abgleichvorgang	.92

5 SERVICE & SUPPORT

5.1	Reparaturen	94
5.2	Kontaktmöglichkeiten	94

1. Allgemeines

1.1 Zu diesem Dokument

1.1.1 Aufbewahrung und Verwendung

Dieses Dokument ist für den späteren Gebrauch und stets in der Nähe des Gerätes aufzubewahren und dient zur Erläuterung des Gebrauchs des Gerätes. Bei Standortveränderung und/oder Benutzerwechsel ist dieses Dokument mitzuliefern und bestimmungsgemäß anzubringen bzw. zu lagern.

1.1.2 Urheberschutz (Copyright)

Nachdruck, Vervielfältigung oder auszugsweise, zweckentfremdete Verwendung dieser Bedienungsanleitung sind nicht gestattet und können bei Nichtbeachtung rechtliche Schritte nach sich ziehen.

1.1.3 Geltungsbereich

Diese Betriebsanleitung gilt für folgende Geräte, sowie für deren Varianten:

Model	Artikelnr.		Model	Artikelnr.	Model	Artikelnr.
EL 9080-170 B	33 200 260	[EL 9360-80 B	33 200 267	EL 9750-60 B	33 200 274
EL 9200-70 B	33 200 261	[EL 9500-60 B	33 200 268	EL 9080-1020 B	33 200 275
EL 9360-40 B	33 200 262	[EL 9750-40 B	33 200 269	EL 9200-420 B	33 200 276
EL 9500-30 B	33 200 263		EL 9080-510 B	33 200 270	EL 9360-240 B	33 200 277
EL 9750-20 B	33 200 264	[EL 9250-210 B	33 200 271	EL 9500-180 B	33 200 278
EL 9080-340 B	33 200 265	[EL 9360-120 B	33 200 272	EL 9750-120 B	33 200 279
EL 9200-140 B	33 200 266	[EL 9500-90 B	33 200 273		

1.1.4 Symbole und Hinweise

Warn- und Sicherheitshinweise, sowie allgemeine Hinweise in diesem Dokument sind stets in einer umrandeten Box und mit einem Symbol versehen:

1.2 Gewährleistung und Garantie

Elektro-Automatik garantiert die Funktionsfähigkeit der Geräte im Rahmen der ausgewiesenen Leistungsparameter. Die Gewährleistungsfrist beginnt mit der mängelfreien Übergabe.

Die Garantiebestimmungen sind den allgemeinen Geschäftsbedingungen (AGB) der EA Elektro-Automatik GmbH entnehmen.

1.3 Haftungsbeschränkungen

Alle Angaben und Hinweise in dieser Anleitung wurden unter Berücksichtigung geltender Normen und Vorschriften, des Stands der Technik sowie unserer langjährigen Erkenntnisse und Erfahrungen zusammengestellt. Elektro-Automatik übernimmt keine Haftung für Schäden aufgrund:

- Nicht bestimmungsgemäßer Verwendung
- Einsatz von nicht ausgebildetem und nicht unterwiesenem Personal
- Eigenmächtiger Umbauten
- Technischer Veränderungen
- Verwendung nicht zugelassener Ersatzteile

Der tatsächliche Lieferumfang kann bei Sonderausführungen, der Inanspruchnahme zusätzlicher Bestelloptionen oder aufgrund neuester technischer Änderungen von den hier beschriebenen Erläuterungen und Darstellungen abweichen.

1.4 Entsorgung des Gerätes

Ein Gerät, das zur Entsorgung vorgesehen ist, muß laut europaweit geltenden Gesetzen und Verordnungen (ElektroG, WEEE) von Elektro-Automatik zurückgenommen und entsorgt werden, sofern der Betreiber des Gerätes oder ein von ihm Beauftragter das nicht selbst erledigt. Unsere Geräte unterliegen diesen Verordnungen und sind dementsprechend mit diesem Symbol gekennzeichnet:

1.5 Produktschlüssel

Aufschlüsselung der Produktbezeichnung auf dem Typenschild anhand eines Beispiels:

<u>EL</u>	<u>93</u>	<u>60</u> -	<u>40</u>	<u>B</u> 3	<u>3U</u>	<u>ZZZ</u>					
							Feld zur Kennzeichnung installierter Optionen und/oder Sondermodelle				
							Einbauhöhe in HE:				
							3U = 3 HE				
							Ausführung/Bauweise:				
							B = Zweite Generation				
	Maximalstrom des Gerätes in Ampere										
	Maximalspannung des Gerätes in Volt										
	Serienkennzeichnung: 9 = Serie 9000										
	Typkennzeichnung:										
							EL = Electronic Load (Elektronische Last), immer programmierbar				

0

Sondergeräte sind stets Varianten von Standardmodellen und können von der Bezeichnung abweichende Eingangsspannungen und -ströme haben.

1.6 Bestimmungsgemäße Verwendung

Das Gerät ist, sofern ein Netzgerät bzw. Batterielader, ausschließlich für den Gebrauch als variable Spannungsoder Stromquelle oder, sofern eine elektronische Last, als variable Stromsenke bestimmt.

Typisches Anwendungsgebiet für ein Netzgerät ist die DC-Stromversorgung von entsprechenden Verbrauchern aller Art, für ein Batterieladegerät die Aufladung von diversen Batterietypen, sowie für elektronische Lasten der Ersatz eines ohmschen Widerstands in Form einer einstellbaren DC-Stromsenke zwecks Belastung von entsprechenden Spannungs- und Stromquellen aller Art.

- Ansprüche jeglicher Art wegen Schäden aus nicht bestimmungsgemäßer Verwendung sind ausgeschlossen
- Für alle Schäden durch nicht bestimmungsgemäße Verwendung haftet allein der Betreiber

1.7 Sicherheit

1.7.1 Sicherheitshinweise

Lebensgefahr - Gefährliche Spannung

- Beim Betrieb elektrischer Geräte stehen zwangsweise bestimmte Teile unter teils gefährlicher Spannung. Daher sind alle spannungsführenden Teile abzudecken!
- Alle Arbeiten an den Anschlussklemmen müssen im spannungslosen Zustand des Gerätes erfolgen (Eingang nicht verbunden mit Spannungsquellen) und dürfen nur von Personen durchgeführt werden, die mit den Gefahren des elektrischen Stroms vertraut sind oder unterrichtet wurden! Unsachgemäßer Umgang mit diesen Geräten kann zu tödlichen Verletzungen, sowie erheblichen Sachschäden führen.
- Berühren Sie die Kontakte am Netzkabel oder der Netzanschlußbuchse nie direkt nach dem Entfernen des Kabels aus der Steckdose oder dem Hauptanschluß, da die Gefahr eines Stromschlags besteht!
- Es kann aufgrund von geladenen X-Kondensatoren gefährliches Potential zwischen DC-Minus und PE bzw. DC-Plus und PE bestehen bzw. entstehen, auch wenn das Gerät nicht mehr eingeschaltet und von der Quelle getrennt wurde. Das Potential baut sich nur langsam oder gar nicht ab.
- Das Gerät ist ausschließlich seiner Bestimmung gemäß zu verwenden!
 - Das Gerät ist nur für den Betrieb innerhalb der auf dem Typenschild angegebenen Anschlußwerte und technischen Daten zugelassen.
 - Führen Sie keine mechanischen Teile, insbesondere aus Metall, durch die Lüftungsschlitze in das Gerät ein.
 - Vermeiden Sie die Verwendung von Flüssigkeiten aller Art in der Nähe des Gerätes, diese könnten in das Gerät gelangen. Schützen Sie das Gerät vor Nässe, Feuchtigkeit und Kondensation.
 - Für Netzgeräte und Batterielader: Schließen Sie Verbraucher, vor allem niederohmige, nie bei eingeschaltetem Leistungsausgang an, es können Funken und dadurch Verbrennungen an den Händen, sowie Beschädigungen am Gerät und am Verbraucher entstehen!
 - Für elektronische Lasten: Schließen Sie Spannungsquellen nie bei eingeschaltetem Leistungseingang an, es können Funken und dadurch Verbrennungen an den Händen, sowie hohe Spannungsspitzen und Beschädigungen am Gerät und an der Quelle entstehen!
 - Um Schnittstellenkarten oder -module in dem dafür vorgesehenen Einschub (Slot) zu bestükken, müssen die einschlägigen ESD –Vorschriften beachtet werden.
 - Nur im ausgeschalteten Zustand darf eine Schnittstellenkarte bzw. -modul aus dem Einschub herausgenommen oder bestückt werden. Eine Öffnung des Gerätes ist nicht erforderlich.
 - Keine externen Spannungsquellen mit umgekehrter Polarität am DC-Ausgang bzw. DC-Eingang anschließen! Das Gerät wird dadurch beschädigt.
 - Für Netzgeräte: Möglichst keine externen Spannungsquellen am DC-Ausgang anschließen, jedoch auf keinen Fall welche, die eine höhere Spannung erzeugen können als die Nennspannung des Gerätes.
 - Für elektronische Lasten: keine Spannungsquelle am DC-Eingang anschließen, die eine Spannung erzeugen kann, die höher ist als 120% der Nenneingangs-Spannung der Last. Das Gerät ist gegen Überspannungen nicht geschützt, diese können das Gerät zerstören.
 - Niemals Netzwerkkabel, die mit dem Ethernet oder dessen Komponenten verbunden sind, in die Master-Slave-Buchsen auf der Rückseite stecken!
 - Konfigurieren Sie Schutzfunktionen gegen Überstrom usw., die das Gerät für die anzuschließende Quelle bietet, stets passend für die jeweilige Anwendung!

1.7.2 Verantwortung des Bedieners

Das Gerät befindet sich im gewerblichen Einsatz. Das Personal unterliegt daher den gesetzlichen Pflichten zur Arbeitssicherheit. Neben den Warn- und Sicherheitshinweisen in dieser Anleitung müssen die für den Einsatzbereich gültigen Sicherheits-, Unfallverhütungs- und Umweltschutzvorschriften eingehalten werden. Insbesondere gilt, daß die das Gerät bedienenden Personen:

- sich über die geltenden Arbeitsschutzbestimmungen informieren.
- die zugewiesenen Zuständigkeiten für die Bedienung, Wartung und Reinigung des Gerätes ordnungsgemäß wahrnehmen.
- vor Arbeitsbeginn die Betriebsanleitung vollständig gelesen und verstanden haben.
- die vorgeschriebenen und empfohlenen Schutzausrüstungen anwenden.

Weiterhin ist jeder an dem Gerät Beschäftigte in seinem Zuständigkeitsumfang dafür verantwortlich, daß das Gerät stets in technisch einwandfreiem Zustand ist.

1.7.3 Pflichten des Betreibers

Betreiber ist jede natürliche oder juristische Person, die das Gerät nutzt oder Dritten zur Anwendung überläßt und während der Nutzung für die Sicherheit des Benutzers, des Personals oder Dritter verantwortlich ist.

Das Gerät wird im gewerblichen Bereich eingesetzt. Der Betreiber des Gerätes unterliegt daher den gesetzlichen Pflichten zur Arbeitssicherheit. Neben den Warn- und Sicherheitshinweisen in dieser Anleitung müssen die für den Einsatzbereich des Gerätes gültigen Sicherheits-, Unfallverhütungs- und Umweltschutzvorschriften eingehalten werden. Insbesondere muß der Betreiber:

- sich über die geltenden Arbeitsschutzbestimmungen informieren.
- durch eine Gefährdungsbeurteilung mögliche zusätzliche Gefahren ermitteln, die sich durch die speziellen Anwendungsbedingungen am Einsatzort des Gerätes ergeben.
- in Betriebsanweisungen die notwendigen Verhaltensanforderungen für den Betrieb des Gerätes am Einsatzort umsetzen.
- während der gesamten Einsatzzeit des Gerätes regelmäßig prüfen, ob die von ihm erstellten Betriebsanweisungen dem aktuellen Stand der Regelwerke entsprechen.
- die Betriebsanweisungen, sofern erforderlich, an neue Vorschriften, Standards und Einsatzbedingungen anpassen.
- die Zuständigkeiten für die Installation, Bedienung, Wartung und Reinigung des Gerätes eindeutig und unmißverständlich regeln.
- dafür sorgen, daß alle Mitarbeiter, die an dem Gerät beschäftigt sind, die Betriebsanleitung gelesen und verstanden haben. Darüber hinaus muß er das Personal in regelmäßigen Abständen im Umgang mit dem Gerät schulen und über die möglichen Gefahren informieren.
- dem mit Arbeiten an dem Gerät beauftragten Personal die vorgeschriebenen und empfohlenen Schutzausrüstungen bereitstellen.

Weiterhin ist der Betreiber dafür verantwortlich, daß das Gerät stets in einem technisch einwandfreien Zustand ist.

1.7.4 Anforderungen an das Bedienpersonal

Jegliche Tätigkeiten an Geräten dieser Art dürfen nur Personen ausüben, die ihre Arbeit ordnungsgemäß und zuverlässig ausführen können und den jeweils benannten Anforderungen entsprechen.

- Personen, deren Reaktionsfähigkeit beeinflußt ist, z. B. durch Drogen, Alkohol oder Medikamente, dürfen keine Arbeiten ausführen.
- Beim Personaleinsatz immer die am Einsatzort geltenden alters- und berufsspezifischen Vorschriften beachten.

Verletzungsgefahr bei unzureichender Qualifikation!

Unsachgemäßes Arbeiten kann zu Personen- und Sachschäden führen. Jegliche Tätigkeiten dürfen nur Personen ausführen, welche die erforderliche Ausbildung, das notwendige Wissen und die Erfahrung dafür besitzen.

Als **unterwiesenes Personal** gelten Personen, die vom Betreiber über die ihnen übertragenen Aufgaben und möglichen Gefahren ausführlich und nachweislich unterrichtet wurden.

Als **Fachpersonal** gilt, wer aufgrund seiner beruflichen Ausbildung, Kenntnisse und Erfahrungen sowie Kenntnis der einschlägigen Bestimmungen in der Lage ist, die übertragenen Arbeiten ordnungsgemäß auszuführen, mögliche Gefahren selbständig zu erkennen und Personen- oder Sachschäden zu vermeiden.

1.7.5 Alarmsignale

Das Gerät bietet verschiedene Möglichkeiten der Signalisierung von Alarmsituationen, jedoch nicht von Gefahrensituationen. Die Signalisierung kann optisch (auf der Anzeige als **Text**), akustisch (Piezosummer) oder elektronisch (Pin/Meldeausgang an einer analogen Schnittstelle) erfolgen. Alle diese Alarme bewirken die Abschaltung des DC-Eingangs.

Bedeutung der Alarmsignale:

Signal OT	Überhitzung des Gerätes
(OverTemperature)	DC-Eingang wird abgeschaltet
	Unkritisch
Signal OVP	• Überspannungsabschaltung des DC-Eingangs erfolgt, wenn überhöhte Spannung auf
(OverVoltage)	den DC-Eingang des Gerätes gelangt
	Kritisch! Gerät könnte beschädigt sein
Signal OCP	Abschaltung des DC-Eingangs erfolgte wegen Überschreiten einer einstellbaren Schwelle
(OverCurrent)	Unkritisch. Dient zum Schutz der Quelle vor Überbelastung durch zu hohen Strom
Signal OPP	Abschaltung des DC-Eingangs erfolgte wegen Überschreiten einer einstellbaren Schwelle
(OverPower)	Unkritisch. Dient zum Schutz der Quelle vor Überbelastung durch zu hohe Leistung
Signal PF	Abschaltung des DC-Eingangs wegen Netzunterspannung oder interner Defekt
(Power Fail)	Kritisch bei Netzüberspannung! AC-Netzeingangskreis könnte beschädigt sein

1.8 Technische Daten

1.8.1 Zulässige Betriebsbedingungen

- Verwendung nur in trockenen Innenräumen
- Umgebungstemperaturbereich: 0...50 °C
- Betriebshöhe: max. 2000 m über NN
- Max. 80% Luftfeuchtigkeit, nicht kondensierend

1.8.2 Allgemeine technische Daten

Ausführung der Anzeige:

Bedienelemente:

Farbiger TFT-Touchscreen mit Gorillaglas, 4.3", 480 x 272 Punkte, kapazitiv 2 Drehknöpfe mit Tastfunktion, 1 Drucktaste

Die Nennwerte des Gerätes bestimmen den maximal einstellbaren Bereich.

1.8.3 Spezifische technische Daten

	Modell							
BIS 2400 W	EL 9080-170 B	EL 9200-70 B	EL 9360-40 B	EL 9500-30 B	EL 9750-20 B			
Netzversorgung								
Netzspannung	90264 V AC	90264 V AC	90264 V AC	90264 V AC	90264 V AC			
Netzanschluß	Steckdose	Steckdose	Steckdose	Steckdose	Steckdose			
Netzfrequenz	4565 Hz	4565 Hz	4565 Hz	4565 Hz	4565 Hz			
Netzsicherung	T 6,3 A	T 6,3 A	T 6,3 A	T 6,3 A	T 6,3 A			
Leistungsaufnahme	Max. 45 W	Max. 45 W	Max. 45 W	Max. 45 W	Max. 45 W			
Ableitstrom	< 3,5 mA	< 3,5 mA	< 3,5 mA	< 3,5 mA	< 3,5 mA			
DC-Eingang								
Eingangsspannung U _{Nenn}	80 V	200 V	360 V	500 V	750 V			
Eingangsleistung Spitze P _{Spitze}	2400 W	2000 W	1800 W	1200 W	1200 W			
Eingangsleistung Dauer P _{Dauer} ⁽²	1500 W	1500 W	1500 W	1200 W	1200 W			
Eingangsstrom I _{Nenn}	170 A	70 A	40 A	30 A	20 A			
Überspannungsschutzbereich	01,03 * U _{Nenn}	01,03 * U _{Nenn}	01,03 * U _{Nenn}	01,03 * U _{Nenn}	01,03 * U _{Nenn}			
Überstromschutzbereich	01,1 * I _{Nenn}	01,1 * I _{Nenn}	01,1 * I _{Nenn}	01,1 * I _{Nenn}	01,1 * I _{Nenn}			
Überleistungsschutzbereich	01,1 * P _{Spitze}	01,1 * P _{Spitze}	01,1 * P _{Spitze}	01,1 * P _{Spitze}	01,1 * P _{Spitze}			
Maximal zulässige Eingangsspg.	88 V	220 V	396 V	550 V	825 V			
Min. Eingangsspg. für I _{Max}	Ca. 2,2 V	Ca. 2 V	Ca. 2 V	Ca. 6,5 V	Ca. 5,5 V			
Temperaturkoeffizient der Einstellwerte Δ / K	Strom / Spannung: 30 ppm							
Leistungsreduktion (Derating)	Ca. 19 W/°K							
Spannungsregelung								
Einstellbereich	080 V	0200 V	0360 V	0500 V	0750 V			
Stabilität bei ∆l	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}			
Genauigkeit ⁽¹ (bei 23 ± 5°C)	≤ 0,1% U _{Nenn}	≤ 0,1% U _{Nenn}	≤ 0,1% U _{Nenn}	≤ 0,1% U _{Nenn}	≤ 0,1% U _{Nenn}			
Anzeige: Einstellauflösung	Siehe Abschnitt "1.9.6.4. Auflösung der Anzeigewerte"							
Anzeige: Genauigkeit ⁽³	≤ 0,1% U _{Nenn}							
Kompensation Fernfühlung	Max. 5% U _{Nenn}				<u>.</u>			
Stromregelung								
Einstellbereich	0170 A	070 A	040 A	030 A	020 A			
Stabilität bei ΔU	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}			
Genauigkeit ⁽¹ (bei 23 ± 5°C)	≤ 0,2% I _{Nenn}	\leq 0,2% I _{Nenn}	≤ 0,2% I _{Nenn}	≤ 0,2% I _{Nenn}	$\leq 0,2\%$ I _{Nenn}			
Anzeige: Einstellauflösung	Siehe Abschnitt "	,1.9.6.4. Auflösung	g der Anzeigewert	'e"				
Anzeige: Genauigkeit ⁽³	≤0,1% I _{Nenn}				<u>.</u>			
Anstiegszeit 1090% I _{Nenn}	< 23 µs	< 40 µs	< 24 µs	< 22 µs	< 18 µs			
Abfallzeit 9010% I _{Nenn}	< 46 µs	< 42 µs	< 38 µs	< 29 µs	< 40 µs			
Leistungsregelung								
Einstellbereich	0P _{Spitze}	0P _{Spitze}	0P _{Spitze}	0P _{Spitze}	0P _{Spitze}			
Genauigkeit ⁽¹ (bei 23 ± 5°C)	< 0,5% P _{Spitze}	< 0,5% P _{Dauer}	< 0,5% P _{Dauer}	< 0,5% P _{Dauer}	< 0,5% P _{Dauer}			
Anzeige: Einstellauflösung	Siehe Abschnitt "	,1.9.6.4. Auflösung	g der Anzeigewert	e"				
Anzeige: Genauigkeit ⁽³	\leq 0,2% P _{Spitze}							
Widerstandsregelung								
Einstellbereich	0,04515 Ω	0,2585 Ω	0,8270 Ω	1,5500 Ω	3,51100 Ω			
Genauigkeit (bei 23 ± 5°C) ⁽⁴	≤1% vom Widers	tands-Endwert +	0,3% von I _{Nenn}	*	~			
Anzeige: Einstellauflösung	Siehe Abschnitt "1.9.6.4. Auflösung der Anzeigewerte"							

(1 Bezogen auf den Nennwert definiert die Genauigkeit die maximale Abweichung zwischen Sollwert und Istwert am DC-Eingang des Gerätes.

Beispiel: das 170 A-Modell hat min. 0,2% Stromgenauigkeit, das ergibt 340 mA max. zulässige Abweichung. Bei einem Sollwert von 10 A dürfte der Istwert also 9,66 A...10,34 A betragen.

(2 Bei 21°C Umgebungstemperatur

(3 Der Fehler der Anzeige addiert sich zum Fehler des Istwertes am DC-Eingang

(4 Inkludiert die Genauigkeit des angezeigten Istwertes

	Modell							
BIS 2400 W	EL 9080-170 B	EL 9200-70 B	EL 9360-40 B	EL 9500-30 B	EL 9750-20 B			
Analoge Schnittstelle ⁽¹								
Sollwerteingänge	U, I, P, R							
Istwertausgänge	U, I							
Steuersignale	DC-Eingang ein/	aus, Fernsteueru	ng ein/aus, R-Moo	dus ein/aus				
Meldesignale	CV, OVP, OT							
Galvanische Trennung zum Gerät	Max. 1500 V DC							
Abtastrate Sollwerteingänge	500 Hz							
Isolation								
Eingang (DC) zum Gehäuse	DC-Minus: dauer DC-Plus: dauerh	rhaft max. ±400 V aft max. ±400 V +	- max. Eingangss	pannung				
Eingang (AC) to Eingang (DC)	Max. 2500 V, kur	zzeitig						
Klima								
Kühlungsart	Temperaturgeregelte Lüfter							
Umgebungstemperatur	050 °C							
Lagertemperatur	-2070 °C							
Digitale Schnittstellen								
Eingebaut	1x USB-B für Kommunikation, 1x USB-A für Funktionen, 1x Master-Slave-Bus							
Steckplatz für digitale Module	CAN, CANopen, Profibus, Profinet, RS232, Ethernet, ModBus TCP, EtherCAT							
Galvanische Trennung zum Gerät	Max ax. 1500 V DC							
Anschlüsse								
Rückseite	Share-Bus, DC-Eingang, AC-Eingang, Sense, Analogschnittstelle, USB-B, Master- Slave-Bus, Schnittstellen-Modul-Steckplatz							
Vorderseite	USB-A							
Maße								
Gehäuse (BxHxT)	19" x 3 HE x 461 mm							
Total (BxHxT)	483 mm x 133 mm x 568 mm							
Normen	EN 60950:2006 + A11:2009 + A1:2010 + A12:2011 + AC:2011 + A2:2013 EN 61000-6-3:2011-09, EN 61000-6-1:2007-10							
Gewicht	~ 9 kg	~ 9 kg	~ 9 kg	~ 9 kg	~ 9 kg			
Artikelnummer	33200260	33200261	33200262	33200263	33200264			

(1 Technische Daten der Analogschnittstelle siehe "3.5.4.4 Spezifikation der Analogschnittstelle" ab Seite 61

Dia 4900 W/	Modell									
DIS 4000 W	EL 9080-340 B	EL 9200-140 B	EL 9360-80 B	EL 9500-60 B	EL 9750-40 B					
Netzversorgung										
Netzspannung	90264 V AC	90264 V AC	90264 V AC	90264 V AC	90264 V AC					
Netzanschluß	Steckdose	Steckdose	Steckdose	Steckdose	Steckdose					
Netzfrequenz	4565 Hz	4565 Hz	4565 Hz	4565 Hz	4565 Hz					
Netzsicherung	T 6,3 A	T 6,3 A	T 6,3 A	T 6,3 A	T 6,3 A					
Leistungsaufnahme	Max. 90 W	Max. 90 W	Max. 90 W	Max. 90 W	Max. 90 W					
Ableitstrom	< 3,5 mA	< 3,5 mA	< 3,5 mA	< 3,5 mA	< 3,5 mA					
DC-Eingang										
Eingangsspannung U _{Nenn}	80 V	200 V	360 V	500 V	750 V					
Eingangsleistung Spitze P _{Spitze}	4800 W	4000 W	3600 W	2400 W	2400 W					
Eingangsleistung Dauer P _{Dauer} ⁽²	3000 W	3000 W	3000 W	2400 W	2400 W					
Eingangsstrom I _{Nenn}	340 A	140 A	80 A	60 A	40 A					
Überspannungsschutzbereich	01,03 * U _{Nenn}	01,03 * U _{Nenn}	01,03 * U _{Nenn}	01,03 * U _{Nenn}	01,03 * U _{Nenn}					
Überstromschutzbereich	01,1 * I _{Nenn}	01,1 * I _{Nenn}	01,1 * I _{Nenn}	01,1 * I _{Nenn}	01,1 * I _{Nenn}					
Überleistungsschutzbereich	01,1 * P _{Spitze}	01,1 * P _{Spitze}	01,1 * P _{Spitze}	01,1 * P _{Spitze}	01,1 * P _{Spitze}					
Maximal zulässige Eingangsspg.	88 V	220 V	396 V	550 V	825 V					
Min. Eingangsspg. für I _{Max}	Ca. 2,2 V	Ca. 2 V	Ca. 2 V	Ca. 6,5 V	Ca. 5,5 V					
Temperaturkoeffizient der Einstellwerte Δ / K	Strom / Spannung: 30 ppm									
Leistungsreduktion (Derating)	Ca. 38 W/°K									
Spannungsregelung										
Einstellbereich	080 V	0200 V	0360 V	0500 V	0750 V					
Stabilität bei ∆l	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}					
Genauigkeit ⁽¹ (bei 23 ± 5°C)	≤ 0,1% U _{Nenn}	≤ 0,1% U _{Nenn}	≤ 0,1% U _{Nenn}	≤ 0,1% U _{Nenn}	≤ 0,1% U _{Nenn}					
Anzeige: Einstellauflösung	Siehe Abschnitt "1.9.6.4. Auflösung der Anzeigewerte"									
Anzeige: Genauigkeit ⁽³	≤ 0,1%									
Kompensation Fernfühlung	Max. 5% U _{Nenn}									
Stromregelung										
Einstellbereich	0340 A	0140 A	080 A	060 A	040 A					
Stabilität bei ∆U	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}					
Genauigkeit ⁽¹ (bei 23 ± 5°C)	≤ 0,2% I _{Nenn}	$\leq 0,2\%$ I _{Nenn}	\leq 0,2% I _{Nenn}	$\leq 0,2\%$ I _{Nenn} $\leq 0,2\%$ I _{Nenn}						
Anzeige: Einstellauflösung	Siehe Abschnitt "	1.9.6.4. Auflösung	g der Anzeigewert	e"						
Anzeige: Genauigkeit ⁽³	≤ 0,1%									
Anstiegszeit 1090% I _{Nenn}	< 23 µs	< 40 µs	< 24 µs	< 22 µs	< 18 µs					
Abfallzeit 9010% I _{Nenn}	< 46 µs	< 42 µs	< 38 µs	< 29 µs	< 40 µs					
Leistungsregelung										
Einstellbereich	0P _{Spitze}	0P _{Spitze}	0P _{Spitze}	0P _{Spitze}	0P _{Spitze}					
Genauigkeit ⁽¹ (bei 23 ± 5°C)	< 0,5% P _{Dauer}	< 0,5% P _{Dauer}	< 0,5% P _{Dauer}	< 0,5% P _{Dauer}	< 0,5% P _{Dauer}					
Anzeige: Einstellauflösung	Siehe Abschnitt "	1.9.6.4. Auflösung	g der Anzeigewert	e"						
Anzeige: Genauigkeit ⁽³	≤ 0,2%				<u>.</u>					
Widerstandsregelung										
Einstellbereich	0,0237,5 Ω	0,1343 Ω	0,4135 Ω	0,75250 Ω	1,75550 Ω					
Genauigkeit (bei 23 ± 5°C) ⁽⁴	≤1% vom Widers	tands-Endwert +	0,3% von I _{Nenn}							
Anzeige: Einstellauflösung	Siehe Abschnitt "1.9.6.4. Auflösung der Anzeigewerte"									

(1 Bezogen auf den Nennwert definiert die Genauigkeit die maximale Abweichung zwischen Sollwert und Istwert am DC-Eingang des Gerätes.

Beispiel: das 170 A-Modell hat min. 0,2% Stromgenauigkeit, das ergibt 340 mA max. zulässige Abweichung. Bei einem Sollwert von 10 A dürfte der Istwert also 9,66 A...10,34 A betragen.

(2 Bei 21°C Umgebungstemperatur

(3 Der Fehler der Anzeige addiert sich zum Fehler des Istwertes am DC-Eingang

(4 Inkludiert die Genauigkeit des angezeigten Istwertes

	Modell									
BIS 4800 W	EL 9080-340 B	EL 9200-140 B	200-140 B EL 9360-80 B EL 9500-60 B EL 9750-4							
Analoge Schnittstelle ⁽¹										
Sollwerteingänge	U, I, P, R									
Istwertausgänge	U, I									
Steuersignale	DC-Eingang ein/	aus, Fernsteueru	ng ein/aus, R-Moo	dus ein/aus						
Meldesignale	CV, OVP, OT									
Galvanische Trennung zum Gerät	Max. 1500 V DC									
Abtastrate Sollwerteingänge	500 Hz									
Isolation										
Eingang (DC) zum Gehäuse	DC-Minus: dauerhaft max. ±400 V DC-Plus: dauerhaft max. ±400 V + max. Eingangsspannung									
Eingang (AC) to Eingang (DC)	Max. 2500 V, kur	Max. 2500 V, kurzzeitig								
Klima										
Kühlungsart	Temperaturgeregelte Lüfter									
Umgebungstemperatur	050 °C									
Lagertemperatur	-2070 °C									
Digitale Schnittstellen										
Eingebaut	1x USB-B für Kommunikation, 1x USB-A für Funktionen, 1x Master-Slave-Bus									
Steckplatz für digitale Module	CAN, CANopen, Profibus, Profinet, RS232, Ethernet, ModBus TCP, EtherCAT									
Galvanische Trennung zum Gerät	Max. 1500 V DC									
Anschlüsse										
Rückseite	Share-Bus, DC-Eingang, AC-Eingang, Sense, Analogschnittstelle, USB-B, Master- Slave-Bus, Schnittstellen-Modul-Steckplatz									
Vorderseite	USB-A									
Maße										
Gehäuse (BxHxT)	19" x 3 HE x 461	mm								
Total (BxHxT)	483 mm x 133 mm x 568 mm									
Normen	EN 60950:2006 + A11:2009 + A1:2010 + A12:2011 + AC:2011 + A2:2013 EN 61000-6-3:2011-09, EN 61000-6-1:2007-10									
Gewicht	~ 13 kg	~ 13 kg	~ 13 kg	~ 13 kg	~ 13 kg					
Artikelnummer	33200265	33200266	33200267	33200268	33200269					

(1 Technische Daten der Analogschnittstelle siehe "3.5.4.4 Spezifikation der Analogschnittstelle" ab Seite 61

Dia 7200 W/	Modell									
DIS 7200 W	EL 9080-510 B	EL 9200-210 B	EL 9360-120 B	EL 9500-90 B	EL 9750-60 B					
Netzversorgung										
Netzspannung	90264 V AC	90264 V AC	90264 V AC	90264 V AC	90264 V AC					
Netzanschluß	Steckdose	Steckdose	Steckdose	Steckdose	Steckdose					
Netzfrequenz	4565 Hz	4565 Hz	4565 Hz	4565 Hz	4565 Hz					
Netzsicherung	T 6,3 A	T 6,3 A	T 6,3 A	T 6,3 A	T 6,3 A					
Leerlauf-Leistungsaufnahme	Max. 130 W	Max. 130 W	Max. 130 W	Max. 130 W	Max. 130 W					
Ableitstrom	< 3,5 mA	< 3,5 mA	< 3,5 mA	< 3,5 mA	< 3,5 mA					
DC-Eingang										
Eingangsspannung U _{Nenn}	80 V	200 V	360 V	500 V	750 V					
Eingangsleistung Spitze P _{Spitze}	7200 W	6000 W	5400 W	3600 W	3600 W					
Eingangsleistung Dauer P _{Dauer} ⁽²	4500 W	4500 W	4500 W	3600 W	3600 W					
Eingangsstrom I _{Nenn}	510 A	210 A	120 A	90 A	60 A					
Überspannungsschutzbereich	01,03 * U _{Nenn}	01,03 * U _{Nenn}	01,03 * U _{Nenn}	01,03 * U _{Nenn}	01,03 * U _{Nenn}					
Überstromschutzbereich	01,1 * I _{Nenn}	01,1 * I _{Nenn}	01,1 * I _{Nenn}	01,1 * I _{Nenn}	01,1 * I _{Nenn}					
Überleistungsschutzbereich	01,1 * P _{Spitze}	01,1 * P _{Spitze}	01,1 * P _{Spitze}	01,1 * P _{Spitze}	01,1 * P _{Spitze}					
Maximal zulässige Eingangsspg.	88 V	220 V	396 V	550 V	825 V					
Min. Eingangsspg. für I _{Max}	Ca. 2,2 V	Ca. 2 V	Ca. 2 V	Ca. 6,5 V	Ca. 5,5 V					
Temperaturkoeffizient der Einstellwerte Δ / K	Strom / Spannung: 30 ppm									
Leistungsreduktion (Derating)	Ca. 57 W/°K									
Spannungsregelung										
Einstellbereich	080 V	0200 V 0360 V		0500 V	0750 V					
Stabilität bei ∆l	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}					
Genauigkeit ⁽¹ (bei 23 ± 5°C)	≤ 0,1% U _{Nenn}	≤ 0,1% U _{Nenn}	≤ 0,1% U _{Nenn}	≤ 0,1% U _{Nenn}	≤ 0,1% U _{Nenn}					
Anzeige: Einstellauflösung	Siehe Abschnitt "1.9.6.4. Auflösung der Anzeigewerte"									
Anzeige: Genauigkeit ⁽³	≤0,1%									
Kompensation Fernfühlung	Max. 5% U _{Nenn}									
Stromregelung										
Einstellbereich	0510 A	0210 A	0120 A	090 A	060 A					
Stabilität bei ∆U	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}					
Genauigkeit ⁽¹ (bei 23 ± 5°C)	≤ 0,2% I _{Nenn}	\leq 0,2% I _{Nenn}	\leq 0,2% I _{Nenn}	$\leq 0,2\% \ I_{Nenn} \leq 0,2\% \ I_{Nenn}$						
Anzeige: Einstellauflösung	Siehe Abschnitt "1.9.6.4. Auflösung der Anzeigewerte"									
Anzeige: Genauigkeit (3	≤0,1%									
Anstiegszeit 1090% I _{Nenn}	< 23 µs	< 40 µs	< 24 µs	< 22 µs	< 18 µs					
Abfallzeit 9010% I _{Nenn}	< 46 µs	< 42 µs	< 38 µs	< 29 µs	< 40 µs					
Leistungsregelung										
Einstellbereich	0P _{Spitze}	0P _{Spitze}	0P _{Spitze}	0P _{Spitze}	0P _{Spitze}					
Genauigkeit ⁽¹ (bei 23 ± 5°C)	< 0,5% P _{Dauer}	< 0,5% P _{Dauer}	< 0,5% P _{Dauer}	< 0,5% P _{Dauer}	< 0,5% P _{Dauer}					
Anzeige: Einstellauflösung	Siehe Abschnitt "	,1.9.6.4. Auflösung	g der Anzeigewert	e"						
Anzeige: Genauigkeit (3	≤0,2%				<u>.</u>					
Widerstandsregelung										
Einstellbereich	0,0155 Ω	0,0828 Ω	0,2790 Ω	0,5167 Ω	1,2360 Ω					
Genauigkeit (bei 23 ± 5°C) ⁽⁴	≤1% vom Widers	tands-Endwert +	0,3% von I _{Nenn}							
Anzeige: Einstellauflösung	Siehe Abschnitt "1.9.6.4. Auflösung der Anzeigewerte"									

⁽¹ Bezogen auf den Nennwert definiert die Genauigkeit die maximale Abweichung zwischen Sollwert und Istwert am DC-Eingang des Gerätes.

Beispiel: das 170 A-Modell hat min. 0,2% Stromgenauigkeit, das ergibt 340 mA max. zulässige Abweichung. Bei einem Sollwert von 10 A dürfte der Istwert also 9,66 A...10,34 A betragen.

⁽² Bei 21°C Umgebungstemperatur

⁽³ Der Fehler der Anzeige addiert sich zum Fehler des Istwertes am DC-Eingang

⁽⁴ Inkludiert die Genauigkeit des angezeigten Istwertes

	Modell									
BIS / ZUU W	EL 9080-510 B	EL 9200-210 B	EL 9360-120 B	EL 9500-90 B	EL 9750-60 B					
Analoge Schnittstelle (1										
Sollwerteingänge	U, I, P, R									
Istwertausgänge	U, I									
Steuersignale	DC-Eingang ein/aus, Fernsteuerung ein/aus, R-Modus ein/aus									
Meldesignale	CV, OVP, OT									
Galvanische Trennung zum Gerät	Max. 1500 V DC									
Abtastrate Sollwerteingänge	500 Hz									
Isolation										
Eingang (DC) zum Gehäuse	DC-Minus: dauer DC-Plus: dauerh	haft max. ±400 V aft max. ±400 V +	· max. Eingangss	pannung						
Eingang (AC) to Eingang (DC)	Max. 2500 V, kur	zzeitig								
Klima										
Kühlungsart	Temperaturgeregelte Lüfter									
Umgebungstemperatur	050 °C									
Lagertemperatur	-2070 °C									
Digitale Schnittstellen										
Eingebaut	1x USB-B für Ko	mmunikation, 1x l	JSB-A für Funktio	nen, 1x Master-S	lave-Bus					
Steckplatz für digitale Module	CAN, CANopen, Profibus, Profinet, RS232, Ethernet, ModBus TCP, EtherCAT									
Galvanische Trennung zum Gerät	Max. 1500 V DC									
Anschlüsse										
Rückseite	Share-Bus, DC-Eingang, AC-Eingang, Sense, Analogschnittstelle, USB-B, Master- Slave-Bus, Schnittstellen-Modul-Steckplatz									
Vorderseite	USB-A									
Maße										
Gehäuse (BxHxT)	19" x 3 HE x 461	mm								
Total (BxHxT)	483 mm x 133 mm x 568 mm									
Normen	EN 60950:2006 + A11:2009 + A1:2010 + A12:2011 + AC:2011 + A2:2013 EN 61000-6-3:2011-09, EN 61000-6-1:2007-10									
Gewicht	~ 17 kg	~ 17 kg	~ 17 kg	~ 17 kg	~ 17 kg					
Artikelnummer	33200270	33200271	33200272	33200273	33200274					

(1 Technische Daten der Analogschnittstelle siehe "3.5.4.4 Spezifikation der Analogschnittstelle" ab Seite 61

Dia 11100 W/	Modell									
DIS 14400 W	EL 9080-1020 B	EL 9200-420 B	EL 9360-240 B	EL 9500-180 B	EL 9750-120 B					
Netzversorgung										
Netzspannung	90264 V AC	90264 V AC	90264 V AC	90264 V AC	90264 V AC					
Netzanschluß	Steckdose	Steckdose	Steckdose	Steckdose	Steckdose					
Netzfrequenz	4565 Hz	4565 Hz	4565 Hz	4565 Hz	4565 Hz					
Netzsicherung	T 6,3 A	T 6,3 A	T 6,3 A	T 6,3 A	T 6,3 A					
Leerlauf-Leistungsaufnahme	Max. 260 W	Max. 260 W	Max. 260 W	Max. 260 W	Max. 260 W					
DC-Eingang										
Eingangsspannung U _{Nenn}	80 V	200 V	360 V	500 V	750 V					
Eingangsleistung Spitze P _{Spitze}	14400 W	12000 W	10800 W	7200 W	7200 W					
Eingangsleistung Dauer P _{Dauer} ⁽²	9000 W	9000 W	9000 W	7200 W	7200 W					
Eingangsstrom I _{Nenn}	1020 A	420 A	240 A	180 A	120 A					
Überspannungsschutzbereich	01,03 * U _{Nenn}	01,03 * U _{Nenn}	01,03 * U _{Nenn}	01,03 * U _{Nenn}	01,03 * U _{Nenn}					
Überstromschutzbereich	01,1 * I _{Nenn}	01,1 * I _{Nenn}	01,1 * I _{Nenn}	01,1 * I _{Nenn}	01,1 * I _{Nenn}					
Überleistungsschutzbereich	01,1 * P _{Spitze}	01,1 * P _{Spitze}	01,1 * P _{Spitze}	01,1 * P _{Spitze}	01,1 * P _{Spitze}					
Maximal zulässige Eingangsspg.	88 V	220 V	396 V	550 V	825 V					
Min. Eingangsspg. für I _{Max}	Ca. 2,2 V	Ca. 2 V	Ca. 2 V	Ca. 6,5 V	Ca. 5,5 V					
Temperaturkoeffizient der Einstellwerte Δ / K	Strom / Spannung: 30 ppm									
Leistungsreduktion (Derating)	Ca. 114 W/°K									
Spannungsregelung										
Einstellbereich	080 V	0200 V	0360 V	0500 V	0750 V					
Stabilität bei ∆l	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}	< 0,05% U _{Nenn}					
Genauigkeit ⁽¹ (bei 23 ± 5°C)	≤ 0,1% U _{Nenn}	≤ 0,1% U _{Nenn}	≤ 0,1% U _{Nenn}	≤ 0,1% U _{Nenn}	$\leq 0,1\% U_{Nenn}$					
Anzeige: Einstellauflösung	Siehe Abschnitt "1.9.6.4. Auflösung der Anzeigewerte"									
Anzeige: Genauigkeit ⁽³	≤0,1%									
Kompensation Fernfühlung	Max. 5% U _{Nenn}									
Stromregelung										
Einstellbereich	01020 A	1020 A 0420 A 0240 A 0180 A								
Stabilität bei ∆U	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}	< 0,1% I _{Nenn}					
Genauigkeit ⁽¹ (bei 23 ± 5°C)	≤ 0,2% I _{Nenn}	≤ 0,2% I _{Nenn}	≤ 0,2% I _{Nenn}	≤ 0,2% I _{Nenn}	$\leq 0,2\%$ I _{Nenn}					
Anzeige: Einstellauflösung	Siehe Abschnitt "	1.9.6.4. Auflösung	g der Anzeigewert	е"						
Anzeige: Genauigkeit ⁽³	≤0,1%									
Anstiegszeit 1090% I _{Nenn}	< 23 µs	< 40 µs	< 24 µs	< 22 µs	< 18 µs					
Abfallzeit 9010% I _{Nenn}	< 46 µs	< 42 µs	< 38 µs	< 29 µs	< 40 µs					
Leistungsregelung										
Einstellbereich	0P _{Spitze}	0P _{Spitze}	0P _{Spitze}	0P _{Spitze}	0P _{Spitze}					
Genauigkeit ⁽¹ (bei 23 ± 5°C)	< 0,5% P _{Dauer}	< 0,5% P _{Dauer}	< 0,5% P _{Dauer}	< 0,5% P _{Dauer}	< 0,5% P _{Dauer}					
Anzeige: Einstellauflösung	Siehe Abschnitt "	1.9.6.4. Auflösung	g der Anzeigewert	е"						
Anzeige: Genauigkeit ⁽³	≤0,2%									
Widerstandsregelung										
Einstellbereich	0,00752,5 Ω	0,0414 Ω	0,1445 Ω	0,2584 Ω	0,6180 Ω					
Genauigkeit (bei 23 ± 5°C) (4	≤1% vom Widers	tands-Endwert +	0,3% von I _{Nenn}							
Anzeige: Einstellauflösung	Siehe Abschnitt "1.9.6.4. Auflösung der Anzeigewerte"									

(1 Bezogen auf den Nennwert definiert die Genauigkeit die maximale Abweichung zwischen Sollwert und Istwert am DC-Eingang des Gerätes.

Beispiel: das 1020 A-Modell hat min. 0,2% Stromgenauigkeit, das ergibt 2,04 A max. zulässige Abweichung. Bei einem Sollwert von 300 A dürfte der Istwert also rund 298 A...302 A betragen.

(2 Bei 21°C Umgebungstemperatur

(3 Der Fehler der Anzeige addiert sich zum Fehler des Istwertes am DC-Eingang

(4 Inkludiert die Genauigkeit des angezeigten Istwertes

Die 44400 \4	Modell									
BIS 14400 W	EL 9080-1020 B	EL 9200-420 B	EL 9360-240 B	EL 9500-180 B	EL 9750-120 B					
Analoge Schnittstelle (1										
Sollwerteingänge	U, I, P, R									
Istwertausgänge	U, I									
Steuersignale	DC-Eingang ein/	aus, Fernsteueru	ng ein/aus, R-Moo	lus ein/aus						
Meldesignale	CV, OVP, OT									
Galvanische Trennung zum Gerät	Max. 1500 V DC									
Abtastrate Sollwerteingänge	500 Hz									
Isolation										
Eingang (DC) zum Gehäuse	DC-Minus: daue DC-Plus: dauerh	rhaft max. ±400 V aft max. ±400 V +	- max. Eingangssj	pannung						
Eingang (AC) to Eingang (DC)	Max. 2500 V, kur	zzeitig								
Klima										
Kühlungsart	Temperaturgere	gelte Lüfter								
Umgebungstemperatur	050 °C									
Lagertemperatur	-2070 °C									
Digitale Schnittstellen										
Eingebaut	1x USB-B für Ko	mmunikation, 1x	USB-A für Funktio	nen, 1x Master-S	lave-Bus					
Steckplatz für digitale Module	CAN, CANopen,	Profibus, Profine	t, RS232, Etherne	t, ModBus TCP, E	EtherCAT					
Galvanische Trennung zum Gerät	Max. 1500 V DC									
Anschlüsse										
Rückseite	Share-Bus, DC-E Slave-Bus, Schn	Eingang, AC-Eing ittstellen-Modul-S	ang, Sense, Analo teckplatz	ogschnittstelle, US	SB-B, Master-					
Vorderseite	USB-A									
Maße										
Gehäuse (BxHxT)	19" x 6 HE x 464 mm									
Total (BxHxT)	483 mm x 266 mm x max. 570 mm									
Normen	EN 60950:2006 + A11:2009 + A1:2010 + A12:2011 + AC:2011 + A2:20 EN 61000-6-3:2011-09, EN 61000-6-1:2007-10									
Gewicht	~ 33 kg	~ 33 kg	~ 33 kg	~ 33 kg	~ 33 kg					
Artikelnummer	33200275	33200275 33200276 33200277 33200278 33200								

(1 Technische Daten der Analogschnittstelle siehe "3.5.4.4 Spezifikation der Analogschnittstelle" ab Seite 61

Bild 1 - Vorderansicht

Bild 2 - Rückansicht

Bild 5 - Ansicht von oben, mit DC-Klemme Typ 2

Bild 6 - Vorderansicht

Bild 7 - Rückansicht ohne DC-Schutzabdeckung (Modelle mit 500 V oder 750 V Nennspannung)

Für eine Legende der Anschlüsse und Bedienelemente siehe Abschnitt 1.8.4.

Bild 8 - Seitenansicht mit DC-Schutzabdeckung (Modelle mit 500 V oder 750 V Nennspannung)

Bild 9- Rückansicht, ohne DC-Schutzabdeckung (Modelle mit 80 V bis 360 V Nennspannung)

Bild 10 - Seitenansicht mit DC-Schutzabdeckung (Modelle bis 360 V Nennspannung)

1.8.6 **Bedienelemente** 1 Entsperrt 24.00 V 2 2 0.00 V 2.40 A 040.00 A Ρ 58 M **Cursor Position** 2400 W On / Off USB On 🔘 Off On / Off \mathbf{O} CR Off MENU On 🔵 000 0 10 3

Bild 11- Bedienfeld

Übersicht der Bedienelemente am Bedienfeld

Für eine genaue Erläuterung siehe Abschnitte "1.9.6. Die Bedieneinheit (HMI)".

	Anzeige mit berührungsempfindlicher Oberfläche (Touchscreen)
(1)	Dient zur Auswahl von Sollwerten, Menüs, Zuständen, sowie zur Anzeige der Istwerte und diverser Status.
	Der Touchscreen kann mit einem Finger oder mit einem Stift (Stylus) bedient werden.
	Drehknöpfe mit Tastfunktion
	Linker Drehknopf (Drehen): Einstellen des Spannungssollwertes oder Leistungssollwertes oder Widerstandssollwertes bzw. Einstellen von Parameterwerten im Menü
(2)	Linker Drehknopf (Drücken): Dezimalstelle (Cursor) des Wertes wählen, der dem Drehknopf momentan zugeordnet ist
	Rechter Drehknopf (Drehen): Einstellen des Stromsollwertes bzw. Einstellen von Parameterwerten im Menü
	Rechter Drehknopf (Drücken): Dezimalstelle (Cursor) des Wertes wählen, der dem Drehknopf momentan zugeordnet ist
	Taster für das Ein- und Ausschalten des DC-Eingangs
(3)	Dient zum Ein- oder Ausschalten des DC-Eingangs bei manueller Bedienung, sowie zum Starten bzw. Stoppen einer Funktion. Die beiden LEDs "On" und "Off zeigen den Zustand des DC-Eingangs an, egal ob bei manueller Bedienung oder Fernsteuerung
	USB Host-Steckplatz Typ A
(4)	Dient zur Aufnahme handelsüblicher USB-Sticks. Siehe Abschnitt <i>"1.9.6.5. USB-Port (Vorderseite)"</i> für weitere Informationen.

1.9 Aufbau und Funktion

1.9.1 Allgemeine Beschreibung

Die elektronischen DC-Lasten der Serie EL 9000 B sind durch ihre recht kompakten 19"-Einschubgehäuse mit 3 bzw. 6 Höheneinheiten besonders für Prüfsysteme geeignet. Über die gängigen Funktionen von elektronischen Lasten hinaus können mit dem integrierten Funktionsgenerator sinus-, rechteck- oder dreieckförmige Sollwertkurven sowie weitere Kurvenformen erzeugt werden. Die sogenannten Arbiträrkurven können sogar auf USB-Stick gespeichert bzw. davon geladen werden.

Für die Fernsteuerung per PC oder SPS verfügt das Gerät serienmäßig über eine rückwärtige USB-Schnittstelle, sowie eine galvanisch getrennte Analogschnittstelle.

Mittels optionalen, steck- und nachrüstbaren Schnittstellenmodulen kann eine weitere digitale Schnittstelle wie Profibus, Ethernet, RS232, ProfiNet, ModBus TCP, CANopen, CAN oder EtherCAT hinzugefügt werden. Dies ermöglicht die Anbindung der Geräte an gängige industrielle Busse allein durch Wechsel oder Hinzufügen eines kleinen Moduls. Die Konfiguration ist einfach und wird am Gerät erledigt, sofern überhaupt nötig.

Die Geräte bieten außerdem standardmäßig die Möglichkeit über den sogenannten Share-Bus eine Verbindung zu Netzgeräten mit einem identischen Anschluß herzustellen, um im Zwei-Quadranten-Betrieb zu arbeiten. Diese Betriebsart stellt das Quelle-Senke-Prinzip dar und findet in vielen Bereichen der Industrie bei Prüfungen von Geräten, Bauteilen und anderen Komponenten Anwendung.

Eine echte Master-Slave-Verbindung mit Aufsummierung der Slave-Geräte ist auch standardmäßig vorhanden. Über diese Betriebsart lassen sich bis zu 16 Geräte zu einem System verbinden, das eine erhöhte Gesamtleistung von bis zu 230 kW bietet.

Alle Modelle sind mikroprozessorgesteuert. Dies erlaubt eine genaue und schnelle Messung und Anzeige von Istwerten.

1.9.2 Blockdiagramm

Das Blockdiagramm soll die einzelnen Hauptkomponenten und deren Zusammenspiel verdeutlichen. Es gibt drei digitale, microcontrollergesteuerte Elemente (KE, DR, HMI), die von Firmwareaktualisierungen betroffen sein können.

1.9.3 Lieferumfang

- 1 x Elektronische Last
- 1 x Stecker für Share-Bus
- 1 x Stecker für Fernfühlung
- 1 x USB-Kabel 1,8 m
- 1 x Set DC-Klemmenabdeckung
- 1 x USB-Stick mit Dokumentation und Software
- 1 x Netzkabel

1.9.4 Zubehör

Für diese Geräte gibt es folgendes Zubehör:

Digitale Schnittstellenmodule	Steck- und nachrüstbare Schnittstellenmodule für RS232, CANopen, Ethernet, Profibus, ProfiNet, ModBus TCP, CAN oder EtherCAT sind erhältlich.
	Details zu den Schnittstellenmodulen und der Programmierung des Gerätes über diese Schnittstellen sind in weiteren Handbüchern zu finden, die auf einem dem Gerät beiliegenden USB-Stick bzw. als PDF-Download auf der Elektro-Automatik- Webseite zu finden sind.

1.9.5 Optionen

Diese Optionen werden üblicherweise mit der Bestellung eines Gerätes mitbestellt und werden ab Werk dauerhaft eingebaut. Nachrüstbarkeit auf Anfrage.

POWER RACKS 19"-Schränke	19"-Schränke in diversen Konfigurationen bis 42 HE als Parallelschaltungssystem sind verfügbar, auch gemischt mit Netzgeräten, um Testsysteme zu realisieren. Für weitere Informationen siehe Produktkatalog oder auf Anfrage.							
3W GPIB-Schnittstelle	Ersetzt den Steckplatz für Schnittstellenmodule durch einen fest eingebauten GPIB-Anschluß. Nachrüstbar auf Anfrage. Das Gerät behält dabei USB- und Analogschnittstelle. Über den GPIB-Anschluß ist dann nur SCPI-Befehlssprache verfügbar.							
EL 9000 B SLAVE Zusätzliche Slave-Einheiten	Diese speziellen Slave-Modelle ohne Bedienteil dienen zur Erg bestimmten Modellen dieser Serie zwecks Leistungsaufstockung vom Anwender anhand der unten gelisteten Artikelnummer nach selbst installiert werden. Im Lieferumfang befindet sich auch ein P die Anbindung des neuen Slaves an den Master-Slave-Bus.							
	Modell EL 9080-510 B Slave EL 9200-210 B Slave EL 9360-120 B Slave EL 9500-90 B Slave EL 9750-60 B Slave	Dient zu Erweiterung von EL 9080-510 B EL 9200-210 B EL 9360-120 B EL 9500-90 B EL 9750-60 B						

1.9.6 Die Bedieneinheit (HMI)

HMI steht für Human Machine Interface, auf Deutsch Mensch-Maschine-Schnittstelle, und besteht hier aus einer Anzeige mit berührungsempfindlicher Oberfläche (Touchscreen), zwei Drehknöpfen, einem Taster und einem USB-Port.

1.9.6.1 Anzeige mit Touchscreen

Die grafische Anzeige mit Touchscreen ist in mehrere Bereiche aufgeteilt. Die gesamte Oberfläche ist berührungsempfindlich und kann mit dem Finger oder einem geeigneten Stift (Stylus) bedient werden, um das Gerät zu steuern.

Im Normalbetrieb werden im linken Teil Ist- und Sollwerte angezeigt und im rechten Teil Statusinformationen:

• Bereich Sollwerte/Istwerte (linker Teil)

Hier werden im Normalbetrieb die DC-Eingangswerte (große Zahlen) und Sollwerte (kleine Zahlen) von Spannung, Strom und Leistung und Widerstand mit ihrer Einheit angezeigt. Der Widerstandsollwert wird jedoch nur bei aktiviertem Widerstandsmodus angezeigt.

Neben den jeweiligen Einheiten der Istwerte wird bei eingeschaltetem DC-Eingang die aktuelle Regelungsart **CV**, **CC**, **CP** oder **CR** angezeigt, wie im Beispiel oben gezeigt.

Die Sollwerte sind mit den rechts neben der Anzeige befindlichen Drehknöpfen oder per Direkteingabe über den Touchscreen verstellbar, wo bei Einstellung über die Drehknöpfe die Dezimalstelle durch Druck auf den jeweiligen Drehknopf verschoben werden kann. Die Einstellwerte werden beim Drehen logisch herauf- oder heruntergezählt, also bei z. B. Rechtsdrehung und Erreichen der 9 springt die gewählte Dezimalstelle auf 0 und die nächsthöherwertige Dezimalstelle wird um 1 erhöht, sofern nicht der Maximalwert oder eine vom Anwender definierte Einstellgrenze (siehe "3.4.4. Einstellgrenzen ("Limits")") erreicht wurde. Linksdrehung umgekehrt genauso.

Anzeigewert	Einheit	Bereich	Beschreibung
Istwert Spannung	V	0-125% U _{Nenn}	Aktueller Wert der DC-Eingangsspannung
Sollwert Spannung ⁽¹	V	0-102% U _{Nenn}	Einstellwert für die Begrenzung der DC-Eingangsspg.
Istwert Strom	A	0,2-125% I _{Nenn}	Aktueller Wert des DC-Eingangsstroms
Sollwert Strom ⁽¹	A	0-102% I _{Nenn}	Einstellwert für die Begrenzung des DC-Eingangsstroms
Istwert Leistung	W	0-125% P _{Spitze}	Aktueller Wert der Eingangsleistung nach P = $U_{Ein} * I_{Ein}$
Sollwert Leistung (1	W	0-102% P _{Spitze}	Einstellwert für die Begrenzung der DC-Eingangsleistung
Istwert Widerstand	Ω	0-99999 Ω	Aktueller Wert des Innenwiderstandes nach R = U_{Ein} / I_{Ein}
Sollwert Widerstand (1	Ω	x ⁽² -102% R _{Max}	Einstellwert für den gewünschten Innenwiderstand
Einstellgrenzen	A,V,W,Ω	0-102% Nenn	U-max, I-min usw., immer bezogen auf eine Einstellgröße
Schutzeinstellungen 1	A,W	0-110% Nenn	OCP and OPP, immer bezogen auf eine Einstellgröße
Schutzeinstellungen 2	V	0-103% Nenn	OVP, immer bezogen auf eine Einstellgröße

Generelle Anzeige- und Einstellbereiche:

⁽¹ Gilt auch für weitere, auf diese phys. Größe bezogene Werte, wie z. B. OVD zur Spannung oder UCD zum Strom

⁽² Der minimal einstellbare Widerstand variiert je nach Modell. Siehe technische Daten in 1.8.3

Statusanzeigen (oben rechts)

Dieses Feld zeigt diverse Statustexte und -symbole an:

Anzeige	Beschreibung
Gesperrt	Das HMI ist gesperrt
Entsperrt	Das HMI ist nicht gesperrt
Fern:	Das Gerät befindet sich in Fernsteuerung durch
Analog	die eingebaute Analogschnittstelle
USB & andere	die eingebaute USB-Schnittstelle oder steckbares Schnittstellenmodul
Lokal	Das Gerät ist durch Benutzereingabe explizit gegen Fernsteuerung gesperrt worden
Alarm:	Ein Gerätealarm ist aufgetreten, der noch vorhanden ist oder noch nicht bestätigt wurde
Event:	Ein benutzerdefiniertes Ereignis (Event) ist ausgelöst worden, das noch nicht bestätigt wurde
Master	Master-Slave ist aktiviert, Gerät ist Master
Slave	Master-Slave ist aktiviert, Gerät ist Slave
Funktion:	Funktionsgenerator aktiviert, Funktion geladen
Gestoppt / Läuft	Status des Funktionsgenerator bzw. der geladenen Funktion
	Datenaufzeichnung auf USB-Stick läuft oder fehlgeschlagen

• Feld für Zuordnung der Drehknöpfe

Die beiden neben der Anzeige befindlichen Drehknöpfe können unterschiedlichen Bedienfunktionen zugeordnet werden. Diese kann durch Antippen des Feldes geändert werden, sofern es nicht gesperrt ist:

Die physikalischen Einheiten auf den Knöpfen zeigen die Zuordnung an. Der rechte Drehknopf ist bei einer elektronischen Last unveränderlich dem Strom I zugewiesen. Der linke Drehknopf kann durch Antippen der Grafik auf dem Touchscreen umgeschaltet werden.

Das Feld zeigt die gewählte Zuordnung an:

Linker Drehknopf: Spannung Rechter Drehknopf: Strom

U

Linker Drehknopf: Leistung Rechter Drehknopf: Strom

ΡI

RΙ

Linker Drehknopf: Widerstand Rechter Drehknopf: Strom

Die anderen beiden Sollwerte sind dann vorerst nicht mehr über die Drehknöpfe einstellbar, bis man die Zuordnung wieder ändert. Man kann jedoch alternativ auf die Anzeigefelder für Spannung, Strom oder Leistung/Widerstand tippen, um die Zuordnung zu ändern bzw. um Werte direkt über eine Zehnertastatur einzugeben. Dazu ist das

kleine Zehnertastatur-Symbol (

1.9.6.2 Drehknöpfe

Solange das Gerät manuell bedient wird, dienen die beiden Drehknöpfe zur Einstellung aller Sollwerte, sowie zur Auswahl und Einstellung der Parameter in SETTINGS und MENU. Für eine genauere Erläuterung der einzelnen Funktionen siehe "3.4 Manuelle Bedienung" ab Seite 44.

1.9.6.3 Tastfunktion der Drehknöpfe

Die Drehknöpfe haben eine Tastfunktion, die überall, wo Werte gestellt werden können, zum Verschieben des Cursors von niederwertigen zu höherwertigen Dezimalpositionen (rotierend) des einzustellenden Wertes dienen:

1.9.6.4 Auflösung der Anzeigewerte

In der Anzeige können Sollwerte in festen Schrittweiten eingestellt werden. Die Anzahl der Nachkommastellen hängt vom Gerätemodell ab. Die Werte haben 3 bis 5 Stellen. Ist- und Sollwerte haben die gleiche Stellenanzahl.

Einstellauflösung und Anzeigebreite der Sollwerte in der Anzeige:

Spar OVP, U U-min	nnu VD	ing, , OVD, -max	Stro OCP, UC I-min,	om, D, (I-m	OCD, ax	Leistung, OPP, OPD, P-max Widerstand R-max			nd,			
Nenn- wert	Stellen	Schritt- weite	Nennwert	Stellen	Schritt- weite		Nennwert	Stellen	Schritt- weite	Nennwert	Stellen	Schritt- weite
80 V	4	0,01 V	20 A	5	0,001 A		Einzelgerät	4	1 W	2,5 Ω - 7,5 Ω	5	0,0001 Ω
200 V	5	0,01 V	30 A - 90 A	4	0,01 A		Master-Slave	3	0,1 kW	14 Ω - 90 Ω	5	0,001 Ω
360 V	4	0,1 V	120 A - 240 A	5	0,01 A		<10 kW			135 Ω - 550 Ω	5	0,01 Ω
500 V	4	0,1 V	420 A / 510 A	4	0,1 A		Master-Slave	4	0,01 kW	1100 Ω	5	0,1 Ω
750 V	4	0,1 V	>=1020 A	4	1 A		10<100 kW					
							Master-Slave >100 kW	4	0,1 kW			

1.9.6.5 USB-Port (Vorderseite)

Der frontseitige USB-Port dient zur Aufnahme von handelsüblichen USB-Sticks. Damit kann man u. A. eigene Sequenzen für den arbiträren und den XY-Funktionsgenerator laden oder speichern, sowie Daten aufzeichnen. Akzeptiert werden USB 2.0-Sticks, die in **FAT32** formatiert sind und **max. 32GB** Speichergröße haben dürfen. USB 3.0 Sticks funktionieren auch, aber nicht von allen Herstellern.

Alle unterstützten Dateien müssen sich in einem bestimmten Ordner im Hauptpfad des USB-Laufwerks befinden. Der Ordner muß **HMI_FILES** benamt sein, so daß sich z. B. ein Pfad G:\HMI_FILES ergäbe, wenn der USB-Stick am PC den Laufwerksbuchstaben G: zugewiesen bekommen hätte.

Die Bedieneinheit des Gerätes kann von einem USB-Stick folgende Dateitypen lesen:

wave_u <beliebig>.csv wave_i<beliebig>.csv</beliebig></beliebig>	Sequentpunkttabelle für die Arbiträr-Funktion, für Spannung U bzw. Strom I. Der Name muß am Anfang <i>wave_u</i> oder <i>wave_i</i> enthalten, der Rest ist beliebig.
iu <beliebig>.csv</beliebig>	IU-Tabelle für den XY-Funktionsgenerator. Der Name muß am Anfang <i>iu</i> enthalten, der Rest ist beliebig.
ui <beliebig>.csv</beliebig>	UI-Tabelle für den XY-Funktionsgenerator. Der Name muß am Anfang <i>ui</i> enthalten, der Rest ist beliebig.
profile_ <nr>.csv</nr>	Gespeichertes Benutzerprofil. Die Nummer am Ende ist eine fortlaufende Nummer (1-10) und nicht verknüpft mit der Nummer eines Benutzerprofils im HMI. Beim Laden werden max. 10 Profile zur Auswahl angezeigt.
mpp_curve_ <beliebig>.csv</beliebig>	Benutzerdefinierte MPP-Kurvendaten (100 Spannungswerte) für den Modus MPP4 der MPPT-Funktion.

Die Bedieneinheit des Gerätes kann auf den USB-Stick folgende Dateitypen schreiben:

battery_test_log_ <nr>.csv</nr>	Aufzeichnungs-Datei (Log) für die Batterietest-Funktion. Beim Batterietest werden andere bzw. zusätzliche Werte aufgezeichnet als beim "normalen" Logging. Das Feld <nr> im Dateinamen wird automatisch hochgezählt, wenn sich schon gleichnamige Dateien im Ordner befinden.</nr>
usb_log_ <nr>.csv</nr>	Aufzeichnungs-Datei (Log) für die normale USB-Datenaufzeichnung in allen Betriebsarten. Der Aufbau der Logdatei ist identisch mit dem der Logging-Funktion in der Software EA Power Control. Das Feld <nr> im Dateinamen wird automatisch hochgezählt, wenn sich schon gleichnamige Dateien im Ordner befinden.</nr>
profile_ <nr>.csv</nr>	Gewähltes Benutzerprofil. Die Nummer am Ende ist eine fortlaufende Nummer (1-10) und nicht verknüpft mit der Nummer eines Benutzerprofils im HMI.
wave_u_ <nr>.csv wave_i_<nr>.csv</nr></nr>	Sequenzpunkt-Daten des arbiträren Funktionsgenerators, je nach der aktuellen Wahl von U oder I. Bereits vorhandene Dateien werden aufgelistet und können überschrieben werden.
mpp_result_ <nr>.csv</nr>	Ergebnisdaten des Modus MPP4 (MPPT-Funktion) in Form von 100 Wertegruppen mit Umpp, Impp und Pmpp

1.9.7 USB-Port Typ B (Rückseite)

Der USB-Port Typ B auf der Rückseite des Gerätes dient zur Kommunikation mit dem Gerät, sowie zur Firmwareaktualisierung. Über das mitgelieferte USB-Kabel kann das Gerät mit einem PC verbunden werden (USB 2.0, USB 3.0). Der Treiber wird auf USB-Stick mitgeliefert und installiert einen virtuellen COM-Port.

Das Gerät kann über diesen Port wahlweise über das international standardisierte ModBus RTU-Protokoll oder per SCPI-Sprache angesprochen werden. Es erkennt das in einer Nachricht verwendete Protokoll automatisch. Details zur Fernsteuerung sind in weiterer Dokumentation auf der Webseite von Elektro-Automatik bzw. auf dem mitgelieferten USB-Stick zu finden.

Die USB-Schnittstelle hat, wenn Fernsteuerung aktiviert werden soll, keinen Vorrang vor dem Schnittstellenmodul (siehe unten) oder der Analogschnittstelle und kann daher nur abwechselnd zu diesem benutzt werden. Jedoch ist Überwachung (Monitoring) immer möglich.

1.9.8 Steckplatz für Schnittstellenmodule

Dieser Steckplatz auf der Rückseite des Gerätes ist nur bei Standardmodellen ohne installierte Option 3W (GPIB) verfügbar und dient zur Aufnahme diverser Schnittstellen-Module der Serie IF-AB. Es sind optional verfügbar:

Artikelnummer	Bezeichnung	Funktion
35400100	IF-AB-CANO	CANopen, 1x Sub-D 9polig männlich
35400101	IF-AB-RS232	RS 232, 1x Sub-D 9polig männlich (Nullmodem)
35400103	IF-AB-PBUS	Profibus DP-V1 Slave, 1x Sub-D 9polig weiblich
35400104	IF-AB-ETH1P	Ethernet, 1x RJ45
35400105	IF-AB-PNET1P	ProfiNET IO, 1x RJ45
35400107	IF-AB-MBUS1P	ModBus TCP, 1x RJ45
35400108	IF-AB-ETH2P	Ethernet, 2x RJ45
35400109	IF-AB-MBUS2P	ModBus TCP, 2x RJ45
35400110	IF-AB-PNET2P	ProfiNET IO, 2x RJ45
35400111	IF-AB-CAN	CAN 2.0A & 2.0B, 1x Sub-D 9polig männlich
35400112	IF-AB-ECT	EtherCAT, 1x RJ45

Die Module werden vom Anwender installiert und können problemlos nachgerüstet werden. Gegebenenfalls ist eine Firmware-Aktualisierung des Gerätes erforderlich, damit ein bestimmtes Modul erkannt und unterstützt werden kann.

Das bestückte Modul hat, wenn Fernsteuerung aktiviert werden soll, keinen Vorrang vor der USB-Schnittstelle oder der Analogschnittstelle und kann daher nur abwechselnd zu diesen benutzt werden. Jedoch ist Überwachung (Monitoring) immer möglich.

Entnahme oder Bestückung des Moduls nur bei ausgeschaltetem Gerät!

1.9.9 Analogschnittstelle

Diese 15polige Sub-D-Buchse auf der Rückseite dient zur Fernsteuerung des Gerätes mittels analogen Signalen bzw. Schaltzuständen.

Wenn ferngesteuert werden soll, kann diese analoge Schnittstelle nur abwechselnd zu einer von den digitalen benutzt werden. Überwachung (Monitoring) ist jedoch jederzeit möglich.

Der Eingangsspannungsbereich der Sollwerte bzw. der Ausgangsspannungsbereich der Monitorwerte und der Referenzspannung kann im Einstellungsmenü des Gerätes zwischen 0...5 V und 0...10 V für jeweils 0...100% umgeschaltet werden.

1.9.10 Share-Bus-Anschluß

Die auf der Rückseite des Gerätes befindliche, 2-polige Buchse ("Share") dient zur Verbindung mit der gleichnamigen Buchse an kompatiblen elektronischen Lasten zwecks Parallelschaltung und Stromsymmetrierung, sowie an kompatiblen Netzgeräten zwecks Herstellung eines Zwei-Quadranten-Betriebs. Mehr dazu siehe *"3.11.3. Zwei-Quadranten-Betrieb (2QB)"*. Folgende Netzgeräte- und elektronische Lastserien sind kompatibel:

- PSI 9000 2U
- PSI 9000 3U / PSI 9000 WR / PSI 9000 3U SLAVE / PSI 9000 WR SLAVE
- ELR 9000 / ELR 9000 HP / ELR 9000 HP SLAVE
- EL 9000 B / EL 9000 B HP / EL 9000 2Q / EL 9000 B SLAVE
- PSE 9000
- PS 9000 1U / 2U / 3U (ab Revision 2) *
- PSB 9000 / PSBE 9000 / PSB 9000 SLAVE

* Die Revision (der Hardware) ist auf dem Typenschild angegeben. Sollte das Typenschild dafür keine Angabe aufweisen, ist immer von Revision 1 auszugehen.

1.9.11 Sense-Anschluß (Fernfühlung)

Um bei Konstantspannungsbetrieb (CV) den unvermeidbaren Spannungsabfall über die Lastzuleitungen für die Spannungsregelung zu kompensieren, kann der Eingang Sense polrichtig mit der Spannungsquelle verbunden werden. Die max. Kompensation ist in den technischen Daten aufgeführt.

Aus Isolationsgründen (Luft- und Kriechstrecke) werden bei Hochvolt-Modellen (Nennspannung ≥ 500 V) nur die beiden äußeren Pins der vierpoligen Klemme verwendet. Deswegen müssen die mittleren beiden Pins, gekennzeichnet mit NC, unbedingt freibleiben.

1.9.12 Master-Slave-Bus

Auf der Rückseite des Gerätes ist eine weitere Schnittstelle vorhanden, die über zwei RJ45-Buchsen mehrere Geräte gleichen Modells über einen digitalen Bus zu einem Master-Slave-System verbinden kann. Die Verbindung erfolgt mit handelsüblichen CAT5-Kabeln, die so kurz wie möglich sein sollten. Die beiden Geräte an den Ende des Buses werden normalerweise terminiert. Das geschieht über schaltbare Busabschlußwiderstände, die mittels der DIP-Schalter neben den Ports ein- und ausschaltbar sind. Siehe dazu auch Abschnitt *3.11.1.4*.

EA Elektro-Automatik GmbH

Helmholtzstr. 31-37 • 41747 Viersen

2. Installation & Inbetriebnahme

2.1 Transport und Lagerung

2.1.1 Transport

	 Die Griffe an der Vorderseite des Gerätes dienen <u>nicht</u> zum Tragen!
	• Das Gerät sollte aufgrund seines Gewichts möglichst nicht per Hand transportiert werden bzw. darf, falls Transport per Hand nicht vermeidbar ist, nur am Gehäuse und nicht an den Aufbauten (Griffe, DC-Eingangsklemme, Drehknöpfe) gehalten werden
	 Transport des Gerätes nicht im eingeschalteten oder angeschlossenen Zustand!
	• Bei Verlagerung des Gerätes an einen anderen Standort wird die Verwendung der originalen Transportverpackung empfohlen
	 Das Gerät sollte stets waagerecht aufgestellt oder getragen werden
	 Benutzen Sie möglichst geeignete Schutzkleidung, vor allem Sicherheitsschuhe, beim Tra- gen des Gerätes, da durch das teils hohe Gewicht bei einem Sturz erhebliche Verletzungen entstehen können

2.1.2 Verpackung

Es wird empfohlen, die komplette Transportverpackung (Lieferverpackung) für die Lebensdauer des Gerätes aufzubewahren, um sie für den späteren Transport des Gerätes an einen anderen Standort oder Einsendung des Gerätes zwecks Reparatur wiederverwenden zu können. Im anderen Fall ist die Verpackung umweltgerecht zu entsorgen.

2.1.3 Lagerung

Für eine längere Lagerung des Gerätes bei Nichtgebrauch wird die Benutzung der Transportverpackung oder einer ähnlichen Verpackung empfohlen. Die Lagerung muß in trockenen Räumen und möglichst luftdicht verpackt erfolgen, um Korrosion durch Luftfeuchtigkeit, vor Allem im Inneren des Gerätes, zu vermeiden.

2.2 Auspacken und Sichtkontrolle

Nach jedem Transport mit oder ohne Transportverpackung oder vor der Erstinstallation ist das Gerät auf sichtbare Beschädigungen und Vollständigkeit der Lieferung hin zu untersuchen. Vergleichen Sie hierzu auch mit dem Lieferschein und dem Lieferumfang (siehe Abschnitt *1.9.3*). Ein offensichtlich beschädigtes Gerät (z. B. lose Teile im Inneren, äußerer Schaden) darf unter keinen Umständen in Betrieb genommen werden.

2.3 Installation

2.3.1 Sicherheitsmaßnahmen vor Installation und Gebrauch

	 Das Gerät kann, je nach Modell, ein beträchtliches Gewicht haben. Stellen Sie daher vor der Aufstellung sicher, daß der Aufstellungsort (Tisch, Schrank, Regal, 19"-Rack) das Gewicht des Gerätes ohne Einschränkungen tragen kann.
	 Bei Installation in einem 19"-Schrank sind Halteschienen zu montieren, die f ür die Geh äuse- breite und das Gewicht (siehe "1.8.3. Spezifische technische Daten") geeignet sind.
	 Stellen Sie vor dem Anschluß des Gerätes an die AC-Stromzufuhr sicher, daß die auf dem Typenschild des Gerätes angegebenen Anschlußdaten eingehalten werden. Eine Überspan- nung am AC-Anschluß kann das Gerät beschädigen.
	 Stellen Sie vor Anschluß einer Spannungsquelle sicher, daß diese keine höhere DC-Spannung erzeugt als die elektronische Last am Eingang vertragen kann bzw. treffen Sie geeignete Maßnahmen, die verhindern, daß die Spannungsquelle die Last durch zu hohe Spannung beschädigen kann.

2.3.2 Vorbereitung

Für den netzseitigen Anschluß der elektronischen Lasten der Serie EL 9000 B ist eine typische Wandsteckdose ausreichend. Das dazu benötigte Netzkabel ist im Lieferumfang enthalten. Durch die relativ geringe Stromaufnahme, selbst bei Betrieb unter Vollast, sind keine weiteren Maßnahmen nötig. Die Geräte können daher auch zusammen mit andersartigen Geräten an einer Verteilersteckdose betrieben werden.

2.3.3 Aufstellung des Gerätes

Wählen Sie den Ort der Aufstellung so, daß die Zuleitungen zum Gerät so kurz wie möglich gehalten werden können
Lassen Sie hinter dem Gerät ausreichend Platz, jedoch mindestens 30 cm, für die hinten austretende, warme Abluft

Ein Gerät in 19" Bauform wird üblicherweise auf entsprechenden Halteschienen und in 19" Einschüben oder -Schränken installiert. Dabei muß auf die Einbautiefe des Gerätes geachtet werden, sowie auf das Gewicht. Die Griffe an der Front dienen dabei zum Hineinschieben und Herausziehen aus dem Schrank. An der Frontplatte befindliche Langloch-Bohrungen dienen zur Befestigung im 19"-Schrank (Befestigungsschrauben im Lieferumfang nicht enthalten).

Bei manchen 19"-Modellen können die sogenannten Haltewinkel, die zur Befestigung in 19"-Schränken dienen, abmontiert werden, so daß das Gerät auch auf jeglicher horizontaler Fläche als Tischgerät betrieben werden kann.

Zulässige und unzulässige Aufstellpositionen:

Aufstellfläche

2.3.4 Anschließen von DC-Quellen (3U-Modelle)

Bei einem Gerät mit hohem Nennstrom und demzufolge entsprechend dicken und schweren DC-Anschlußleitungen sind das Gewicht der Leitungen und die Belastung des DC-Anschlusses am Gerät zu beachten und besonders bei Installation des Gerätes in einem 19"-Schrank oder ähnlich, wo die Leitungen am DC-Eingang hängen, Zugentlastungen anzubringen.

Der DC-Lasteingang befindet sich auf der Rückseite des Gerätes und ist **nicht** über eine Sicherung abgesichert. Der Querschnitt der Zuleitungen richtet sich nach der Stromaufnahme, der Leitungslänge und der Umgebungstemperatur.

Bei Zuleitungen bis 5 m und durchschnittlichen Umgebungstemperaturen bis 50 °C empfehlen wir:

bis 30 A :	6 mm²	bis 70 A :	16 mm²
bis 90 A :	25 mm²	bis 140 A :	50 mm²
bis 170 A :	70 mm²	bis 210 A :	95 mm²
bis 340 A :	2x 70 mm²	bis 510 A :	2x 120 mm ²
	• • • •		

pro Anschlußpol (mehradrig, isoliert, frei verlegt) mindestens zu verwenden. Einzelleitungen, wie z. B. 70 mm², können durch 2x 25 mm² ersetzt werden usw. Bei längeren Lastleitungen ist der Querschnitt entsprechend zu erhöhen, um Spannungsabfall über die Leitungen und unnötige Erhitzung zu vermeiden.

2.3.4.1 Anschlußklemmentypen

Die Tabelle unten enthält eine Übersicht über die unterschiedlichen DC-Anschlußklemmentypen. Zum Anschluß von Lastleitungen werden grundsätzlich flexible Leitungen mit Ringkabelschuhen empfohlen.

Typ 1: Modelle bis 360 V Nennspannung	Typ 2: Modelle ab 500 V Nennspannung	
Schraubverbindung M8 an Metallschiene	Schraubverbindung M6 an Metallschiene	
Empfehlung: Ringkabelschuhe mit 8er Loch	Empfehlung: Ringkabelschuhe mit 6er Loch	

2.3.4.2 Kabelzuführung und Plastikabdeckung

Für die DC-Anschlußklemme wird eine Plastikabdeckung als Berührungsschutz mitgeliefert. Diese sollte immer installiert sein. Die Abdeckung beim Typ 2 (siehe Abbildungen oben) wird an der Anschlußklemme selbst arretiert, die vom Typ 1 an der Rückwand des Gerätes. Weiterhin sind in der Abdeckung Typ 1 Ausbrüche (oben, unten, vorn) vorhanden, die nach Bedarf ausgebrochen werden können, um Zuleitungen aus verschiedenen Richtungen zu verlegen.

Der Anschlußwinkel und der erforderliche Knickradius für die DC-Zuleitungen sind zu berücksichtigen, wenn die Gesamttiefe des Gerätes geplant werden soll, besonders beim Einbau in 19"-Schränke o.ä. Bei Anschlußklemme Typ 2 ist z. B. nur das horizontale Zuführen der DC-Leitungen möglich, damit die Abdeckung installiert werden kann. Beispiele anhand des Anschlußklemmentyps 1:

2.3.5 Anschließen von DC-Quellen (6U-Modelle)

Grundsätzlich gelten beim Anschließen von geeigneten DC-Quellen an ein 6U-Modell die gleichen Gegebenheiten und Sicherheitsmaßnahmen wie bei den 3U-Modellen. Daher sollten Sie als Benutzer eines 6U-Modells auch Abschnitt 2.3.4 sehr aufmerksam lesen. Der Unterschied liegt bei den 6U-Modellen zum Einen im höheren Mindestquerschnitt der Leitungen und zum Anderen in einem anderen Anschlußpunkt, was in Hinsicht auf Berührungsschutz eine Rolle spielt.

Bei Zuleitungen bis 5 m und durchschnittlichen Umgebungstemperaturen bis 50 °C empfehlen wir:

bis 120 A :	35 mm²	bis 180 A :	70 mm²
bis 240 A :	95 mm²	bis 420 A :	2x 70 mm ²

bis 1020 A: 4x 95 mm²

pro Anschlußpol (mehradrig, isoliert, frei verlegt) mindestens zu verwenden. Einzelleitungen, wie z. B. 70 mm², können durch mehrere dünnere, hier z. B. 2x 25 mm² ersetzt werden usw. Bei längeren Lastleitungen ist der Querschnitt entsprechend zu erhöhen, um Spannungsabfall über die Leitungen und unnötige Erhitzung zu vermeiden.

2.3.5.1 Anschlußpunkte

Die Anschlußpunkte bei den 6U-Modellen sind wie unten gezeigt vorgesehen (rote Pfeile). Falls mehr als zwei Leitungen pro DC-Pol anzuschließen sind, können bei Modellen mit Terminal-Typ 1 auch die oberen oder unteren Schraubverbindungen genutzt werden:

Modelle mit DC-Anschluß Typ 2

Modelle mit DC-Anschluß Typ 1

Es wird empfohlen, die Leitungen möglichst senkrecht nach oben oder unten wegführend zu verlegen, damit die stets erforderliche DC-Abdeckung angebracht werden kann und die Leitungen sich nicht im warmen bis heißen Abluftstrom der Last befinden!

2.3.6 Erdung des DC-Eingangs

Die Erdung von einem der beiden DC-Eingangspole ist grundsätzlich zulässig. Dadurch entsteht eine Potentialverschiebung des geerdeten Pols gegenüber PE.

Aus Isolationsgründen sind nur jedoch bestimmte, modellabhängige Potentialverschiebungen am DC-Minuspol bzw. DC-Pluspol zulässig. Siehe auch technische Daten in *"1.8.3. Spezifische technische Daten"*, Punkt *"Isolation"*.

2.3.7 Anschließen des "Share-Bus"

Die rückseitig am Gerät befindliche Klemme "Share-Bus" dient bei der elektronischen Last entweder zur Verbindung mit dem Share-Bus eines kompatiblen Netzgerätes (z. B. PSI 9000 3U), um Zwei-Quadranten-Betrieb zu fahren, oder bei Parallelbetrieb mehrerer Lasten zur Stromsymmetrierung und Ausregelung bei Funktionsgeneratorbetrieb (Sinus usw.). Der Share-Bus sollte in diesen Situationen verbunden werden. Weitere Information siehe auch "3.11.3 Zwei-Quadranten-Betrieb (2QB)" ab Seite 89.

Für die Verschaltung des Share-Bus' gilt es folgendes zu beachten:

Verbindung nur zwischen kompatiblen Geräten (siehe "1.9.10. Share-Bus-Anschluß") und nur bis max. 16 Einheiten
 Werden für Zwei-Quadranten-Betrieb mehrere Netzgeräte parallelgeschaltet und dann mit einer elektronischen Last bzw. einem Lastenblock verbunden, sollten alle Einheiten über den Share-Bus verbunden werden. Eins der Netzgeräte wird dann als Master (= Share-Bus-Master) konfiguriert, ähnlich wie bei Master-Slave.
 Sollten in einem konfigurierten System ein oder mehrere Einheiten nicht betrieben werden, weil weniger Leistung benötigt wird, dann sollte deren Share-Bus-Anschluß vom Share-Bus getrennt werden, weil sie aufgrund ihrer Impedanz auch im ausgeschalteten Zustand negativ auf den Share-Bus und dessen Regelsignal einwirken können. Die Trennung kann durch Abziehen der Stecker oder durch Schalter erfolgen.
 Der Share-Bus ist auf den DC-Minus bezogen. Bei Erdung des Pluspols und die dadurch folgende Potentialverschiebung am Minuspol verschiebt sich auch das Potential des Share-Bus

2.3.9 Anschließen des USB-Ports (Rückseite)

Um das Gerät über diesen Anschluß fernsteuern zu können, verbinden Sie Gerät und PC über das mitgelieferte USB-Kabel und schalten Sie das Gerät ein.

2.3.9.1 Treiberinstallation (Windows)

Bei der allerersten Verbindung mit dem PC sollte das Betriebssystem das Gerät als neu erkennen und einen Treiber installieren wollen. Der Treiber ist vom Typ Communications Device Class (CDC) und ist bei aktuellen Betriebssystemen wie Windows 7 oder 10 normalerweise integriert. Es wird aber empfohlen, den auf USB-Stick mitgelieferten Treiber zu installieren, um bestmögliche Kompatibilität des Gerätes zu unserer Software zu erhalten.

2.3.9.2 Treiberinstallation (Linux, MacOS)

Für diese Betriebssysteme können wir keinen Treiber und keine Installationsbeschreibung zur Verfügung stellen. Ob und wie ein passender Treiber zur Verfügung steht, kann der Anwender durch Suche im Internet selbst herausfinden.

2.3.9.3 Treiberalternativen

Falls der oben beschriebene CDC-Treiber auf Ihrem System nicht vorhanden ist oder aus irgendeinem Grund nicht richtig funktionieren sollte, können kommerzielle Anbieter Abhilfe schaffen. Suchen und finden Sie dazu im Internet diverse Anbieter mit den Schlüsselwörtern "cdc driver windows" oder "cdc driver linux" oder "cdc driver macos".

2.3.10 Installation eines Schnittstellenmoduls

Die diversen Schnittstellenmodule, die für EL 9000 B-Modelle mit Slot (nur in der Standardausführung) verfügbar sind, können durch den Anwender nachgerüstet werden und sind durch andere Module austauschbar. Die Einstellungen zum momentan installierten Modul variieren und sollte nach der Erstinstallation bzw. nach Wechsel des Modultyps überprüft und ggf. neu eingestellt werden.

	 Die üblichen ESD-Schutzma ßnahmen sind vor dem Einsetzen oder Tausch des Moduls zu treffen!
•	 Das Modul ist stets nur im ausgeschalteten Zustand des Gerätes zu entnehmen bzw. zu bestücken!
	 Niemals irgendeine andere Hardware als diese Schnittstellen-Module in den Einschub einführen!
	 Wenn kein Modul bestückt ist wird empfohlen, die Slotabdeckung zu montieren, um un- nötige innere Verschmutzung des Gerätes zu vermeiden und den Luftdurchflußweg nicht zu verändern

Installationsschritte:

Abdeckung des Schnittstellenslots entfernen. Eventuell dazu einen Schraubendreher zu Hilfe nehmen.

Nehmen Sie das Modul und prüfen Sie, ob die Befestigungsschrauben so weit wie möglich herausgedreht sind. Falls nicht, drehen Sie sie heraus (Torx 8).

Schnittstellenmodul paßgerecht in den Slot schieben. Es kann aufgrund der Bauform nicht falsch herum gesteckt werden.

Beim Einschieben darauf achten, daß es möglichst genau im Winkel von 90 ° zur Rückwand des Gerätes gehalten wird. Orientieren Sie sich an der grünen Platine, die Sie am offenen Slot erkennen können. Im hinteren Teil ist ein Steckverbinder, der das Modul aufnehmen soll.

Auf der Unterseite des Moduls befinden sich zwei Plastiknasen, die auf dem letzten Millimeter des Einschubweges auf der grünen Platine einrasten müssen, damit das Modul auf der Rückwand des Gerätes richtig aufliegt.

Modul bis zum Anschlag einschieben.

Die Schrauben (Typ: Torx 8) dienen zur Fixierung des Moduls und sollten komplett eingedreht werden. Nach der Installation ist das Modul betriebsbereit und Kabel können angeschlossen werden.

Der Ausbau erfolgt auf umgekehrte Weise. An den Schrauben der Frontplatte des Moduls kann es angepackt werden, um es herauszuziehen.

2.3.11 Anschließen der analogen Schnittstelle

Der 15-polige Anschluß (Typ: Sub-D) auf der Rückseite ist eine analoge Schnittstelle. Um diese mit einer steuernden Hardware (PC, elektronische Schaltung) zu verbinden, ist ein handelsüblicher Sub-D-Stecker erforderlich (nicht im Lieferumfang enthalten). Generell ist es ratsam, bei Verbindung oder Trennung dieses Anschlusses das Gerät komplett auszuschalten, mindestens aber den DC-Eingang.

Die analoge Schnittstelle ist intern, zum Gerät hin, galvanisch getrennt. Verbinden Sie daher möglichst niemals eine Masse der analogen Schnittstelle (AGND) mit dem DC-Minus-Eingang, weil das die galvanische Trennung aufhebt.

2.3.12 Erstinbetriebnahme

Bei der allerersten Inbetriebnahme des Gerätes und der Erstinstallation sind zusätzliche Maßnahmen zu ergreifen:

- Überprüfen Sie die von Ihnen verwendeten Anschlußkabel für DC auf ausreichenden Querschnitt!
- Überprüfen Sie die werkseitigen Einstellungen bezüglich der Sollwerte, Sicherheits- und Überwachungsfunktionen sowie Kommunikation daraufhin, daß Sie für Ihre Anwendung passen und stellen Sie sie ggf. nach Anleitung ein!
- Lesen Sie, bei Fernsteuerung des Gerätes per PC, zusätzlich vorhandene Dokumentation zu Schnittstellen und Software!
- Lesen Sie, bei Fernsteuerung des Gerätes über die analoge Schnittstelle, unbedingt den Abschnitt zur analogen Schnittstelle in diesem Dokument!

Bei jedem Start des Gerätes wird für ca. 2 Sekunden eine Sprachauswahl angezeigt, über die man bei Bedarf die Sprache der Anzeige (Touchscreen) umstellen kann. Dies kann auch nachträglich im MENU geschehen.

Nachfolgend ist in diesem Dokument alles, was den Touchscreen und die Anzeige betrifft, auf die Sprachwahl "Deutsch" bezogen.

2.3.13 Erneute Inbetriebnahme nach Firmwareupdates bzw. längerer Nichtbenutzung

Bei der erneuten Inbetriebnahme nach einer Firmwareaktualisierung, Rückerhalt des Gerätes nach einer Reparatur oder nach Positions- bzw. Konfigurationsveränderungen der Umgebung des Gerätes sind ähnliche Maßnahmen zu ergreifen wie bei einer Erstinbetriebnahme. Siehe daher auch *"2.3.12. Erstinbetriebnahme".*

Erst nach erfolgreicher Überprüfung des Gerätes nach den gelisteten Punkten darf es wie gewohnt in Betrieb genommen werden.

3. Bedienung und Verwendung

3.1 Personenschutz

- Um Sicherheit bei der Benutzung des Gerätes zu gewährleisten, darf das Gerät nur von Personen bedient werden, die über die erforderlichen Sicherheitsmaßnahmen im Umgang mit gefährlichen elektrischen Spannungen unterrichtet worden sind
 Bei Geräten, die eine berührungsgefährliche Spannung erzeugen können oder an diese angebunden werden, ist stets die mitgelieferte DC-Anschluß-Abdeckung oder eine ähnliche, ausreichend sichere Abdeckung zu montieren
 - Schalten Sie bei Umkonfiguration des DC-Anschlusses immer die Quelle ab oder trennen Sie von der elektronischen Last!

3.2 Regelungsarten

Eine elektronische Last beinhaltet intern einen oder mehrere Regelkreise, die Spannung, Strom und Leistung durch Soll-Istwert-Vergleich auf die eingestellten Sollwerte regeln sollen. Die Regelkreise folgen dabei typischen Gesetzmäßigkeiten der Regelungstechnik. Jede Regelungsart hat ihre eigene Charakteristik, die nachfolgend grundlegend beschrieben wird.

3.2.1 Spannungsregelung / Konstantspannung

Konstantspannungs-Betrieb (kurz: CV) oder Spannungsregelung ist eine untergeordnete Betriebsart. Am Eingang der elektronischen Last wird im Normalfall eine Spannungsquelle angeschlossen, die eine gewisse Eingangsspannung für die Last darstellt. Wird im Konstantspannungsbetrieb der Sollwert der Spannung höher eingestellt als die tatsächliche Spannung der Quelle, dann kann die Vorgabe nicht erreicht werden. Die Last entnimmt der Quelle dann keinen Strom. Wird der Spannungssollwert geringer als die Eingangsspannung eingestellt, wird die Last versuchen, die Spannungsquelle so sehr zu belasten (Spannungsabfall über den Innenwiderstand der Quelle), daß deren Spannung auf den gewünschten Wert gelangt. Übersteigt der dazu notwendige Strom den an der Last eingestellten Stromsollwert oder die aufgenommene Leistung nach P = $U_{EIN} * I_{EIN}$ den eingestellten Leistungssollwert, wechselt die Last automatisch in Konstantstrom- oder Konstantleistungsbetrieb, jenachdem was zuerst auftritt. Dabei kann die Eingangsspannung nicht mehr auf dem gewünschten Wert gehalten werden.

Solange der DC-Eingang eingeschaltet und Konstantspannungs-Betrieb aktiv ist, wird der Zustand "CV-Betrieb aktiv" als Kürzel CV auf der grafischen Anzeige und auch als Signal auf der analogen Schnittstelle ausgegeben (einstellungsabhängig), kann aber auch als Status über die digitalen Schnittstellen ausgelesen werden.

3.2.1.1 Geschwindigkeit des Spannungsreglers

Der interne Spannungsregler kann zwischen "Langsam" und "Schnell" umgeschaltet werden, entweder im MENU (siehe *"3.4.3.1. Menü "Allgemeine Einstellungen""*) oder über Fernsteuerung. Werkseitig ist diese Einstellung auf "Langsam" gesetzt. Welche gewählt werden sollte, hängt von der Anwendung der Last ab, aber in erster Linie von der Art der Spannungsquelle. Eine aktive, geregelte Quelle wie ein Schaltnetzteil besitzt einen eigenen Spannungsregler, der gleichzeitig mit dem der Last arbeitet. Beide können im ungünstigen Fall gegeneinander arbeiten und zu Schwingungen im Ausregelverhalten führen. Tritt so eine Situation auf, wird empfohlen, den Spannungsregler auf "Langsam" zu stellen.

In anderen Situationen hingegen, wie z. B. bei Betrieb des Funktionsgenerators und Anwendung einer Funktion auf die DC-Eingangsspannung der Last und Einstellung kleiner Zeiten, kann es erforderlich sein, den Spannungsregler auf "Schnell" zu stellen, weil sonst die Ergebnisse der Funktion nicht wie erwartet resultieren.

3.2.1.2 Mindesteingangs-Spannung für maximalen Strom

Aufgrund technischer Gegebenheiten hat jedes Modell der Serie einen anderen minimalen Innenwiderstand (R_{MIN}), der bedingt, daß man eine bestimmte Eingangsspannung (U_{MIN}) mindestens anlegen muß, damit die Last den für Sie definierten max. Strom (I_{MAX}) aufnehmen kann. Diese U_{MIN} ist in den technischen Daten für jedes Modell angegeben. Wird weniger Spannung an den Eingang angelegt, kann das Gerät entsprechend weniger Strom aufnehmen, dabei sogar weniger als einstellbar. Der Verlauf ist linear, der maximal aufnehmbare Strom bei einer Eingangsspannung unterhalb U_{MIN} kann daher einfach berechnet werden. Rechts ist eine Prinzipdarstellung zu sehen.

3.2.2 Stromregelung / Konstantstrom / Strombegrenzung

Stromregelung wird auch Strombegrenzung oder Konstantstrom-Betrieb (kurz: CC) genannt und spielt eine wichtige Rolle im Normalbetrieb einer elektronischen Last. Der DC-Eingangsstrom wird durch die elektronische Last auf dem eingestellten Wert gehalten, indem die Last ihren Innenwiderstand so verändert, daß sich nach dem Ohmschen Gesetz R = U / I aus der DC-Eingangsspannung und dem gewünschten Strom ein Innenwiderstand ergibt, der einen entsprechenden Strom aus der Spannungsquelle fließen läßt. Erreicht der Strom den eingestellten Wert, wechselt das Gerät automatisch in Konstantstrom-Betrieb. Wenn jedoch die aus der Spannungsquelle entnommene Leistung den eingestellten Leistungsmaximalwert erreicht, wechselt das Gerät automatisch in Leistungsbegrenzung und stellt den Eingangsstrom nach $I_{MAX} = P_{SOLL} / U_{EIN}$ ein, auch wenn der eingestellte Strommaximalwert höher ist. Der vom Anwender eingestellte und auf dem Display angezeigte Strommaximalwert ist stets nur eine obere Grenze.

Solange der DC-Eingang eingeschaltet und Konstantstrom-Betrieb aktiv ist, wird der Zustand "CC-Betrieb aktiv" als Kürzel CC auf der grafischen Anzeige ausgegeben, kann aber auch als Status über die digitalen Schnittstellen ausgelesen werden.

3.2.3 Widerstandsregelung/Konstantwiderstand

Bei einer elektronischen Last, deren Wirkungsprinzip auf einem variablen Innenwiderstand beruht, ist Widerstandsregelung bzw. Konstantwiderstand-Betrieb (kurz: CR) ein fast natürlicher Vorgang. Die Last versucht dabei, ihren eigenen tatsächlichen Innenwiderstand auf den vom Anwender eingestellten Wert zu bringen und den Eingangsstrom nach dem ohmschen Gesetz I_{EIN} = U_{EIN} / R_{SOLL} und in Abhängigkeit von der Eingangsspannung einzustellen. Dem Innenwiderstand sind gegen Null hin (Strombegrenzung oder Leistungsbegrenzung werden aktiv), sowie nach oben hin (Auflösung der Stromregelung zu ungenau) natürliche Grenzen gesetzt. Da der Innenwiderstand nicht 0 sein kann, ist der einstellbare Anfangswert auf das machbare Minimum begrenzt. Das soll auch sicherstellen, daß die elektronische Last bei einer sehr geringen Eingangsspannung, aus der sich bei einem geringen eingestellten Widerstand dann wiederum ein sehr hoher Eingangsstrom errechnet, diesen auch aus der Quelle entnehmen kann bis hin zum Maximalstrom der Last.

Solange der DC-Eingang eingeschaltet und Konstantwiderstand-Betrieb aktiv ist, wird der Zustand "CR-Betrieb aktiv" als Kürzel CR auf der grafischen Anzeige ausgegeben, kann aber auch als Status über die digitalen Schnittstellen ausgelesen werden.

3.2.4 Leistungsregelung / Konstantleistung / Leistungsbegrenzung

Leistungsregelung, auch Leistungsbegrenzung oder Konstantleistung (kurz: CP) genannt, hält die DC-Eingangsleistung des Gerätes konstant auf dem eingestellten Wert, damit der aus der Quelle fließende Strom in Zusammenhang mit der Spannung der Quelle nach P = U * I den gestellten Leistungssollwert erreicht. Die Leistungsbegrenzung begrenzt dann den Eingangsstrom nach I_{Ein} = P_{Soll} / U_{Ein}, sofern die Spannungsquelle/Stromquelle den Strom bzw. die Leistung überhaupt liefern kann.

Die Leistungsbegrenzung arbeitet nach dem Auto-range-Prinzip, so daß bei geringer Eingangsspannung hoher Strom oder bei hoher Eingangsspannung geringer Strom fließen kann, um die Leistung im Bereich P_N (siehe Grafik rechts) konstant zu halten.

Solange der DC-Eingang eingeschaltet und Konstantleistungsbetrieb aktiv ist, wird der Zustand "CP-Betrieb aktiv" als Kürzel CP auf der grafischen Anzeige ausgegeben, kann aber auch als Status über die digitalen Schnittstellen ausgelesen werden.

Konstantleistungsbetrieb wirkt auf den internen Stromsollwert ein. Das bedeutet, der als maximal eingestellte Strom kann unter Umständen nicht erreicht werden, wenn der Leistungssollwert nach I = P / U einen geringeren Strom ergibt und auf diesen begrenzt. Der vom Anwender eingestellte und auf dem Display angezeigte Stromsollwert ist stets nur eine obere Grenze.

3.2.4.1 Temperaturabhängige Leistungsreduktion

Die elektronischen Lasten dieser Serie wandeln die aufgenommene elektrische Energie in Wärme um. Um die Leistungsstufen vor Überhitzung zu schützen, begrenzt das Gerät ab einer gewissen Erwärmung automatisch die max. Eingangsleistung. Diese Leistungsreduktion (*engl.* derating) ist abhängig von der Umgebungstemperatur. Das bedeutet, daß ein Gerät bei 10°C Umgebungstemperatur die Spitzenleistung (siehe technische Daten) für eine längere Zeit aufnehmen kann als bei 25°C oder höher. Trotzdem wird dann durch weitere Erwärmung die maximal aufgenommene Leistung intern mit einer gewissen Leistungsänderung pro Grad Kelvin (siehe technische Daten) konstant reduziert bis runter auf eine typische Dauerleistung (siehe technische Daten), die für 21°C Umgebungstemperatur definiert ist.

Die Zeit, die das Gerät benötigt, um die typische Dauerleistung bei Derating zu erreichen, liegt zwischen 150 und 200 Sekunden. Diese Zeit beinhaltet die Zeit, die das Gerät bei 21°C oder weniger Außentemperatur die Spitzenleistung aufnehmen kann.

EL 9000 B Serie

Wenn das Gerät bei weniger Leistung als die genannte Dauerleistung betrieben wird, beeinflußt das Derating den Betrieb nicht merklich. Die interne Begrenzung ist trotzdem immer vorhanden. Wenn man z. B. bei einem Modell mit 1200 W Dauerleistung mit konstant 800 W Ist-Leistung arbeiten würde, bei 2400 W Soll-Leistung gesetzt, und würde einen Stromsprung oder Spannungssprung nach oben machen, könnte das Gerät trotzdem keine Ist-Leistung von 2400 W erreichen.

Verdeutlichungen:

Prinzipielle Darstellung des Derating-Verlaufs anhand eines 2400 W Leistungsmoduls. Modelle dieser Geräteserie können mehrere Leistungsmodule enthalten, die nicht unbedingt alle gleichzeitig mit dem Derating anfangen.

Die Spitzenleistung (Peak power) wird für eine Zeit x aufgenommen, bis das Derating einsetzt. Danach pendelt sich die max. Eingangsleistung auf etwa den Wert der Dauerleistung ein (Steady power). Wie hoch Eingangsleistung tatsächlich ist, kann an deren Istwert erkannt werden. Bei weiterem Anstieg der Umgebungstemperatur wird die Dauerleistung noch etwas sinken.

Verlauf des Deratings bei Kaltstart des Gerätes bei 25°C (blau) und bei 40°C (grün) Umgebungstemperatur.

Der zeitliche Darstellung ergibt, daß die Spitzenleistung bei 40°C nur kurz verfügbar ist, bevor Derating beginnt. Bei dieser Umgebungstemperatur pendelt sich die Dauerleistung direkt auf einen etwas niedrigeren Wert ein.

3.2.5 Regelverhalten und Stabilitätskriterium

Die elektronische Last zeichnet sich durch schnelle Stromanstiegs- und abfallzeiten aus, die durch eine hohe Bandbreite der internen Regelung erreicht werden.

Werden Quellen mit eigener Regelung, wie zum Beispiel Netzgeräte, mit der elektronischen Last getestet, so kann unter bestimmten Bedingungen eine Regelschwingung auftreten. Diese Instabilität tritt auf, wenn das Gesamtsystem (speisende Quelle und elektronische Last) bei bestimmten Frequenzen zu wenig Phasen- und Amplitudenreserve aufweist. 180 ° Phasenverschiebung bei >0dB Verstärkung erfüllt die Schwingungsbedingung und führt zur Instabilität. Das Gleiche kann auch bei Quellen ohne eigene Regelung (z. B. Batterie) auftreten, wenn die Lastzuleitung stark induktiv oder induktiv–kapazitiv ist.

Tritt eine Regelungsschwingung auf, ist das nicht durch einen Mangel der elektronischen Last verursacht, sondern durch das Verhalten des gesamten Systems. Eine Verbesserung der Phasen- und Amplitudenreserve kann das wieder beheben. In der Praxis wird hierfür ein Kondensator direkt am DC-Eingang an der elektronischen Last angebracht. Welcher Wert den gewünschten Effekt bringt, ist nicht festlegbar. Wir empfehlen:

80 V-Modelle: 1000 μ F....4700 μ F 200 V-Modelle: 100 μ F...470 μ F 360 V-Modelle: 68 μ F...220 μ F 500 V-Modelle: 47 μ F...150 μ F 750 V-Modelle: 22 μ F...100 μ F

3.3 Alarmzustände

Dieser Abschnitt gibt nur eine Übersicht über mögliche Alarmzustände. Was zu tun ist im Fall, daß Ihr Gerät Ihnen einen Alarm anzeigt, wird in Abschnitt "3.6. Alarme und Überwachung" erläutert.

Grundsätzlich werden alle Alarmzustände optisch (Text + Meldung in der Anzeige), akustisch (wenn Alarmton aktiviert), als Status über digitale Schnittstelle bzw. analoge Schnittstelle signalisiert. Zwecks nachträglicher Erfassung der Alarme kann ein zusätzlicher Alarmzähler im Display angezeigt oder per digitaler Schnittstelle ausgelesen werden.

3.3.1 Power Fail

Power Fail (kurz: PF) kennzeichnet einen Alarmzustand des Gerätes, der mehrere Ursachen haben kann:

• AC-Eingangsspannung zu niedrig (Netzunterspannung, Netzausfall)

Bei einem Power Fail stoppt das Gerät die Leistungsaufnahme und schaltet den DC-Eingang aus. War der PF-Alarm nur eine zeitweilige Netzunterspannung, verschwindet der Alarm aus der Anzeige, sobald die Unterspannung weg ist.

Der Zustand des DC-Eingangs nach einem zeitweiligen PF-Alarm kann im MENU bestimmt werden. Siehe 3.4.3.

Das Ausschalten des Gerätes am Netzschalter oder mittels einer externen Trenneinheit ist wie ein Netzausfall und wird auch so interpretiert. Daher tritt beim Ausschalten jedesmal ein "Alarm: PF" auf, der in dem Fall ignoriert werden kann.

3.3.2 Übertemperatur (Overtemperature)

Ein Übertemperaturalarm (kurz: OT) tritt auf, wenn ein Gerät durch zu hohe Innentemperatur selbständig ein oder mehrere Leistungsstufen abschaltet. Dies kann durch einen Defekt der eingebauten Lüfter oder durch zu hohe Umgebungstemperatur zustandekommen. Nach dem Abkühlen startet das Gerät die Leistungsaufnahme automatisch wieder, der Alarm braucht nicht bestätigt zu werden.

3.3.3 Überspannung (Overvoltage)

Ein Überspannungsalarm (kurz: OVP) führt zur Abschaltung des DC-Eingangs und kann auftreten, wenn

Diese Funktion dient dazu, dem Betreiber der elektronischen Last akustisch oder optisch mitzuteilen, daß die angeschlossene Spannungsquelle eine überhöhte Spannung erzeugt hat und damit sehr wahrscheinlich den Eingangskreis und weitere Teile des Gerätes beschädigen oder sogar zerstören könnte.

Die elektronische Last ist nicht mit Schutzmaßnahmen gegen Überspannung von außen ausgestattet und kann dadurch selbst im ausgeschalteten Zustand beschädigt werden.

3.3.4 Überstrom (Overcurrent)

Ein Überstromalarm (kurz: OCP) führt zur Abschaltung des DC-Eingangs und kann auftreten, wenn

• der in den DC-Eingang fließende Eingangsstrom die eingestellte OCP-Schwelle überschreitet

Diese Schutzfunktion dient nicht dem Schutz des Gerätes, sondern dem Schutz der speisenden Spannungs- bzw. Stromquelle, damit diese nicht mit zu hohem Strom belastet und möglicherweise beschädigt wird.

3.3.5 Überleistung (Overpower)

Ein Überleistungsalarm (kurz: OPP) führt zur Abschaltung des DC-Eingangs und kann auftreten, wenn

 das Produkt aus der am DC-Eingang anliegenden Eingangsspannung und dem Eingangsstrom nach P = U * I die eingestellte OPP-Schwelle überschreitet

Diese Schutzfunktion dient nicht dem Schutz des Gerätes, sondern dem Schutz der speisenden Spannungs- bzw. Stromquelle, falls diese durch zu hohe Belastung beschädigt werden könnte.

3.4 Manuelle Bedienung

3.4.1 Einschalten des Gerätes

Das Gerät sollte möglichst immer am Netzschalter (Vorderseite) eingeschaltet werden. Alternativ kann es über eine externe Trennvorrichtung (Hauptschalter, Schütz) mit entsprechender Strombelastbarkeit netzseitig geschaltet werden.

Nach dem Einschalten zeigt es in der Anzeige für einige Sekunden das Herstellerlogo und weitere Geräteinformationen, sowie eine Abfrage der Sprachauswahl (für 3 Sekunden) an und ist danach betriebsbereit. Im Einstellmenü MENU (siehe Abschnitt *"3.4.3. Konfiguration im MENU"*) befindet sich im Untermenü *"Allg. Einstellungen"* eine Option *"Eingang nach Power ON"*, mit welcher der Anwender bestimmen kann, wie der Zustand des DC-Eingangs nach dem Einschalten des Gerätes ist. Werkseitig ist diese Option deaktiviert (="AUS"). *"AUS"* bedeutet, der DC-Eingang wäre nach dem Einschalten des Gerätes immer aus und *"Wiederhstl."* bedeutet, daß der letzte Zustand des DC-Eingangs wiederhergestellt wird, so wie er beim letzten Ausschalten war, also entweder ein oder aus. Außerdem werden sämtliche Sollwerte wiederhergestellt.

3.4.2 Ausschalten des Gerätes

Beim Ausschalten des Gerätes werden der Zustand des DC-Einganges und die zuletzt eingestellten Sollwerte gespeichert, sowie Master-Slave-Betrieb, falls aktiviert. Weiterhin wird ein "Alarm: PF" gemeldet. Dieser kann ignoriert werden. Der DC-Eingang wird sofort ausgeschaltet und nach kurzer Zeit die Lüfter. Das Gerät ist nach ein paar weiteren Sekunden dann komplett aus.

3.4.3 Konfiguration im MENU

Das MENU dient zur Konfiguration aller Betriebsparameter, die nicht ständig benötigt werden. Es kann per Fingerberührung auf die Taste MENU erreicht werden, aber nur, wenn der DC-Eingang **ausgeschaltet** ist. Siehe auch die Grafiken rechts.

Ist der Eingang eingeschaltet, werden statt einem Einstellmenü nur Statusinformationen angezeigt.

Die Navigation erfolgt in den Untermenüs mittels Fingerberührung, Werte werden mit den Drehknöpfen eingestellt. Die Zuordnung der Drehknöpfe wird zu den einstellbaren Werten wird nicht angezeigt, daher gilt folgende Regel: oberer Wert -> linker Drehknopf, unterer Wert -> rechter Drehknopf.

Die Menüstruktur ist auf den folgenden Seiten als Schema dargestellt. Einige Einstellparameter sind selbsterklärend, andere nicht. Diese werden auf den nachfolgenden Seite im Einzelnen erläutert.

Werte in geschweiften Klammern stellen den auswählbaren Bereich dar, unterstrichene Werte den Standardwert nach Auslieferung oder Zurücksetzen.

Fernsteuerung erlauben: <u>Ja</u> Nein AnalogschnittstBereich: 05V <u>010V</u>	Analogschnittstelle Rem-SB: Normal Invertiert Analog Rem-SB Verhalten: DC AUS DC EIN/AUS	Analogschnittstelle Pin 6: Alarm OT ☑ Alarm PF ☑ Analogschnittstelle Pin 14: Alarm OVP ☑ Alarm OCP □ Alarm OPP □	Analogschnitt <u>ste</u> lle Pin 15: Regelungsart	DC-Eingang nach Power ON: <u>AUS</u> Wiederhstl. Einst. Spannungsregler: <u>Langsam</u> Schnell	DC-Eingang nach PF Alarm: <u>AUS</u> AUTO DC-Eingang nach Remote: <u>AUS</u> AUTO	R-Modus aktivieren: Ja <u>Nein</u>	USB Trennzeichen-Format: US <u>Standard</u> Logging mit Einheit (V, A, W): <u>Ja</u> Nein	Gerät abgleichen: Start	Gerät zurücksetzen: Start Gerät neustarten: Neustart	Master-Slave-Modus: AUS MASTER SLAVE	Master-Init. wiederholen: Initialisieren	UVD = { <u>0V</u> Unenn} Aktion = { <u>KEINE</u> SIGNAL WARNUNG ALARM}	OVD = {0V <u>Unenn</u> } Aktion = { <u>KEINE</u> SIGNAL WARNUNG ALARM}	UCD = {04Inenn} Aktion = {KEINE SIGNAL WARNUNG ALARM}	OCD = {04 <u>Inenn}</u> Aktion = { <u>KEINE</u> SIGNAL WARNUNG ALARM}	OPD = {0WPnenn} Aktion = { <u>KEINE</u> SIGNAL WARNUNG ALARM}
Seite 1	Seite 2	Seite 3	Seite 4	Seite 5	Seite 6	Seite 7	Seite 8	Seite 9	Seite 10	Seite 11	 [Seite_12]	Event U		EventI		Event P
	StdProfil	Nutzer-Profi														
Alig. Einstellungen	Profile	Übersicht nfo HW, SW														
WEND																

3.4.3.1 Menü "Allgemeine Einstellungen"

Einstellung	S.	Beschreibung
Fernsteuerung erlauben	1	Bei Wahl " Nein " kann das Gerät weder über eine der digitalen, noch über die analoge Schnittstelle fernbedient werden. Der Status, daß die Fernsteuerung gesperrt ist, wird im Statusfeld der Hauptanzeige mit " Lokal " angezeigt. Siehe auch Abschnitt <i>"3.5.2. Bedienorte"</i> .
Analogschnittstelle Bereich	1	Wählt den Spannungsbereich für die analogen Sollwerteingänge, Istwertausgänge und den Referenzspannungsausgang.
		 05 V = Bereich entspricht 0100% Sollwert/Istwert, Referenzspg. 5 V 010 V = Bereich entspricht 0100% Sollwert/Istwert, Referenzspg. 10 V Siehe auch Abschnitt. 3 5 4. Fernsteuerung über Analogschnittstelle (AS)[#]
Angle ag chrittetelle Dem CD		Lest feet wie der Eingengenin Dem OD" en der eingeheuten
Analogschnittstelle Rem-SB	2	Analogschnittstelle logisch funktionieren soll, gemäß der in <i>"3.5.4.4. Spezifikation der Analogschnittstelle</i> " angegebenen Pegel. Siehe auch <i>"3.5.4.7. Anwendungsbeispiele</i> ".
		 Normal = Pegel und Funktion wie in der Tabelle in 3.5.4.4 gelistet Invertiert = Pegel und Funktion invertiert
Analog Rem-SB Verhalten	2	Legt fest, wie das Verhalten des analogen Eingangs "Rem-SB" an der eingebauten Analogschnittstelle gegenüber dem DC-Eingang sein soll:
		 DC AUS = DC-Eingang kann über den Pin nur ausgeschaltet werden DC EIN/AUS = DC-Eingang kann über den Pin aus- und wieder eingeschaltet werden
Analogschnittstelle Pin 6	3	Pin 6 der Analogschnittstelle (siehe Abschnitt 3.5.4.4) signalisiert standardmäßig die Gerätealarme OT und PF. Dieser Parameter erlaubt es, nur einen von beiden auf dem Pin auszugeben (3 mögliche Kombinationen):
		Alarm OT = Signalisierung des Alarms OT auf Pin 6 ein-/ausschalten
		Alarm PF = Signalisierung des Alarms PF auf Pin 6 ein-/ausschalten
Analogschnittstelle Pin 14	3	Pin 14 der Analogschnittstelle (siehe Abschnitt 3.5.4.4) signalisiert standardmäßig nur den Gerätealarm OVP. Dieser Parameter erlaubt es, weitere Gerätealarme auf dem Pin auszugeben (7 mögliche Kombinationen):
		Alarm OVP = Signalisierung des Alarms OVP auf Pin 14 ein-/ausschalten
		Alarm OCP = Signalisierung des Alarms OCP auf Pin 14 ein-/ausschalten
		Alarm OPP = Signalisierung des Alarms OPP auf Pin 14 ein-/ausschalten
Analogschnittstelle Pin 15	4	Pin 15 der Analogschnittstelle (siehe Abschnitt <i>3.5.4.4</i>) signalisiert standard- mäßig nur die Regelungsart CV. Dieser Parameter erlaubt es, einen anderen Gerätestatus auf dem Pin 15 auszugeben (2 Optionen):
		Regelungsart = Signalisierung der Regelungsart CV
		DC-Status = Signalisierung des Zustandes des DC-Eingangs
DC-Eingang nach Power ON	5	Bestimmt, wie der Zustand des DC-Eingangs nach dem Einschalten des Gerätes sein soll.
		 AUS = DC-Eingang ist nach dem Einschalten des Gerätes immer aus Wiederhstl. = Zustand des DC-Eingangs wird wiederhergestellt, so wie er beim letzten Ausschalten des Gerätes war
Einst. Spannungsregler	5	Wählt die Regelungsgeschwindigkeit des internen Spannungsreglers zwischen "Langsam" und "Schnell". Siehe "3.2.1.1. Geschwindigkeit des Spannungsreglers"
DC-Eingang nach PF Alarm	6	Legt fest, wie sich der DC-Eingang des Gerätes nach einem Powerfail-Alarm (siehe), wie z. B. durch Unterspannung verursacht, verhalten soll:
		 AUS = DC-Eingang bleibt aus AUTO = DC-Eingang schaltet automatisch wieder ein, wenn er vor dem Auftreten des Alarm auch eingeschaltet war
DC-Eingang nach Remote	6	 Bestimmt, wie der Zustand des DC-Eingangs nach manuellem oder per Befehl veranlaßtem Beenden der Fernsteuerung sein soll. AUS = DC-Eingang ist nach dem Verlassen der Fernsteuerung immer aus AUTO = Zustand des DC-Eingangs wird beibehalten

Einstellung	S.	Beschreibung
R-Modus aktivieren	7	Aktiviert (" Ja ") bzw. deaktiviert (" Nein ") die Innenwiderstandsregelung. Wenn aktiviert kann der Innenwiderstandwert als zusätzlicher Sollwert eingestellt werden. Mehr dazu siehe <i>"3.2.3. Widerstandsregelung/Konstantwiderstand"</i>
USB Trennzeichen-Format	8	Legt das Trennzeichen-Format der CSV-Datei beim USB-Logging (siehe auch 1.9.6.5 und 3.4.10) bzw. für das Einlesen von CSV-Dateien fest
		US = Trennzeichen ist Komma (US-Format) Standard = Trennzeichen ist Semikolon (deutsches bzw. europ. Format)
Logging mit Einheit (V,A,W)	8	Beim USB-Logging werden standardmäßig alle Werte in der CSV-Datei mit Einheit aufgezeichnet. Dies kann hier mit " Nein " deaktiviert werden.
Gerät abgleichen	9	Bedienfeld " Start " startet eine Kalibrierungsroutine, sofern das Gerät momentan im U/I- oder P/I-Modus ist.
Gerät zurücksetzen	10	Bedienfeld " Start " setzt alle Einstellungen (HMI, Profile usw.) und Werte auf Standardwerte, wie in den Menüstrukturdiagrammen auf den vorherigen Seiten angegeben.
Gerät neustarten	10	Bewirkt einen Warmstart des Gerätes
Master-Slave-Modus	11	Mit Option " MASTER " oder " SLAVE " wird der Master-Slave-Modus (kurz: MS) aktiviert und gleichzeitig die Funktion des Gerätes im MS festgelegt. Siehe auch Abschnitt " <i>3.11.1. Parallelschaltung als Master-Slave (MS)</i> ".
PSI / ELR System	11	Wird nur angezeigt, wenn Gerät als "MASTER" definiert wurde
		Legt durch Aktivierung (Fingerberührung, Haken wird gesetzt) fest, ob die elektronische Last Teil eines Zwei-Quadranten-Systems (siehe auch "3.11.3. Zwei-Quadranten-Betrieb (2QB)") ist und schaltet dazu den dbei benötigten Share-Bus wird auf Modus "Slave", weil eine Last im 2QB immer untergeordnet sein soll, da vom Netzgerät über Share-Bus gesteuert.
Master-Init. wiederholen	12	Bedienfeld " Initalisieren " initialisiert das Master-Slave-System neu für den Fall, daß die automatische Enumerierung der Slave-Einheiten durch den Master einmal nicht funktionieren sollte und somit weniger Gesamtleistung zur Verfügung stehen würde.

3.4.3.2 Menü "Nutzer Events"

Siehe "3.6.2.1 Benutzerdefinierbare Ereignisse (Events)" ab Seite 66.

3.4.3.3 Menü "Profile"

Siehe "3.9 Nutzerprofile laden und speichern" ab Seite 68.

3.4.3.4 Menü "Übersicht"

Diese Menüseiten zeigen eine Übersicht der aktuellen Sollwerte (U, I, P bzw. U, I, P, R) und Gerätealarmeinstellungen, sowie die Eventeinstellungen und Einstellgrenzen an. Diese können hier nur angesehen und nicht verändert werden.

3.4.3.5 Menü "Info HW, SW..."

Diese Menüseite zeigt eine Übersicht gerätebezogener Daten wie Serienummer, Artikelnummer usw., sowie eine Alarmhistorie (Anzahl aufgetretener Gerätealarme seit Einschalten des Gerätes) an.

3.4.3.6 Menü "Funkt.Generator"

Siehe "3.10 Der Funktionsgenerator" ab Seite 69.

3.4.3.7 Menü "Kommunikation"

Hier werden Einstellungen zur digitalen Kommunikation über die diversen, optional erhältlichen Schnittstellenmodule der IF-AB-Serie bzw. zum GPIB-Anschluß (Geräte mit installierter Option 3W) getroffen. Mit dem Bedienfeld für das Schnittstellenmodul bzw. GPIB öffnen sich ein oder mehrere Einstellseiten. Weiterhin kann das sog. "Kommunikations-Timeout" angepaßt werden, das durch höhere Werte ermöglicht, daß fragmentierte, d. h. zerstückelte Nachrichten sicher beim Geräte ankommen und verarbeitet werden können Mehr dazu in der externen Dokumentation "Programming ModBus & SCPI". Mit dem Bedienfeld "Kom-Protokolle" kann eins der beiden unterstützten Kommunikationsprotokolle deaktiviert werden, damit bei bestimmten Übertragungsarten und Kommunikationsproblemen keine Vermischung der Antworten stattfinden kann.

Bei den Ethernet-basierten Modulen, die zwei Ports haben, bezieht sich "P1" auf den Port 1 und "P2" auf den Port 2, so wie am Modul aufgedruckt. Zwei-Port-Module haben nur eine IP.

IF	Ebene 1	Ebene 2	Ebene 3	Beschreibung	
	IP-Einstellungen 1	DHCP		Das IF läßt sich von einem DHCP-Server eine IP und ggf. eine Subnetzmaske, sowie Gateway zuweisen, Falls kein DHCP-	
				Server im Netzwerk ist, werden die Netzwerkparameter	
				gesetzt, die im Punkt " Manuell " definiert worden.	
		Manuell	IP-Adresse	Diese Option ist standardmäßig aktiviert. Hier kann die IP-	
				Adresse des Gerätes manuell festgelegt werden.	
			Gateway	Hier kann eine Gateway-Adresse festgelegt werden, falls benötigt.	
			Subnetzmaske	Hier kann eine Subnetzmaske festgelegt werden, falls die Standardsubnetzmaske nicht paßt	
t		DNS-Adre	esse 1	Hier können die Adressen des 1. und 2. Domain Name	
۲ ۵		DNS-Adre	esse 2	Servers festgelegt werden, falls benötigt. Ein DNS wird nur	
00				benötigt wenn das Gerät mit seiner Domäne und seinem	
-				leinem Browser einfacher aufrufen zu können	
us-TCP		Port		Finstellbereich: 0 65535 Standardport	
				5025 = Modbus RTU (alle Ethernet-Module)	
ModB				Reservierte Ports, die hier nicht eingestellt werden dürfen: 502 = Modbus TCP (wird nur von Modbus-TCP-Modulen	
et /				genuizi) andere systemtynische reservierte Ports	
Srn (ID-Finstell 2-D1			Die Einstellungen der Ethernetports 1 und 2 (wo vorhanden)	
Ľ.	ID Einstell 2 D2			werden automatisch getroffen	
	IP-EINSteil. 2-P2	Manuell	Half duplex	Manuelle Wahl der Übertragungsgeschwindigkeit (10MBit	
			Full duplex	o. 100MBit) und Duplexmodus (Full/Half). Es wird empfoh-	
			10Mbit	len, Option "AUTO" zu belassen und nur im Problemfall	
			100Mbit	Option "Manuell" zu wählen. Unterschiedliche Einstellungen	
				bei 2-Port-Modulen sind mögliche, da diese einen Switch	
	Host Name			Peliniailen. Reliebig wählberer Hestneme (Standard: Client)	
	nost-Naille			Peliebig wählbare Demäne (Standard: Workgroup)	
			aliva	Deliebig wanibare Domane (Standard: Workgroup)	
	ICP Keep-Allve	aktivieren	-alive		

IF	Ebene 1	Ebene 2	Ebene 3	Beschreibung					
	Funktions-	Texteingat	oefeld zur	Eingabe eines beliebigen Textes zum Profinet-Tag "Funktions-					
LO	beschreib.	beschreibu	ing" (<i>Func</i>	<i>tion tag)</i> . Max. Länge: 32 Zeichen					
	Standort-	Texteingat	befeld zur	Eingabe eines beliebigen Textes zum Profinet-Tag "Standort-					
õ	beschreib.	beschreibu	ing" (<i>Loca</i>	<i>tion tag</i>). Max. Länge: 22 Zeichen					
–	Stationsname	Texteingab	efeld zur	Eingabe eines beliebigen Textes zur Beschreibung des Profinet-					
0		Stationsnamens. Max. Länge: 54 Zeichen							
let	Beschreib.	Texteingab	efeld zur	Eingabe eines beliebigen Textes zur Beschreibung des Profibus-					
jij		Slaves. Max. Länge: 54 Zeichen							
L L	Datum der	Texteingab	efeld zur E	ingabe eines beliebigen Textes zum Profibus-Tag "Installationdatum"					
	Installation	(Installatio	n date). Ma	ax. Länge: 40 Zeichen					

IF	Ebene 1	Beschreibung
	Knoten-Adresse	Einstellung der Profibus- oder Knotenadresse im Bereich von 1125 per Direkteingabe
		des Wertes
	Funktions-	Texteingabefeld zur Eingabe eines beliebigen Textes zum Profibus-Tag "Funktions-
6	Beschreib.	beschreibung" (<i>Function tag</i>). Max. Länge: 32 Zeichen
ns	Standort-	Texteingabefeld zur Eingabe eines beliebigen Textes zum Profibus-Tag "Standort-
fib	Beschreib.	beschreibung" (Location tag). Max. Länge: 22 Zeichen
2 C	Datum der	Texteingabefeld zur Eingabe eines beliebigen Textes zum Profibus-Tag "Installationdatum"
	Installation	(Installation date). Max. Länge: 40 Zeichen
	Beschreib.	Texteingabefeld zur Eingabe eines beliebigen Textes zur Beschreibung des Profibus-
		Slaves. Max. Länge: 54 Zeichen

IF	Ebene 1	Ebene 2	Ebene 3	Beschreibung
	Basis-ID			Einstellung der CAN-Basis-ID (11 Bit oder 29 Bit, Hexadezimalformat). Standardwert: 0h
	Baudrate			Einstellung der CAN-Busgeschwindigkeit in den typischen Werten zwischen 10 kbps und 1Mbps. Standardwert: 500 kbps
	Terminierung			Ein- oder Ausschalten des elektronisch geschalteten, im Modul befindlichen Busabschlußwiderstandes. Standardwert: AUS
	Broadcast ID			Einstellung der CAN-Broadcast-ID (11 Bit oder 29 Bit, Hexadezimalformat). Standardwert: 7ffh
	ID Format			Wahl des CAN-ID-Formates zwischen Base (11 Bit IDs, 0h7ffh) oder Extended (29 Bit IDs, 0h1fffffffh)
	Zyklische Kommunikation	Basis-ID Lesen		Einstellung der CAN-Basis-ID (11 Bit oder 29 Bit, Hexadezimalformat) für das zyklische Lesen von bis zu 5 Objektgruppen (siehe "Lese-Timing"). Das Gerät sendet über diese IDs die Inhalte der Objektgruppen automatisch, sofern aktiviert. Siehe Programmieranleitung. Standardwert: 100 h
CAN		Basis-ID Senden		Einstellung der CAN-Basis-ID (11 Bit oder 29 Bit, Hexadezimalformat) für das zyklische Senden von Status und Sollwerten. Das Gerät empfängt über diese IDs die Inhalte zweier bestimmter Objektgruppen im kompakteren Format. Siehe Programmieranleitung. Standardwert: 200h
		Lese- Timing	Status	Aktivierung/Deaktivierung und Zeiteinstellung zum automatischen Lesen des Status' über die eingestellte " Basis-ID Lesen ". Einstellbereich: 205000 ms. Standardwert: 0 ms (deaktiviert).
			Istwerte	Aktivierung/Deaktivierung und Zeiteinstellung zum automatischen Lesen der Istwerte über die eingestellte " Basis-ID Lesen + 1 ". Einstellbereich: 205000 ms. Standardwert: 0 ms (deaktiviert).
			Sollwerte	Aktivierung/Deaktivierung und Zeiteinstellung zum automatischen Lesen der Sollwerte über die eingestellte " Basis-ID Lesen + 2 ". Einstellbereich: 205000 ms. Standardwert: 0 ms (deaktiviert).
			Limits 1	Aktivierung/Deaktivierung und Zeiteinstellung zum automatischen Lesen der "Limits" (U, I) über die eingestellte " Basis-ID Lesen + 3 ". Einstellbereich: 205000 ms. Standardwert: 0 ms (deaktiviert)
			Limits 2	Aktivierung/Deaktivierung und Zeiteinstellung zum automatischen Lesen der "Limits" (P, R) über die eingestellte " Basis-ID Lesen + 4 ". Einstellbereich: 205000 ms. Standardwert: 0 ms (deaktiviert)
	Datenlänge			Festlegung der Nachrichtenlänge von allen vom Gerät gesendeten Nachrichten (Antworten). AUTO = Länge variiert je nach Objekt zwischen 3 und 8 Bytes Immer 8 Bytes = Länge ist immer 8 Bytes, mit Nullen aufgefüllt

IF	Ebene 1	Ebene 2	Beschreibung
	Knoten-Adresse		Einstellung der CANopen-Knotenadresse im Bereich von 1127 per Direkteingabe des Wertes
ben	Baud-Rate	AUTO	Automatische Erkennung der Busgeschwindigkeit
NO		LSS	Setzt die Bus-Baudrate und die Knotenadresse automatisch
C C		Manuell	Manuelle Einstellung der Busgeschwindigkeit für die CANopen-Schnittstelle. Auswahlmöglichkeiten: 10 kbps, 20 kbps, 50 kbps, 100 kbps, 125 kbps, 250 kbps, 500 kbps, 800 kbps, 1Mbps (1Mbps = 1Mbit/s, 10 kbps = 10 kbit/s)

IF	Ebene 1	Beschreibung
RS232	Baudrate	Die Baudrate ist einstellbar, weitere serielle Einstellungen sind wie folgt festgelegt: 8 Datenbits, 1 Stopbit, Parität = keine Unterstützte Baudraten: 2400, 4800, 9600, 19200, 38400, 57600, 115200

IF	Ebene 1	Beschreibung
IB	Knoten-Adresse	Einstellung der GPIB-Knotenadresse (nur bei installierter Option 3W) im Bereich von 130
GP		

Element	Beschreibung
KomTimeout	Timeout USB/RS232 (in Millisekunden) Standardwert: 5, Bereich: 565535 Stellt die Zeit ein, die max. bei zwischen der Übertragung von zwei Bytes oder Blöcken von Bytes ablaufen darf. Mehr dazu in der externen Dokumentation "Programming ModBus & SCPI".
	Timeout ETH (in Sekunden) Standardwert: 5, Bereich: 0, 565535 Findet während der eingestellten Zeit keine Befehls-Kommunikation mit dem Gerät statt, schließt es die Socketverbindung. Das Timeout wird durch Aktivierung der Option "TCP Keep-alive" (siehe oben) unwirksam, sofern die "keep-alive" innerhalb des Netzwerkes wie zu erwarten funktioniert. Mit Einstellung "0" wird das Timeout dauerhaft deaktiviert.
KomProtokolle	Aktivieren / Deaktivieren der Kommunikationsprotokolle SCPI und ModBus Jeweils eins von beiden kann deaktiviert werde, wenn nicht benötigt.
Logging	Aktiviert/deaktiviert die Datenaufzeichnung (Logging) auf USB-Stick. Wenn aktiviert, kann ein Intervall für das Logging (mehrere Schritte, 500 ms 5 s) festgelegt werden. Außerdem kann man wählen, wie das Logging gestartet/gestoppt wird. Mehr siehe "3.4.10. Datenaufzeichnung auf USB-Stick (Logging)".

3.4.3.8 Menü "HMI-Einstellung"

Diese Einstellungen beziehen sich ausschließlich auf die Bedieneinheit (HMI).

Element	Beschreibung
Sprache	Umschaltung der Sprache in der Anzeige zwischen Deutsch, Englisch, Russisch oder Chinesisch
Tastenton	Aktiviert bzw. deaktiviert die Tonausgabe bei Betätigung einer Taste oder eines Bedienfeldes in der Anzeige. Dieser Ton kann als Bestätigung dienen, daß die Betätigung der Taste bzw. des Bedienfeldes angenommen wurde.
Alarmton	Aktiviert bzw. deaktiviert die zusätzliche akustische Signalisierung eines Gerätealarms oder benutzerdefinierten Ereignisses (Event), das auf Aktion = ALARM eingestellt wurde. Siehe auch "3.6 Alarme und Überwachung" ab Seite 64.
HMI Sperre	Siehe "3.7 Bedieneinheit (HMI) sperren" ab Seite 67
Hinterg. Beleuchtung	Hiermit kann man wählen, ob die Hintergrundbeleuchtung immer an sein soll oder sich abschaltet, wenn 60 s lange keine Eingabe über Touchscreen oder Drehknopf erfolgte. Sobald eine Eingabe erfolgt, schaltet sich die Beleuchtung automatisch wieder ein. Weiterhin kann die Helligkeit der Beleuchtung in 10 Stufen eingestellt werden.
Statusseite	Aktiviert/deaktiviert zwei auf die Hauptanzeige bezogene Optionen bezüglich der Istwertdarstellung.
	Messleiste anzeigen : im Modus U/I/P, d. h. Widerstands-Modus deaktiviert, wird in der Hauptanzeige unter den Istwerten von Spannung, Strom und Leistung eine zusätzliche Meßleiste eingeblendet. Siehe auch <i>"3.4.8. Die Meßleisten".</i>
	Alternative Statusseite : schaltet die normale Hauptanzeige mit den Soll- und Istwerten von Spannung, Strom und Leistung bzw. Widerstand, wenn aktiviert, um auf eine simplere Darstellung mit nur Spannung und Strom, plus Status. Siehe auch <i>"3.4.7. Ansichtsmodus der Hauptanzeige wechseln".</i>
	Standardeinstellung: beide deaktiviert
Limits Sperre	Siehe "3.8 Einstellgrenzen (Limits) sperren" ab Seite 67

3.4.4 Einstellgrenzen ("Limits")

Die Einstellgrenzen gelten nur für die zugehörigen Sollwerte, jedoch gleichermaßen bei manueller Bedienung wie bei Fernsteuerung.

Standardmäßig sind alle Sollwerte (U, I, P, R) von 0...100% einstellbar.

Das kann in einigen Fällen, besonders zum Schutz von Anwendungen gegen Überstrom, hinderlich sein. Daher können jeweils für Spannung (U) und Strom (I) separat untere und obere Einstellgrenzen festgelegt werden, die den einstellbaren Bereich des jeweiligen Sollwertes verringern.

Für die Leistung (P) und den Widerstand (R) können obere Einstellgrenzen festgelegt werden.

► So konfigurieren Sie die Einstellgrenzen

- 1. Bei ausgeschaltetem DC-Eingang tippen Sie in der Hauptanzeige auf das Bedienfeld SETTINGS
- 2. Tippen Sie auf der rechten Seite auf die Pfeile
- Jeweils ein Paar obere und untere Einstellgrenze U, I bzw. obere Einstellgrenzen P/R sind den Drehknöpfen zugewiesen und können mit diesen eingestellt werden. Wechsel zu einem anderen durch Antippen eines Auswahlfeldes
- 4. Übernehmen Sie die Einstellungen mit

Die Einstellwerte können auch direkt über eine Zehnertastatur eingegeben werden. Diese erscheint, wenn man unten auf das Bedienfeld "Direkteingabe" tippt.

Die Einstellgrenzen sind an die Sollwerte gekoppelt. Das bedeutet, daß die obere Einstellgrenze (-max) des Sollwertes nicht kleiner bzw. die untere Einstellgrenze (-min) nicht höher eingestellt werden kann als der Sollwert momentan ist.

Beispiel: Wenn man die obere Einstellgrenze des Stromes (I-max) auf 350 A einstellen möchte während der Stromsollwert noch auf 450 A eingestellt ist, dann müßte man den Stromsollwert zuerst auf 350 A oder geringer einstellen, um I-max auf 350 A setzen zu können.

3.4.5 Bedienart wechseln

Generell wird bei manueller Bedienung einer EL 9000 B zwischen drei Bedienarten (UI/, P/I und R/I) unterschieden, die an die Sollwerteingabe per Drehknopf oder Zehnertastatur gebunden sind. Diese Zuordnung kann bzw. muß gewechselt werden, wenn einer der vier Sollwerte verstellt werden soll, der momentan nicht zugänglich ist.

So wechseln Sie die Bedienart (zwei Möglichkeiten)

- 1. Sofern das Gerät nicht in Fernsteuerung oder das Bedienfeld gesperrt ist, tippen Sie auf die Abbildung des linken Drehknopfes (siehe Abbildung rechts), dann wechselt seine Zuordnung zwischen U, P und R.
- 2. Sie tippen auf die farblich hinterlegten Felder mit den Soll-/Istwerten, wie rechts gezeigt. Wenn die Einheit des gewählten Sollwertes invertiert dargestellt wird, ist der Wert dem Drehknopf zugeordnet. Im Beispiel sind P und I gewählt.

Je nach getroffener Wahl wird dem linken Drehknopf ein anderer Sollwert zum Einstellen zugeordnet, während der rechte Drehknopf immer den Strom stellt.

Um den ständigen Wechsel der Zuordnung zu umgehen, können Sie, z. B. bei Zuordnung R/I gewählt, auch die Spannung oder Leistung durch Direkteingabe stellen. Siehe 3.4.6.

Was das Gerät bei eingeschaltetem Eingang dann tatsächlich als aktuelle Regelungsart bzw. Betriebsart einstellt, hängt nur von den Sollwerten ab. Mehr Informationen dazu finden Sie in *"3.2. Regelungsarten".*

, um "3. Limits" auszuwählen.

3.4.6 Sollwerte manuell einstellen

Die Einstellung der Sollwerte von Spannung, Strom, Leistung und Widerstand ist die grundlegende Bedienmöglichkeit der elektronischen Last und daher sind die beiden Drehknöpfe auf der Vorderseite des Gerätes bei manueller Bedienung stets zwei von den vier Sollwerten zugewiesen.

Die Sollwerte können auf zwei Arten manuell vorgegeben werden: per Drehknopf oder Direkteingabe.

0

Die Eingabe von Sollwerten, egal ob per Knopf oder direkt, setzt den Sollwert immer sofort, egal ob der Eingang ein- oder ausgeschaltet ist.

Die Einstellung der Sollwerte kann nach oben oder unten hin begrenzt sein durch die Einstellgrenzen. Siehe auch "3.4.4 Einstellgrenzen ("Limits")" ab Seite 54. Bei Erreichen einer der Grenzen wird in der Anzeige, links neben dem Wert, für 1,5 Sekunden ein Hinweis "Limit: U-max" usw. eingeblendet.

So können Sie manuell Sollwerte mit den Drehknöpfen einstellen

- 1. Prüfen Sie zunächst, ob der Sollwert (U, I, P, R), den Sie einstellen wollen, bereits einem der Drehknöpfe zugeordnet ist. Die Hauptbildschirm zeigt die Zuordnung wie rechts im Bild dargestellt.
- 2. Falls, wie rechts im Beispiel gezeigt, für den linken Drehknopf die Spannung (U) und den rechten Drehknopf die Leistung (I) zugewiesen ist, Sie möchten aber die Leistung einstellen, können Sie die Zuordnung ändern, indem Sie auf die Abbildung des linken

einstellen, können Sie die Zuordnung ändern, indem Sie auf die Abbildung des linken Drehknopfes tippen, bis "P" (für Leistung) auf dem Knopf angezeigt wird.

3. Nach erfolgter Auswahl kann der gewünschte Sollwert innerhalb der festgelegten Grenzen eingestellt werden. Zum Wechsel der Stelle drücken Sie auf den jeweiligen Drehknopf. Das verschiebt den Cursor (gewählte Stelle wird unterstrichen) von rechts nach links:

So können Sie manuell Sollwerte per Direkteingabe einstellen

 In der Hauptanzeige, abhängig von der Zuordnung der Drehknöpfe, können Sie die Sollwerte von Spannung (U), Strom (I), Leistung (P) oder Widerstand (R) per Direkteingabe einstellen, indem Sie in den Sollwert/ Istwert-Anzeigefeldern auf das kleine Symbol der Zehnertastatur tippen. Also z. B. auf das oberste Feld, um die Spannung einzustellen usw.

7	8	9	U=	80.00V
4	5	6		
1	2	3	с	
	o	. (ENTER	R ESC

 Geben Sie den gewünschten Wert per Zehnertastatur ein. Ähnlich wie bei einem Taschenrechner, löscht Bedienfeld c die Eingabe.

Nachkommastellen könner	n dure	ch An	tipper	n des	Komr	ma-Bedien
feldes eingegeben werden.	Wen	n Sie	also	z. B.	54,3	V eingeber
wollten, dann tippen Sie	5	4	•	3	und	ENTER

3. Die Anzeige springt zurück auf die Hauptanzeige und der Sollwert wird übernommen und gesetzt.

Wird ein Wert eingeben, der höher als die jeweilige Einstellgrenze ist, erscheint ein Hinweis und der eingegebene Wert wird auf 0 zurückgesetzt und nicht übernommen.

3.4.7 Ansichtsmodus der Hauptanzeige wechseln

Die Hauptanzeige, auch genannt Statusseite, mit ihren Soll- und Istwerten sowie den Gerätestatus, kann auf eine einfachere Darstellung umgeschaltet werden, die nur Werte von Spannung und Strom, sowie den Status anzeigt.

Der Vorteil der alternativen Statusseite ist, daß die beiden Istwerte mit **deutlich größeren Zahlen** dargestellt werden, wodurch das Ablesen aus größerer Entfernung möglich wird. Informationen, wo die Anzeige im MENU umgeschaltet werden kann, sind in *"3.4.3.8. Menü "HMI-Einstellung""* zu finden. Vergleich der Anzeige-Modi:

Alternative Statusseite

Einschränkungen der alternativen Statusseite:

- Der Sollwert und der Istwert der Leistung werden nicht angezeigt und der Sollwert ist nur indirekt zugänglich
- Der Sollwert und der Istwert des Widerstandes werden nicht angezeigt und der Sollwert ist nur indirekt zugänglich
- Kein Zugriff auf die Schnellübersicht (MENU-Bedienfeld), während der DC-Eingang eingeschaltet ist

Im Anzeigemodus "alternative Statusseite" sind die Sollwerte von Leistung und Widerstand nicht einstellbar, solange der DC-Eingang eingeschaltet ist. Sie können nur bei Eingang = aus und nur in SETTINGS eingestellt werden.

Für die manuelle Bedienung am HMI im Modus "alternative Statusseite" gilt:

- Die beiden Drehknöpfe sind immer Spannung (links) und Strom (rechts) zugewiesen, außer in Menüs
- Die Einstellung bzw. Eingabe von Sollwerte geschieht wie bei der normalen Statusseite, per Drehknopf oder Direkteingabe
- Die Regelungsarten CP und CR werden alternativ zu CC an derselben Position angezeigt

3.4.8 Die Meßleisten

Zusätzlich zu den Istwerten in Darstellung als Zahl kann eine Meßleiste für U, I und P im MENU aktiviert werden. Die Meßleisten werden nicht angezeigt, solange Widerstands-Modus (U/I/R) aktiviert ist. Informationen, wo die Meßleisten im MENU ein- und ausgeschaltet werden können, sind in *"3.4.3.8. Menü "HMI-Einstellung""* zu finden.

Normale Statusseite mit Meßleiste

Alternative Statusseite mit Meßleiste

3.4.9 DC-Eingang ein- oder ausschalten

Der DC-Eingang des Gerätes kann manuell oder ferngesteuert aus- oder eingeschaltet werden. Bei manueller Bedienung kann dies jedoch durch die Bedienfeldsperre verhindert sein.

Das manuelle oder ferngesteuerte (digital) Einschalten des DC-Eingangs kann außerdem durch den Eingangspin REM-SB der eingebauten Analogschnittstelle gesperrt sein. Siehe dazu auch 3.4.3.1 und Beispiel a) in 3.5.4.7. In der Anzeige wird dann ein entsprechender Hinweis eingeblendet.

So schalten Sie den DC-Eingang manuell ein oder aus

- Sofern das Bedienfeld nicht komplett gesperrt ist, betätigen Sie Taste On/Off. Anderenfalls werden Sie zunächst gefragt, die Sperre aufzuheben bzw. die PIN einzugeben, sofern diese im Menü "HMI-Sperre" aktiviert wurde.
- **2.** Jenachdem, ob der Eingang vor der Betätigung der Taste ein- oder ausgeschaltet war, wird der entgegengesetzte Zustand aktiviert, sofern nicht durch einen Alarm oder den Zustand "Fern" verhindert.

So schalten Sie den DC-Eingang über die analoge Schnittstelle ferngesteuert ein oder aus

1. Siehe Abschnitt "3.5.4 Fernsteuerung über Analogschnittstelle (AS)" ab Seite 60.

► So schalten Sie den DC-Eingang über eine digitale Schnittstelle ferngesteuert ein oder aus

1. Siehe externe Dokumentation "Programmieranleitung ModBus & SCPI", falls Sie eigene Software verwenden oder kreieren bzw. siehe die externe Dokumentation für LabView VIs oder von Elektro-Automatik zur Verfügung gestellter Software.

3.4.10 Datenaufzeichnung auf USB-Stick (Logging)

Mittels eines handelsüblichen USB-Sticks (2.0 / 3.0 geht bedingt, weil nicht alle Hersteller unterstützt werden) können Daten vom Gerät aufgezeichnet werden. Für nähere Spezifikationen zum Stick und zu den Dateien lesen Sie bitte Abschnitt "1.9.6.5. USB-Port (Vorderseite)".

Das durch das Logging erzeugten CSV-Dateien haben das gleiche Format wie jene, die von der App "Logging" in der Software EA Power Control erstellt werden, wenn stattdessen über den PC geloggt wird. Der Vorteil beim Logging auf Stick ist, daß das Gerät nicht mit dem PC verbunden sein muß. Die Funktion muß lediglich über das MENU aktiviert und konfiguriert werden.

3.4.10.1 Konfiguration

Siehe auch Abschnitt 3.4.3.7. Nach der Aktivierung der Funktion "USB-Logging" und Wahl der beiden Parameter "Logging-Intervall" und des "Start/Stop"-Verhaltens kann das Logging jederzeit noch im MENU oder nach Verlassen gestartet werden.

3.4.10.2 Bedienung (Start/Stopp)

Bei Einstellung "**Start/Stopp mit DC-Eingang EIN/AUS**" startet das Logging mit Betätigen der Taste "On/Off" auf der Vorderseite des Gerätes bzw. Steuerung derselben Funktion über digitale oder analoge Schnittstelle. Bei Einstellung "**Manueller Start/Stopp**" kann das Logging nur im MENU gestartet/gestoppt werden, wo es auch konfiguriert wird. Somit kann bei dieser Einstellung das Logging nicht bei Fernsteuerung gestartet werden.

Nach dem Start der Aufzeichnung erscheint in der Anzeige das Symbol . Sollte es während des Log-Vorgangs zu einem Fehler kommen (Stick voll, Stick abgezogen), erscheint ein entsprechendes Symbol . Mit jedem manuellen Stopp oder Ausschalten des DC-Eingangs wird das Logging beendet und die aufgezeichnete Log-Datei geschlossen.

3.4.10.3 Das Dateiformat beim USB-Logging

Typ: Textdatei im europäischen CSV-Format

Aufbau:

	Α	В	С	D	E	F	G	н	Ι	J	K	L	М
1	U set	U actual	l set	I actual	P set	P actual	R set	R actual	R mode	Output/Input	Device mode	Error	Time
2	2,00V	11,92V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:00,942
З	2,00V	11,90V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:01,942
4	2,00V	11,89V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:02,942
5	2,00V	11,87V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:03,942

Legende:

U set / I set / P set / R set: Sollwerte U actual / I actual / P actual / R actual: Istwerte Error: Gerätealarme Time: Zeit ab Start des Logging Device mode: aktuelle Regelungsart (siehe auch "3.2. Regelungsarten")

Hinweise:

- R set und R actual werden nur aufgezeichnet, wenn der R-Modus aktiv ist (siehe dazu Abschnitt 3.4.5)
- Im Unterschied zum Logging am PC erzeugt jeder neue Log-Vorgang beim USB-Logging eine weitere Datei, die am Ende des Dateinamens eine hochgezählte Nummer erhält; dabei werden bereits existierende Logdateien berücksichtigt

3.4.10.4 Besondere Hinweise und Einschränkungen

- Max. Dateigröße einer Aufzeichnungsdatei, bedingt durch FAT32: 4 GB
- Max. Anzahl von Aufzeichnungs-Dateien im Ordner HMI_FILES: 1024
- Das Logging stoppt bei Einstellungen "**Start/Stopp mit DC-Eingang EIN/AUS**" auch bei Alarmen oder Events mit Aktion "Alarm", weil diese den DC-Eingang ausschalten
- Bei Einstellung "**Manueller Start/Stopp**" zeichnet das Gerät bei Alarmen weiter auf, damit so z. B. die Dauer von temporären Alarmen wie OT und PF ermittelt werden kann

3.5 Fernsteuerung

3.5.1 Allgemeines

Fernsteuerung ist grundsätzlich über die eingebaute analoge oder die USB-Schnittstelle oder über eine der optional erhältlichen digitalen Schnittstellenmodule möglich. Wichtig ist dabei, daß entweder nur die analoge oder eine digitale im Eingriff sein kann. Der Master-Slave-Bus zählt auch zu den digitalen Schnittstellen.

Das bedeutet, wenn man zum Beispiel versuchen würde bei aktiver analoger Fernsteuerung (Pin REMOTE = LOW) auf Fernsteuerung per digitaler Schnittstelle umzuschalten, würde das Gerät auf der digitalen Schnittstelle einen Fehler zurückmelden. Im umgekehrten Fall würde die Umschaltung per Pin REMOTE einfach ignoriert. In beiden Fällen ist jedoch Monitoring, also das Überwachen des Status' bzw. das Auslesen von Werten, immer möglich.

3.5.2 Bedienorte

Bedienorte sind die Orte, von wo aus ein Gerät bedient werden kann. Grundsätzlich gibt es zwei: am Gerät (manuelle Bedienung) und außerhalb (Fernsteuerung). Folgende Bedienorte sind definiert:

Bedienort laut Anzeige	Erläuterung
-	Wird keiner der anderen Bedienorte im Statusfeld angezeigt, ist manuelle Bedienung aktiv und der Zugriff von der analogen bzw. digitalen Schnittstelle ist freigegeben. Dieser Bedienort wird nicht extra angezeigt.
Fern	Fernsteuerung ist über eine der Schnittstellen ist aktiv
Lokal	Fernsteuerung ist gesperrt, Gerät kann nur manuell bedient werden

Fernsteuerung kann über die Einstellung "Fernsteuerung erlauben" (siehe "3.4.3.1. Menü "Allgemeine Einstellungen"") erlaubt oder gesperrt werden. Im gesperrten Zustand ist im Statusfeld in der Anzeige oben rechts der Status "Lokal" zu lesen. Die Aktivierung der Sperre kann dienlich sein, wenn normalerweise eine Software oder eine Elektronik das Gerät ständig fernsteuert, man aber zwecks Einstellung am Gerät oder auch im Notfall am Gerät hantieren muß, was bei Fernsteuerung sonst nicht möglich wäre.

Die Aktivierung des Zustandes "Lokal" bewirkt folgendes:

- Falls Fernsteuerung über digitale Schnittstelle aktiv ist ("**Fern**"), wird die Fernsteuerung sofort beendet und muß später auf der PC-Seite, sobald "**Lokal**" nicht mehr aktiv ist, erneut übernommen werden, sofern nötig
- Falls Fernsteuerung über analoge Schnittstelle aktiv ist (auch "**Fern**"), wird die Fernsteuerung nur solange unterbrochen bis "**Lokal**" wieder beendet, sprich die Fernsteuerung wieder erlaubt wird, weil der Pin "Remote" an der Analogschnittstelle weiterhin das Signal "Fernsteuerung = ein" vorgibt, es sei denn dies wird während der Phase mit "**Lokal**" geändert

3.5.3 Fernsteuerung über eine digitale Schnittstelle

3.5.3.1 Schnittstellenwahl

Die Standardausführungen der Serie EL 9000 B unterstützen zusätzlich zur serienmäßig eingebauten USB-Schnittstelle folgende optional erhältliche Schnittstellenmodule:

Kurzbezeichnung	Тур	Ports	Beschreibung*
IF-AB-CANO	CANopen	1	CANopen Slave mit Generic EDS
IF-AB-RS232	RS232	1	Standard RS232, seriell
IF-AB-PBUS	Profibus	1	Profibus DP-V1 Slave
IF-AB-ETH1P	Ethernet	1	Ethernet TCP
IF-AB-PNET1P	ProfiNet	1	Profinet DP-V1 Slave
IF-AB-MBUS	ModBus TCP	1	ModBus TCP/RTU Protokoll über Ethernet
IF-AB-ETH2P	Ethernet	2	Ethernet TCP, mit Switch
IF-AB-MBUS2P	ModBus TCP	2	ModBus TCP/RTU Protokoll über Ethernet
IF-AB-PNET2P	ProfiNet	2	Profinet DP-V1 Slave, mit Switch
IF-AB-CAN	CAN	1	Modifiziertes ModBus RTU über CAN
IF-AB-ECT	EtherCAT	2	Standard EtherCAT-Slave mit "CANopen over Ethernet" (CoE)

* Für technische Details zu den einzelnen Modulen siehe separate Dokumentation "Programmieranleitung Modbus & SCPI"

3.5.3.2 Allgemeines zu den Schnittstellenmodulen

Bei den Standardausführungen der Serie EL 9000 kann jeweils eins der in *3.5.3.1* genannten steck- und nachrüstbaren Module installiert sein. Über dieses kann das Gerät alternativ zu der fest eingebauten USB-Schnittstelle (Rückseite, Typ B) oder der fest eingebauten analogen Schnittstelle ferngesteuert werden. Zur Installation siehe *"2.3.10. Installation eines Schnittstellenmoduls"* und separate Dokumentation.

Die Schnittstellenmodule benötigen nur wenige oder keine Einstellungen für den Betrieb bzw. können bereits mit den Standardeinstellungen direkt verwendet werden. Die modulspezifischen Einstellungen werden dauerhaft gespeichert und müssen nach Wechsel zwischen verschiedenen Modulen nicht jedesmal neu konfiguriert werden.

3.5.3.3 Programmierung

Details zur Programmierung der Schnittstellen, die Kommunikationsprotokolle usw. sind in der externen Dokumentation "Programmieranleitung ModBus & SCPI" zu finden, die mit dem Gerät auf einem USB-Stick mitgeliefert wird bzw. als Download auf der Elektro-Automatik Webseite verfügbar ist.

3.5.4 Fernsteuerung über Analogschnittstelle (AS)

3.5.4.1 Allgemeines

Die fest eingebaute, galvanische getrennte, 15-polige analoge Schnittstelle (kurz: AS) befindet sich auf der Rückseite des Gerätes und bietet folgende Möglichkeiten:

- Fernsteuerung von Strom, Spannung, Leistung und Widerstand
- Fernüberwachung Status (CV, DC-Eingang)
- Fernüberwachung Alarme (OT, OVP, OCP, OPP, PF)
- Fernüberwachung der Istwerte
- Ferngesteuertes Ein-/Ausschalten des DC-Einganges

Das Stellen der <u>drei</u> Sollwerte Spannung, Strom und Leistung über analoge Schnittstelle geschieht **immer zusammen**. Das heißt, man kann nicht z. B. die Spannung über die AS vorgeben und Strom und Leistung am Gerät mittels Drehknopf einstellen oder umgekehrt. Steuerung des Widerstandssollwertes ist zusätzlich möglich.

Der OVP-Sollwert, sowie weitere Überwachungsgrenzen und Alarmschwellen können über die AS nicht ferngestellt werden und sind daher vor Gebrauch der AS am Gerät auf die gegebene Situation anzupassen. Die analogen Sollwerte können über eine externe Spannung eingespeist oder durch am Pin 3 ausgegebene Referenzspannung erzeugt werden. Sobald die Fernsteuerung über analoge Schnittstelle aktiviert wurde, zeigt die Anzeige die Sollwerte an, wie Sie über die analoge Schnittstelle vorgegeben werden.

Die AS kann mit den gängigen Spannungsbereichen 0...5 V oder 0...10 V für jeweils 0...100% Nennwert betrieben werden. Die Wahl des Spannungsbereiches findet im Geräte-Setup statt, siehe Abschnitt *"3.4.3. Konfiguration im MENU"*. Die am Pin 3 (VREF) herausgegebene Referenzspannung wird dabei angepaßt. Es gilt dann folgendes:

0-5 V: Referenzspannung = 5 V, 0...5 V Sollwert (VSEL, CSEL, PSEL, RSEL) entsprechen 0...100% Nennwert, 0...100% Istwert entsprechen 0...5 V an den Istwertausgängen (CMON, VMON).

0-10 V: Referenzspannung = 10 V, 0...10 V Sollwert (VSEL, CSEL, PSEL, RSEL) entsprechen 0...100% Nennwert, 0...100% Istwert entsprechen 0...10 V an den Istwertausgängen (CMON, VMON).

Vorgabe von zu hohen Sollwerten (z. B. >5 V im gewählten 5 V-Bereich bzw. >10 V im gewählten 10 V-Bereich) wird abgefangen, in dem der jeweilige Sollwert auf 100% bleibt.

Bevor Sie beginnen: Unbedingt lesen, wichtig!

0

Nach dem Einschalten des Gerätes, während der Startphase, zeigt die AS unbestimmte Zustände an (OT, OVP usw.), die bis zum Erreichen der Betriebsbereitschaft ignoriert werden müssen.

- Fernsteuerung des Gerätes erfordert die Umschaltung auf Fernsteuerbetrieb mit Pin "REMOTE" (5). Einzige Ausnahme ist der Pin REM-SB, der auch davon unabhängig funktioniert
- Bevor die Steuerung verbunden wird, welche die analoge Schnittstelle bedienen soll, ist zu prüfen, daß die Steuerung keine höheren Spannungen als spezifiziert auf die Pins geben kann
- Die Sollwerteingänge VSEL, CSEL, PSEL bzw. RSEL (falls R-Modus aktiviert) dürfen bei Fernsteuerung über die analoge Schnittstelle nicht unbeschaltet bleiben, da sonst schwebend (floating). Sollwerte die nicht gestellt werden sollen können auf einen festen Wert oder auf 100% gelegt werden (Brücke nach VREF oder anders)

Die Analogschnittstelle ist zum DC-Eingang hin galvanisch getrennt. Daher: Niemals eine der Massen der Analogschnittstelle mit DC- oder DC+ Eingang verbinden, wenn nicht unbedingt nötig!

3.5.4.2 Auflösung und Abtastrate

Intern wird die analoge Schnittstelle digital verarbeitet. Das bedingt zum Einen eine bestimmte, maximal stellbare Auflösung. Diese ist für alle Sollwerte (VSEL usw.) und Istwerte (VMON/CMON) gleich und beträgt 26214, bei Verwendung des 10 V-Bereiches. Bei gewähltem 5 V-Bereich halbiert sich die Auflösung. Durch Toleranzen am analogen Eingang kann sich die resultierende Auflösung zusätzlich leicht verringern.

Zum Anderen wird eine maximale Abtastrate von 500 Hz bedingt. Das bedeutet, die analoge Schnittstelle kann 500 mal pro Sekunde Sollwerte und deren Änderungen, sowie Zustände an den digitalen Pins verarbeiten.

3.5.4.3 Quittieren von Alarmmeldungen

Tritt während der Fernsteuerung über analoge Schnittstelle ein Gerätealarm auf, schaltet der DC-Eingang genauso aus wie bei manueller Bedienung. Die in den Einstellungen im MENU (siehe *"3.4.3. Konfiguration im MENU"*) gewählten Alarme werden über die Pins ALARMS 1 oder ALARMS 2 ausgegeben. Werden mehreren Alarme auf einem Pin ausgegeben kann der genau aufgetretene nur in der Anzeige oder via digitale Schnittstelle (Alarmzähler) erfaßt werden.

Die Alarme OVP, OCP und OPP gelten als zu quittierende Fehler (siehe auch *"3.6.2. Gerätealarme und Events handhaben"*). Sie können durch Aus- und Wiedereinschalten des DC-Eingangs per Pin REM-SB quittiert werden, also eine HIGH-LOW-HIGH-Flanke (mind. 50 ms für LOW), bei gewählter Standardeinstellung für den logischen Pegel des Pins.

Pin	Name	Тур*	Bezeichnung	Standardpegel	Elektrische Eigenschaften		
1	VSEL	AI	Sollwert Spannung	010 V bzw. 05 V ent- sprechen 0100% von U _{Nenn}	Genauigkeit 0-5 V Bereich: < 0,4% *****		
2	CSEL	AI	Sollwert Strom	010 V bzw. 05 V ent- sprechen 0100% von I _{Nenn}	Eingangsimpedanz $R_i > 40 k\Omega100 k\Omega$		
3	VREF	AO	Referenzspannung	10 V oder 5 V	Genauigkeit < 0,2% *****, bei I _{max} = +5 mA Kurzschlussfest gegen AGND		
4	DGND	POT	Digital Masse		Für Steuer- und Meldesignale		
5	REMOTE	DI	Umschaltung interne / externe Steuerung	Extern = LOW, U _{Low} <1 V Intern = HIGH, U _{High} >4 V Intern = Offen	Spannungsbereich = 030 V I_{Max} = -1 mA bei 5 V $U_{LOW nach HIGH typ.}$ = 3 V Empf. Sender: Open collector gegen DGND		
6	ALARMS 1	DO	Übertemperaturalarm / Power fail	Alarm = HIGH, U _{High} > 4 V kein Alarm = LOW, U _{Low} <1 V	Quasi-Open-Collector mit Pull-up gegen Vcc ** Bei 5 V am Pin fließen max. +1 mA I_{Max} = -10 mA bei U _{CE} = 0,3 V U _{Max} = 30 V Kurzschlussfest gegen DGND		
7	RSEL	AI	Sollwert Widerstand	010 V bzw. 05 V ent- sprechen R _{Min} R _{Max}	Genauigkeit 0-5 V Bereich: < 0,4% *****		
8	PSEL	AI	Sollwert Leistung	010 V bzw. 05 V ent-sprechen 0100% von P_{Nenn}	Eingangsimpedanz $R_i > 40 \text{ k}\Omega100 \text{ k}\Omega$		
9	VMON	AO	Istwert Spannung	010 V bzw. 05 V ent- sprechen 0100% von U _{Nenn}	Genauigkeit 0-5 V Bereich: < 0,4% ***** Genauigkeit 0-10 V Bereich: < 0,2% *****		
10	CMON	AO	Istwert Strom	010 V bzw. 05 V ent- sprechen 0100% von I _{Nenn}	bei I _{Max} = +2 mA Kurzschlussfest gegen AGND		
11	AGND	POT	Analoge Masse		Für -SEL, -MON, VREF Signale		
12	R-ACTIVE	DI	Widerstandsregelung ein / aus	Ein = LOW, U _{Low} <1 V Aus = HIGH, U _{High} >4 V Aus = Offen	$\begin{array}{l} Spannungsbereich = 030 \ V\\ I_{Max} = -1 \ mA \ bei 5 \ V\\ U_{LOW \ nach \ HIGH \ typ.} = 3 \ V\\ Empf. \ Sender: \ Open \ collector \ gegen \ DGND \end{array}$		
13	REM-SB	DI	DC-Eingang AUS (DC-Eingang EIN) (Alarme quittieren ****)	Aus = LOW, U_{Low} <1 V Ein = HIGH, U_{High} >4 V Ein = Offen	Spannungsbereich = 030 V I _{Max} = +1 mA bei 5 V Empf. Sender: Open collector gegen DGND		
14	ALARMS 2	DO	Überspannung Überstrom Überleistung	Alarm = HIGH, U _{High} > 4 V kein Alarm = LOW, U _{Low} <1 V	Quasi-Open-Collector mit Pull-up gegen Vcc **		
15	STATUS***		Spannungsregelung aktiv	CV = LOW, U _{Low} <1 V CC/CP/CR = HIGH, U _{High} >4 V	$I_{max} = -10 \text{ mA bei } U_{ce} = 0.3 \text{ V}, U_{max} = 030 \text{ V}$		
13		50	DC-Eingang	Ein = LOW, U _{Low} <1 V Aus = HIGH, U _{High} >4 V			

3.5.4.4 Spezifikation der Analogschnittstelle

* AI = Analoger Eingang, AO = Analoger Ausgang, DI = Digitaler Eingang, DO = Digitaler Ausgang, POT = Potential

** Interne Vcc ca. 10 V

**** Nur eins von beiden Signalen möglich, siehe 3.4.3.1 **** Nur während Fernsteuerung

***** Der Fehler eines Sollwerteinganges addiert sich zum allgemeinen Fehler des zugehörigen Wertes am DC-Eingang des Gerätes

3.5.4.6 Prinzipschaltbilder der Pins

Digitaler Eingang (DI) Es ist ein möglichst niederohmiger Schalter zu verwenden (Relaiskontakt, Schalter, Schütz o.ä.), um das Signal sauber nach DGND zu schalten.		Analoger Eingang (Al) Hochohmiger Eingang (Impedanz: >40 k100 kΩ) einer OP-Schaltung.
Digitaler Ausgang (DO) Ein Quasi-Open-Collector, weil mit hochohmigem Pullup-Widerstand gegen die interne Versorgung. Ist im geschalteten Zustand LOW und kann keine Lasten treiben, sondern nur schalten, wie im Bild links am Beispiel eines Relais' gezeigt.		Analoger Ausgang (AO) Ausgang einer OP-Schaltung, nicht oder nur sehr gering belastbar. Siehe Tabelle oben.

3.5.4.7 Anwendungsbeispiele

a) DC-Eingang ein- oder ausschalten über Pin "REM-SB"

Ein digitaler Ausgang, z. B. von einer SPS, kann diesen Eingang unter Umständen nicht sauber ansteuern, da eventuell nicht niederohmig genug. Prüfen Sie die Spezifikation der steuernden Applikation. Siehe auch die Prinzipschaltbilder oben.

Dieser Eingang wird bei Fernsteuerung zum Ein- und Ausschalten des DC-Anschlusses des Gerätes genutzt. Er funktioniert aber auch ohne aktivierte Fernsteuerung, dann kann er zum Einen das manuelle oder digital ferngesteuerte Einschalten des DC-Anschlusses blockieren und zum Anderen ein- oder ausschalten, jedoch nicht allein. Siehe unten bei "Fernsteuerung wurde nicht aktiviert".

Es wird empfohlen, einen niederohmigen Kontakt wie einen Schalter, ein Relais oder Transistor zum Schalten des Pins gegen Masse (DGND) zu benutzen.

Folgende Situationen können auftreten:

Fernsteuerung wurde aktiviert

Wenn Fernsteuerung über Pin "REMOTE" aktiviert ist, gibt nur Pin "REM-SB" den Zustand des DC-Eingangs des Gerätes gemäß der Tabelle in 3.5.4.4 vor. Die logische Funktion und somit die Standardpegel können durch eine Einstellung im Setup-Menü des Gerät invertiert werden. Siehe 3.4.3.1.

ļ

Wird der Pin nicht beschaltet bzw. der angeschlossene Kontakt ist offen, ist der Pin HIGH. Bei Einstellung "Analogschnittstelle REM-SB = normal" entspricht das der Vorgabe "DC-Eingang einschalten". Das heißt, sobald mit Pin "REMOTE" auf Fernsteuerung umgeschaltet wird, schaltet der DC-Eingang ein!

Fernsteuerung wurde nicht aktiviert

In diesem Modus stellt der Pin eine Art **Freigabe** der Taste "On/Off" am Bedienfeld des Gerätes bzw. des Befehls "DC-Eingang ein/aus" (bei digitaler Fernsteuerung) dar. Daraus ergeben sich folgende mögliche Situationen:

DC- Eingang	÷	Pin "REM-SB"	+	Parameter "REM-SB"	→	Verhalten
	Ŧ	HIGH	+	normal		DC-Eingang nicht gesperrt. Er kann mit Taste On/Off oder Befehl (dig Eernsteuerung) eingeschaltet werden
ist aus	T	LOW	+	invertiert	7	(dig. Fernstederding) eingeschaltet werden.
	ш	HIGH	+	invertiert		DC-Eingang gesperrt. Er kann nicht mit Taste On/Off oder Befehl
		LOW	+	normal	7	Anzeige im Display bzw. eine Fehlermeldung erzeugt.

Ist der DC-Eingang bereits eingeschaltet, bewirkt der Pin die Abschaltung dessen bzw. später erneutes Einschalten, ähnlich wie bei aktivierter Fernsteuerung:

DC- Eingang	+	Pin "REM-SB"	+	Parameter "REM-SB"	→	Verhalten
	-	HIGH	+	normal		Der DC-Eingang bleibt eingeschaltet. Er kann mit der Taste On/
ist ein	T	LOW	+	invertiert	-	schaltet werden.
	-	HIGH	+	invertiert		Der DC-Eingang wird ausgeschaltet und bleibt gesperrt, solange der Pin den Zustand behält. Erneutes Einschalten durch Wechse des Zustandes des Pins.
	Ŧ	LOW	+	normal		

b) Fernsteuerung von Strom und Leistung

Erfordert aktivierte Fernsteuerung (Pin "REMOTE" = LOW).

Über je ein Potentiometer werden die Sollwerte PSEL und CSEL aus beispielsweise der Referenzspannung VREF erzeugt. Die E-Last kann somit wahlweise in Strombegrenzung oder Leistungsbegrenzung arbeiten. Gemäß der Vorgabe von max. 5 mA für den Ausgang VREF sollten hier Potentiometer mit einem Wert von 10 k Ω oder höher benutzt werden.

Der Spannungssollwert wird hier fest auf AGND (Masse) gelegt und beeinflußt somit Konstantstrom- oder Konstantleistungsbetrieb nicht.

Bei Einspeisung der Steuerspannungen von einer externen Spannungsquelle wäre die Wahl des Eingangsspannungsbereiches für Sollwerte (0...5 V oder 0...10 V) zu beachten.

> Bei Benutzung des Eingangsspannungsbereiches 0...5 V für 0...100% Sollwert halbiert sich die effektive Auflösung bzw. verdoppelt sich die minimale Schrittweite für Sollwerte/Istwerte.

Spannungsquelle

Beispiel mit Potis

c) Istwerte erfassen

Über die AS werden die DC-Eingangswerte von Strom und Spannung mittels 0...10 V oder 0...5 V abgebildet. Zur Erfassung dienen handelsübliche Multimeter o.ä.

3.6 Alarme und Überwachung

3.6.1 Begriffsdefinition

Grundsätzlich wird unterschieden zwischen Gerätealarmen (siehe "3.3. Alarmzustände") wie z. B. Überspannung und benutzerdefinierten Ereignissen wie z. B. **OCD** (Überstromüberwachung). Während Gerätealarme, bei denen der DC-Eingang zunächst ausgeschaltet wird, in erster Linie zum Schutz der angeschlossenen Quelle dienen, können benutzerdefinierte Ereignisse auch den DC-Eingang abschalten (bei gesetzter Aktion **ALARM**), aber auch nur als akustisches Signal ausgegeben werden, das den Anwender auf etwas aufmerksam macht. Bei benutzerdefinierten Ereignissen kann die Aktion ausgewählt werden:

Aktion	Verhalten	Beispiel
KEINE	Benutzerereignis ist deaktiviert	
SIGNAL	Bei Erreichen der Bedingung, die ein Ereignis mit Aktion SIGNAL auslöst, wird nur in der Anzeige (Statusfeld) des Gerätes ein Text ausgegeben.	Event: OPD
WARNUNG	Bei Erreichen der Bedingung, die ein Ereignis mit Aktion WARNUNG auslöst, werden in der Anzeige (Statusfeld) des Gerätes ein Text und eine zusätzlich eingeblendete Meldung ausgegeben.	Warnung!
ALARM	Bei Erreichen der Bedingung, die ein Ereignis mit Aktion ALARM oder einen Alarm auslöst, werden nur in der Anzeige (Statusfeld) des Gerätes ein Text und eine zusätzlich eingeblendete Meldung, sowie ein akustisches Signal ausgegeben (falls der Alarmton aktiviert ist). Weiterhin wird der DC-Eingang ausgeschaltet. Bestimmte Gerätealarme werden zusätzlich über die analoge Schnittstelle signalisiert und können über digitalen Schnittstellen abgefragt werden.	Alarm! Alarm! Alarm: OT

3.6.2 Gerätealarme und Events handhaben

Wichtig zu wissen:

- Der aus einem Schaltnetzteil oder ähnlichen Quellen entnommene Strom kann selbst bei einer strombegrenzten Quelle durch Kapazitäten am Ausgang viel höher sein als erwartet und an der elektronischen Last die Überstromabschaltung OCP oder das Stromüberwachungs-Event OCD auslösen, wenn diese entsprechend knapp eingestellt sind
- Beim Abschalten des DC-Eingangs der elektronischen Last an einer strombegrenzten Quelle wird deren Ausgangsspannung schlagartig ansteigen lassen und durch Regelverzögerungen kurzzeitig einen Spannungsüberschwinger mit Dauer x bewirken, welcher an der Last die Überspannungsabschaltung OVP oder das Spannungs-Event OVD auslösen kann, wenn diese entsprechend knapp eingestellt sind

Bei Auftreten eines Gerätealarms wird üblicherweise zunächst der DC-Eingang ausgeschaltet, eine Meldung in der Mitte der Anzeige ausgegeben und, falls aktiviert, ein akustisches Signal generiert, um den Anwender auf den Alarm aufmerksam zu machen. Der Alarm muß zwecks Kenntnisnahme bestätigt werden. Ist die Ursache des Alarms bei der Bestätigung bereits nichts mehr vorhanden, weil z. B. das Gerät nach einer Überhitzungsphase bereits abgekühlt ist, wird der Alarm nicht weiterhin angezeigt. Ist die Ursache noch vorhanden, bleibt die Anzeige bestehen und weist den Anwender auf den Zustand hin. Sie muß dann, nach Verschwinden bzw. Beseitigung der Ursache, erneut bestätigt werden.

So bestätigen Sie einen Alarm in der Anzeige (während manueller Bedienung)

- 1. Wenn in der Anzeige ein Alarm angezeigt wird als überlagernde Meldung, dann mit OK.
- 2. Wenn der Alarm bereits einmal mit OK bestätigt wurde, aber noch angezeigt wird im Statusfeld, dann zuerst auf das Statusfeld tippen, damit die überlagernde Meldung erneut eingeblendet wird und dann mit **OK**.

Zum Bestätigen von Alarmen während analoger Fernsteuerung siehe *"3.5.4.3. Quittieren von Alarmmeldungen"* bzw. bei digitaler Fernsteuerung siehe externe Dokumentation *"Programming ModBus & SCPI"*.

Manche Gerätealarme, genauer deren Auslöseschwellen können konfiguriert werden:

Alarm	Bedeutung	Beschreibung	Einstellbereich	Meldeorte
OVP	OverVoltage Protection	Überspannungsschutz. Löst einen Alarm aus, wenn die Eingangsspannung am DC-Eingang die eingestellte Schwelle erreicht. Außerdem wird der DC-Eingang ausgeschaltet.	0 V1,03*U _{Nenn}	Anzeige, Analogschnittst., digitale Schnitt- stellen
ОСР	OverCurrent Protection	Überstromschutz. Löst einen Alarm aus, wenn der Eingangsstrom am DC-Eingang die eingestellte Schwelle erreicht. Außerdem wird der DC-Eingang ausgeschaltet.	0 A1,1*I _{Nenn}	Anzeige, Analogschnittst., digitale Schnitt- stellen
OPP	OverPower Protection	Überleistungsschutz. Löst einen Alarm aus, wenn die Eingangsleistung am DC-Eingang die eingestellte Schwelle erreicht. Außerdem wird der DC-Eingang ausgeschaltet.	0 W1,1*P _{Nenn}	Anzeige, Analogschnittst., digitale Schnitt- stellen

Diese Gerätealarme können nicht konfiguriert werden, da hardwaremäßig bedingt:

Alarm	Bedeutung	Beschreibung	Meldeorte
PF	Power Fail	Netzunter- oder überspannung. Löst einen Alarm aus, wenn die AC- Versorgung außerhalb der Spezifikationen des Gerätes arbeiten sollte (Spannung/Frequenz) oder wenn das Gerät von der AC-Versorgung getrennt wird, z. B. durch Ausschalten am Netzschalter. Außerdem wird der DC-Eingang ausgeschaltet.	Anzeige, Analogschnittst., digitale Schnitt- stellen
от	O ver T empe- rature	Übertemperatur. Löst einen Alarm aus, wenn die Innentemperatur des Gerätes eine bestimmte Schwelle überschreitet. Außerdem wird der DC-Eingang ausgeschaltet.	Anzeige, Analogschnittst., digitale Schnitt- stellen
MSS	Master-Slave Sicherheits- modus	Wird ausgelöst, wenn der Master in einem initialisierten Master-Slave- Verbund den Kontakt zu einem oder mehreren Slaves verliert bzw. ein Slave noch nicht initialisiert wurde. Außerdem wird der DC-Eingang aller Geräte ausgeschaltet. Der Alarm kann durch erneute Initialisierung des MS-System oder Deaktivierung von MS gelöscht werden.	Anzeige, digitale Schnitt-stellen

► So konfigurieren Sie die Gerätealarme

- 1. Bei ausgeschaltetem DC-Eingang tippen Sie in der Hauptanzeige auf das Bedienfeld **SETTINGS**
- 2. Tippen Sie auf der rechten Seite auf die dreieckigen Pfeile, um "2. Protect." auszuwählen.
- **3.** Stellen Sie hier die Grenzen für die Gerätealarme gemäß Ihrer Anwendung ein, falls die Standardwerte von 103% bzw. 110% nicht passen.

Die Einstellwerte können auch direkt über eine Zehnertastatur eingegeben werden, die über das Zehnertastatur-Symbol unten am Bildschirmrand aufgerufen werden kann.

Der Anwender hat außerdem die Möglichkeit zu wählen, ob er eine zusätzliche akustische Meldung bekommen möchte, wenn ein Alarm oder benutzerdefiniertes Ereignis (Event) auftritt.

► So konfigurieren Sie den "Alarmton" (siehe auch "3.4.3 Konfiguration im MENU" ab Seite 44)

- 1. Bei ausgeschaltetem DC-Eingang tippen Sie in der Hauptanzeige auf das Bedienfeld MENU
- 2. In der Menüseite das Feld "HMI Einstellungen" berühren.
- **3.** In der nächsten Menüseite das Feld "**Alarmton**" berühren.
- **4.** In der Einstellungsseite tippen Sie auf das Symbol, um den Alarmton entweder ein- oder auszuschalten und bestätigen dann mit

3.6.2.1 Benutzerdefinierbare Ereignisse (Events)

Die Überwachungsfunktion des Gerätes kann über benutzerdefinierbare Ereignisse, nachfolgend Events genannt, konfiguriert werden. Standardmäßig sind die Events deaktiviert (Aktion: KEINE) und funktionieren im Gegensatz zu Gerätealarmen <u>nur solange der DC-Eingang eingeschaltet ist</u>. Das bedeutet, zum Beispiel, daß kein Unterstrom mehr erfaßt würde, nachdem der DC-Eingang ausgeschaltet wurde und der Strom sofort auf Null fällt.

Folgende Events können unabhängig voneinander und jeweils mit Aktion KEINE, SIGNAL, WARNUNG oder ALARM (für die Definition siehe *3.6.2*) konfiguriert werden:

Ereignis	Bedeutung	Beschreibung	Einstellbereich
UVD	UnderVoltage Detection	Unterspannungserkennung. Löst das Ereignis aus, wenn die Eingangsspannung am DC-Eingang die eingestellte Schwelle unterschreitet.	0 VU _{Nenn}
OVD	OverVoltage Detection	Überspannungserkennung. Löst das Ereignis aus, wenn die Eingangsspannung am DC-Eingang die eingestellte Schwelle überschreitet.	0 VU _{Nenn}
UCD	UnderCurrent Detection	Unterstromerkennung. Löst das Ereignis aus, wenn der Eingangsstrom am DC-Eingang die eingestellte Schwelle unterschreitet.	0 A…I _{Nenn}
OCD	OverCurrent Detection	Überstromerkennung. Löst das Ereignis aus, wenn der Eingangsstrom am DC-Eingang die eingestellte Schwelle überschreitet.	0 A…I _{Nenn}
OPD	OverPower Detection	Überleistungserkennung. Löst das Ereignis aus, wenn die Eingangsleistung am DC-Eingang die eingestellte Schwelle überschreitet.	0 WP _{Nenn}

Diese Events sind nicht zu verwechseln mit Alarmen wie OT und PF, die zum Schutz des Gerätes dienen. Events können, wenn auf Aktion ALARM gestellt, aber auch den DC-Eingang ausschalten und somit die Quelle (Netzgerät, Batterie) schützen.

So konfigurieren Sie die Events:

- 1. Bei ausgeschaltetem DC-Eingang tippen Sie in der Hauptanzeige auf das Bedienfeld **SETTINGS**
- um "**4.1 Event U**" oder
- **3.** Stellen Sie hier mit dem linken Drehknopf die Überwachungsgrenze sowie mit dem rechten Drehknopf die von dem Ereignis auszulösende Aktion (siehe *"3.6.1. Begriffsdefinition"*) gemäß der Anwendung ein.
- 4. Übernehmen Sie die Einstellungen mit

Sobald ein Ereignis durch Setzen der Aktion auf eine Einstellung anders als KEINE und Übernehmen der Einstellungen aktiviert wurde, kann das Event auftreten, egal ob der DC-Eingang eingeschaltet ist oder nicht. Wenn man durch das Verlassen der Menüseite "**Nutzer Events**" bzw. "**Settings**" auf die Hauptanzeige zurückkehrt, könnte direkt ein "**Event**" angezeigt werden.

Die Events sind Bestandteil des momentan gewählten Benutzerprofils. Wenn also ein anderes Benutzerprofil oder das Standardprofil geladen wird, sind die Events entweder anders oder gar nicht konfiguriert.

Die Einstellwerte können auch direkt über eine Zehnertastatur eingegeben werden, die über das Zehnertastatur-Symbol unten am Bildschirmrand aufgerufen werden kann.

3.7 Bedieneinheit (HMI) sperren

Um bei manueller Bedienung die versehentliche Verstellung eines Wertes zu verhindern, können die Drehknöpfe sowie der Touchscreen gesperrt werden, so daß keine Verstellung eines Wertes per Drehknopf oder Bedienung per Touchscreen angenommen wird, ohne die Sperre vorher wieder aufzuheben.

► So sperren Sie das HMI

1. Tippen Sie auf der Hauptanzeige oben rechts auf das Schloßsymbol

A

- Es erscheint die Menüseite "HMI Sperre", wo Sie festlegen können, ob Sie das HMI komplett ("Alles sperren") oder mit Ausnahme der Taste "On/Off" ("EIN/ AUS zulassen") sperren möchten bzw. ob die Sperre zusätzlich mit einer PIN belegt werden soll ("PIN aktivieren"). Diese PIN muß später beim Entsperren immer wieder eingegeben werden, solange sie aktiviert ist.
- Aktivieren Sie die Sperre mit].

Der Status "Gesperrt" wird dann wie rechts im Bild angezeigt.

Sobald bei gesperrtem HMI der Versuch unternommen wird etwas zu verändern, erscheint in der Anzeige eine Abfragemeldung, ob man entsperren möchte.

So entsperren Sie das HMI

- 1. Tippen Sie in irgendeinen Bereich des Bildschirmoberfläche des gesperrten HMI oder betätigen Sie einen der Drehknöpfe oder betätigen Sie den Taster "On/Off" (nur bei kompletter Sperre).
- 2. Es erscheint eine Abfrage:
- Entsperren Sie das HMI mittels des Bedienfeldes "Entsperren". Erfolgt innerhalb von 5 Sekunden keine Eingabe, wird die Abfrage wieder ausgeblendet und das HMI bleibt weiterhin gesperrt. Sollte die zusätzliche PIN-Sperre (siehe Menü "HMI Sperre") aktiviert worden sein, erscheint eine weitere Abfrage zur Eingabe der PIN. Sofern diese richtig eingegeben wurde, wird das HMI entsperrt werden.

3.8 Einstellgrenzen (Limits) sperren

Um zu verhindern, daß die mit dem Gerät arbeitende, jedoch nicht privilegierte Person durch versehentliches oder absichtliches Verstellen zu hohe Sollwerten setzt, können Einstellgrenzen definiert (siehe auch "3.4.4. *Einstellgrenzen ("Limits")"*) und mittels einer PIN gegen Veränderung gesperrt werden. Dadurch werden die Menüpunkte "**3. Limits"** in SETTINGS und "**Profile**" in MENU unzugänglich. Die Sperre läßt sich nur durch Eingabe der korrekten PIN oder Zurücksetzen des Gerätes wieder entfernen.

► So sperren Sie die "Limits"

- 1. Bei ausgeschaltetem DC-Eingang tippen Sie auf der Hauptanzeige auf das Bedienfeld MENU
- 2. Tippen Sie im Menü auf "Limits Sperre".
- 3. Im nächsten Fenster setzen Sie den Haken bei "Sperren".

Für die Sperre wird die Benutzer-PIN verwendet, die auch für die HMI-Sperre dient. Diese PIN sollte vor der Limits-Sperre gesetzt werden. Siehe dazu "3.7. Bedieneinheit (HMI) sperren".

4. Aktivieren Sie die Sperre mit

Vorsicht! Aktivieren Sie die Sperre nicht, wenn Sie sich nicht sicher sind, welche die aktuell gesetzte PIN ist bzw. ändern Sie diese vorher! Die PIN kann im Menü "HMI Sperre" gesetzt werden.

So entsperren Sie die "Limits"

- 1. Bei ausgeschaltetem DC-Eingang tippen Sie auf der Hauptanzeige auf das Bedienfeld MENU
- 2. Tippen Sie im Menü auf "Limits Sperre".
- **3.** Auf der folgenden Seite betätigen Sie das Bedienfeld "**Entsperren**" und werden dann aufgefordert, die vierstellige PIN einzugeben.
- **4.** Deaktivieren Sie die Sperre nach der Eingabe der korrekten PIN mit ENTER.

3.9 Nutzerprofile laden und speichern

Das Menü "Profile" dient zur Auswahl eines Profils zum Laden bzw. zum Wechsel zwischen einem Standardprofil und 5 Nutzerprofilen. Ein Profil ist eine Sammlung aller Einstellungen und aller Sollwerte. Bei Auslieferung des Gerätes bzw. nach einem Zurücksetzungsvorgang haben alle sechs Profile dieselben Einstellungen und sämtliche Sollwerte sind auf 0. Werden vom Anwender dann Einstellungen getroffen und Werte verändert, so geschieht das in einem Arbeitsprofil, das auch über das Ausschalten hinweg gespeichert wird. Dieses Arbeitsprofil kann in eins der fünf Nutzerprofile gespeichert bzw. aus diesen fünf Nutzerprofilen oder aus dem Standardprofil heraus geladen werden. Das Standardprofil selbst kann nur geladen werden.

Der Sinn von Profilen ist es, z. B. einen Satz von Sollwerten, Einstellgrenzen und Überwachungsgrenzen schnell zu laden, ohne diese alle jeweils immer neu einstellen zu müssen. Da sämtliche Einstellungen zum HMI mit im Profil gespeichert werden, also auch die Sprache, wäre beim Wechsel von einem Profil zum anderen auch ein Wechsel der Sprache des HMI möglich.

Bei Aufruf der Profilmenüseite und Auswahl eines Profil können dessen wichtigsten Einstellungen, wie Sollwerte, Einstellgrenzen usw. betrachtet, aber nicht verstellt werden.

So speichern Sie die aktuellen Werte und Einstellungen (Arbeitsprofil) in ein Nutzerprofil

- 1. Bei ausgeschaltetem DC-Eingang tippen Sie in der Hauptanzeige auf das Bedienfeld MENU
- 2. Tippen Sie dann in der Hauptmenüseite auf
- 3. In der nun erscheinenden Auswahl (siehe rechts) wählen Sie zwischen Nutzerprofil 1-5 aus, in welches Sie speichern wollen. Das gewählte Nutzerprofil wird daraufhin angezeigt. Sie können hier die Einstellungen und Werte noch einmal kontrollieren, jedoch nicht verändern.

4. Speichern Sie mit Bedienfeld

3.10 Der Funktionsgenerator

3.10.1 Einleitung

Der eingebaute **Funktionsgenerator** (kurz: **FG**) ist in der Lage, verschiedenförmige Signalformen zu erzeugen und diese auf entweder die Spannung (U) oder den Eingangsstrom (I) anzuwenden.

Die Standard-Funktionen basieren auf einem variablen **Arbiträrgenerator.** Bei manueller Bedienung können die Funktionen einzeln ausgewählt, konfiguriert und bedient werden. Bei Fernsteuerung werden diese dann durch mehrere Sequenzen mit jeweils 8 Parametern konfiguriert und umgesetzt. Manche Anzeigewerte von der manuellen Bedienung sind in Fernsteuerung nicht direkt verfügbar, sondern nur durch Auslesen anderer Werte und Berechnung.

Weitere Funktionen, wie z. B. UI oder IU, basieren auf einer 4096-Werte-Tabelle als **XY-Funktion**. **Batterietest** und **MPP-Tracking** wiederum sind rein softwarebasierte Funktionen.

Es sind folgende Funktionen manuell aufruf-, konfigurier- und steuerbar:

Funktion	Kurzerläuterung
Sinus	Sinus-Signalgenerierung mit einstellbarer Amplitude, Offset und Frequenz
Dreieck	Dreieck-Signalgenerierung mit einstellbarer Amplitude, Offset, Anstiegs- und Abfallzeit
Rechteck	Rechteck-Signalgenerierung mit einstellbarer Amplitude, Offset und Puls-Pausen-Verhältnis
Trapez	Trapez-Signalgenerierung mit einstellbarer Amplitude, Offset, Anstiegszeit, Pulszeit, Abfallzeit, Pausenzeit
DIN 40839	Emulierte KFZ-Motorstartkurve nach DIN 40839 / EN ISO 7637, unterteilt in 5 Kurvensegmente mit jeweils Startspannung, Endspannung und Zeit
Arbiträr	Generierung eines Ablaufs von bis zu 99 beliebig konfigurierbaren Kurvenpunkten mit jeweils Startwert (AC/DC), Endwert (AC/DC), Startfrequenz, Endfrequenz, Phasenwinkel und Gesamt- dauer
Rampe	Generierung einer linear ansteigenden oder abfallenden Rampe mit Startwert, Endwert, Zeit vor und nach der Rampe
UI-IU	Von USB-Stick ladbare Tabelle (CSV) mit Werten für U oder I
Batterietest	Batterie-Entladung mit konstantem oder gepulstem Strom, sowie Zeit-, Ah- und Wh-Messung
MPP-Tracking	Simulation des Lastverhaltens eines Solarwechselrichters an einer typischen Quelle (z. B. So- larpaneel) und dessen sog. Tracking-Funktion beim Finden des Maximum Power Point (MPP)

3.10.2 Allgemeines

3.10.2.1 Einschränkungen

Der Funktionsgenerator, egal ob manuelle Bedienung oder Fernsteuerung, ist nicht verfügbar, wenn

• der Widerstandsmodus (R/I-Einstellung, auch UIR-Modus genannt) aktiviert wurde.

3.10.2.2 Auflösung

Bei den Funktionen, die vom Arbiträrgenerator erzeugt werden, kann das Gerät zwischen 0...100% Sollwert max. 52428 Schritte berechnen und setzen. Bei sehr geringen Amplituden und langen Zeiten werden während eines Werteanstiegs oder -abfalls u. U. nur wenige oder gar keine sich ändernden Werte berechnet und deshalb nacheinander mehrere gleiche Werte gesetzt, was zu einem gewissen Treppeneffekt führen kann. Es sind auch nicht alle möglichen Kombinationen von Zeit und einer veränderlichen Amplitude (Steigung) machbar.

Beim XY-Generator, der im Tabellenmodus arbeitet, sind zwischen 0 und 100% Sollwert 3276 effektive Schritte möglich.

3.10.2.3 Minimale Steigung / Max. Zeit für Rampen

Bei Verwendung eines ansteigenden oder abfallenden Offsets (DC-Anteil) bei Funktionen wie Rampe, Trapez, Dreieck, aber auch Sinus muß eine minimale Steigung eingehalten werden, die sich aus dem jeweiligen Nennwert von U oder I berechnen läßt. Dadurch läßt sich schon vorher bewerten, ob eine gewisse Rampe über eine gewisse Zeit überhaupt machbar ist. Beispiel: es wird eine EL 9080-170 B verwendet, mit Nennwert U von 80 V und Nennwert I von 170 A. **Formel: min. Steigung = 0,000725 * Nennwert / s.** Für das Beispielgerät ergibt sich also eine min. $\Delta U/\Delta t$ von 58 mV/s, die min. $\Delta I/\Delta t$ beim Strom dann 12 mA/s. Die max. erreichbare Zeit bei der min. Steigung errechnet sich dann als t_{Max} = Nennwert / min. Steigung. Das ergibt immer ca. 1379 Sekunden.

3.10.3 Arbeitsweise

Zum Verständnis, wie der Funktionsgenerator arbeitet und wie die eingestellten Werte aufeinander einwirken, muß folgendes beachtet werden:

Das Gerät arbeitet auch im Funktionsgeneratormodus stets mit den drei Sollwerten U, I und P.

Auf <u>einen</u> der Sollwerte, U oder I, kann die gewählte Funktion angewendet werden, die anderen beiden Sollwerte sind dann konstant und wirken begrenzend. Das bedeutet, wenn man beispielsweise eine Spannung von 10 V am DC-Eingang anlegt und die Sinus-Funktion auf den Strom anwenden will und als Amplitude 20 A festgelegt hat mit Offset 20 A, so daß der Funktionsgenerator einen Sinusverlauf der Stromes zwischen 0 A (min.) und 40 A (max.) erzeugt, daß das eine Eingangsleistung zwischen 0 W(min.) und 400 W(max.) zur Folge hätte. Die Leistung wird aber stets auf den eingestellten Wert begrenzt. Würde sie nun auf 300 W begrenzt, würde der Strom rechnerisch auf 30 A begrenzt sein und würde man ihn über eine Stromzange auf einem Oszilloskop darstellen, würde er bei 30 A gekappt werden und nie die gewollten 40 A erreichen.

Ein anderer Fall ist, wenn man mit Funktionen arbeitet, die auf die Eingangsspannung angewendet werden. Stellt man hier die allgemeine Spannung U höher als Amplitude plus möglicher Offset zusammen ergeben, ergibt sich beim Starten der Funktion kein Reaktion, weil die Spannungseinstellung nach unten hin begrenzt, nicht nach oben hin wie beim Strom oder bei der Leistung. Die richtige Einstellung der jeweils anderen Sollwerte ist daher sehr wichtig.

3.10.4 Manuelle Bedienung

3.10.4.1 Auswahl und Steuerung einer Funktion

Über den Touchscreen kann eine der in *3.10.1* genannten Funktionen aufgerufen werden, konfiguriert und gesteuert werden. Auswahl und Konfiguration sind nur bei ausgeschaltetem Eingang möglich.

So wählen Sie eine Funktion aus und stellen Parameter ein

1. Tippen Sie bei ausgeschaltetem DC-Eingang auf das Bedienfeld

2. In der Menüübersicht tippen Sie auf Funkt. Generator und dann auf die gewünschte Funktion bzw. Ein für die zweite Auswahlseite.

Das Bedienfeld "Funkt. Generator" ist bei aktiviertem R-Modus (Innenwiderstand) gesperrt.

- **3.** Je nach gewählter Funktion kommt noch eine Abfrage, auf welchen Sollwert man die Funktion anwenden möchte: U oder bzw. beim Batterietest, auf welchen Testmodus'.
- **4.** Stellen Sie nun die Werte wie gewünscht ein, z. B. für eine Sinuskurve den Offset und die Amplitude, sowie Frequenz.

Werden Werte für den AC-Teil der Funktion eingestellt und Start- und Endwert sind nicht gleich, wird eine gewisse Mindeständerung ($\Delta U/\Delta t$) erwartet. Erfüllen die eingestellten Werte die Bedingung nicht, nimmt sie der Funktionsgenerator nicht an und zeigt eine entsprechende Fehlermeldung.

5. Legen Sie dann noch die Grenzwerte für U, I und P im Bildschirm fest, den Sie mit

Diese Grenzwerte sind bei Eintritt in den Funktionsgenerator-Modus zunächst auf unproblematische generelle Werte zurückgesetzt, die verhindern können, daß das Gerät Strom aufnimmt, wenn sie nicht entsprechend angepaßt werden.

Die Einstellungen der einzelnen Funktionen sind weiter unten beschrieben. Nachdem die Einstellungen getroffen wurden, muß die Funktion geladen werden.

EL 9000 B Serie

So laden Sie eine Funktion

1. Nachdem Sie die Werte für das zu generierende Signal eingestellt haben, tippen Sie auf

Das Gerät lädt daraufhin die Daten in die internen Regelung und wechselt die Anzeige. Kurz danach wird der statische Wert gesetzt, der DC-Eingang eingeschaltet und das START Bedienfeld freigegeben. Erst danach kann die Funktion gestartet werden.

Die statischen Werte wirken sofort nach dem Laden der Funktion auf die Last, weil der DC-Eingang automatisch eingeschaltet wird, um die Ausgangssituation herzustellen. Diese Werte stellen die Startwerte vor dem Ablauf der Funktion und die Endwerte nach dem Ablauf der Funktion dar. Einzige Ausnahme: bei Anwendung einer Funktion auf den Strom I kann kein statischer Stromwert eingestellt werden; die Funktion startet immer bei 0 A.

So starten und stoppen Sie eine Funktion

- 1. Sie können die Funktion starten, indem Sie entweder auf das Bedienfeld START tippen oder die Taste "On/Off" betätigen, sofern der Eingang momentan aus ist. Die Funktion startet dann sofort. Sollte der DC-Eingang bei Betätigung von START ausgeschaltet sein, wird er automatisch eingeschaltet.
- 2. Stoppen können Sie die Funktion entweder mit dem Bedienfeld STOP oder der Taste "On/Off", jedoch gibt es hier einen Unterschied:

a) Bedienfeld STOP : Funktion stoppt lediglich, der DC-Eingang bleibt an mit dem statischen Wert b) Taste "On/Off": Funktion stoppt und der DC-Eingang wird ausgeschaltet

Bei Gerätealarmen (Überspannung, Übertemperatur usw.) oder Schutzfunktionen (OPP, OCP) oder Events mit Aktion= Alarm stoppt der Funktionsablauf automatisch, der DC-Eingang wird ausgeschaltet und der Alarm in der Anzeige gemeldet.

3.10.5 **Sinus-Funktion**

Folgende Parameter können für die Sinus-Funktion konfiguriert werden:

Wert	Einstellbereich	Erläuterung
I(A), U(A)	0(Nennwert - (Offs)) von U, I	A = Amplitude des zu generierenden Signals
I(Offs), U(Offs)	(A)(Nennwert - (A)) von U, I	Offs = Offset, bezogen auf den Nulldurchgang der mathemati- schen Sinuskurve, kann niemals kleiner sein als die Amplitude
f (1/t)	110000 Hz	Statische Frequenz des zu generierenden Sinussignals

Bildliche Darstellung:

Anwendung und Resultat:

Es wird ein normal sinusförmiges Signal erzeugt und auf den gewählten Sollwert, zum Beispiel Strom (I), angewendet. Bei konstanter Eingangsspannung würde der Eingangsstrom der Last dann sinusförmig verlaufen.

Für die Berechnung der sich aus dem Verlauf maximal ergebenden Leistung muß die eingestellte Stromamplitude zunächst mit dem Offset addiert werden.

Beispiel: Sie stellen bei einer Eingangsspannung von 15 V und sin(I) die Amplitude auf 25 A ein, bei einem Offset von 30 A. Die sich ergebende max. Leistung bei Erreichen des höchsten Punktes der Sinuskurve wäre dann (30 A + 25 A) * 15 V = 825 W.

3.10.6 Dreieck-Funktion

Folgende Parameter können für die Dreieck-Funktion konfiguriert werden:

Wert	Einstellbereich	Erläuterung
I(A), U(A)	0(Nennwert - (Offs)) von U, I	A = Amplitude des zu generierenden Signals
I(Offs), U(Offs)	0(Nennwert - (A)) von U, I	Offs = Offset, bezogen auf den Fußpunkt des Dreiecks
t1	0,01 ms36000 s	Anstiegszeit der ansteigenden Flanke des Dreiecksignals
t2	0,01 ms36000 s	Abfallzeit der abfallenden Flanke des Dreiecksignals

Bildliche Darstellung:

Anwendung und Resultat:

Es wird ein dreieckförmiges Signal für den Eingangsstrom (direkt) oder die Eingangsspannung (indirekt) erzeugt. Die Zeiten der ansteigenden und abfallenden Flanken sind variabel und unterschiedlich einstellbar.

Der Offset verschiebt das Signal auf der Y-Achse.

Die Summe der Zeiten t1 und t2 ergibt die Periodendauer und deren Kehrwert eine Frequenz.

Wollte man beispielsweise eine Frequenz von 10 Hz erreichen, ergäbe sich bei T = 1/f eine Periode von 100 ms. Diese 100 ms kann man nun beliebig auf t1 und t2 aufteilen. Zum Beispiel, mit 50 ms:50 ms (gleichschenkliges Dreieck) oder 99,9 ms:0,1 ms (Dreieck mit rechtem Winkel, auch Sägezahn genannt).

3.10.7 Rechteck-Funktion

Folgende Parameter können für die Rechteck-Funktion konfiguriert werden:

Wert	Einstellbereich	Erläuterung
I(A), U(A)	0(Nennwert - (Offs)) von U, I	A = Amplitude des zu generierenden Signals
I(Offs), U(Offs)	0(Nennwert - (A)) von U, I	Offs = Offset, bezogen auf den Fußpunkt des Rechtecks
t1	0,01 ms36000 s	Zeit (Puls) des oberen Wertes (Amplitude) des Rechtecksignals
t2	0,01 ms36000 s	Zeit (Pause) des unteren Wertes (Offset) des Rechtecksignals

Bildliche Darstellung:

Anwendung und Resultat:

Es wird ein rechteckförmiges Signal für den Eingangsstrom (direkt) oder die Eingangsspannung (indirekt)erzeugt. Die Zeiten t1 und t2 bestimmen dabei, wie lang jeweils der Wert der Amplitude (zugehörig zu t1) und der Pause (Amplitude = 0, nur Offset effektiv, zugehörig zu t2) wirkt.

Der Offset verschiebt das Signal auf der Y-Achse.

Mit den Zeiten t1 und t2 ist das sogenannte Puls-Pausen-Verhältnis oder Tastverhältnis (engl. *duty cycle*) einstellbar. Die Summe der Zeiten t1 und t2 ergibt die Periodendauer und deren Kehrwert eine Frequenz.

Wollte man beispielsweise ein Rechtecksignal auf den Strom mit 25 Hz und einem Duty cycle von 80% erreichen, müßte die Summe von t1 und t2, also die Periode, mit T = 1/f = 1/25 Hz = 40 ms berechnet werden. Für den Puls ergäben sich dann bei 80% Duty cycle t1 = 40 ms*0,8 = 32 ms. Die Zeit t2 wäre dann mit 8 ms zu setzen.
3.10.8 Trapez-Funktion

Folgende Parameter können für die Trapez-Funktion konfiguriert werden:

Wert	Einstellbereich	Erläuterung
I(A), U(A)	0(Nennwert - (Offs)) von U, I	A = Amplitude des zu generierenden Signals
I(Offs), U(Offs)	0(Nennwert - (A)) von U, I	Offs = Offset, bezogen auf den Fußpunkt des Trapezes
t1	0,01 ms36000 s	Zeit der ansteigenden Flanke des Trapezsignals
t2	0,01 ms36000 s	Zeit des High-Wertes (Haltezeit) des Trapezsignals
t3	0,01 ms36000 s	Zeit der abfallenden Flanke des Trapezsignals
t4	0,01 ms36000 s	Zeit des Low-Wertes (Offset) des Trapezsignals

Bildliche Darstellung:

Anwendung und Resultat:

Hiermit kann ein trapezförmiges Signal auf einen der Sollwerte U oder I angewendet werden. Bei dem Trapez können die Winkel unterschiedlich sein durch die getrennt einstellbaren Anstiegs- und Abfallzeiten.

Hier bilden sich die Periodendauer und Wiederholfrequenz aus vier Zeiten. Bei entsprechenden Einstellungen ergibt sich statt eines Trapezes ein Dreieck oder ein Rechteck. Diese Funktion ist somit recht universal.

Bei sehr kurzen Zeitwerten für t1 kann am DC-Eingang nicht jede mögliche Amplitude erreicht werden. Generell gilt: je kleiner die Zeiteinstellung, desto kleiner die tatsächlich erreichbare Amplitude.

3.10.9 DIN 40839-Funktion

Diese Funktion ist an den durch DIN 40839 / EN ISO 7637 definierten Kurvenverlauf (Prüfimpuls 4) angelehnt und wird nur auf die Spannung angewendet. Sie soll den Verlauf der Autobatterie-Spannung beim Start eines Automotors nachbilden. Die Kurve ist in 5 Segmente bzw. Sequenzpunkte eingeteilt (siehe Abbildung unten), die jeweils die gleichen Parameter haben. Die Standardwerte aus der Norm sind für die fünf Sequenzpunkte bereits als Standardwert eingetragen. Folgende Parameter können für die DIN 40839 Funktion konfiguriert werden:

Wert	Einstellbereich	Seq.	Erläuterung
Ustart	0Nennwert von U	1-5	Anfangsspannungswert einer Rampe
Uend	0Nennwert von U	1-5	Endspannungswert einer Rampe
Seq.Zeit	0,1 ms36000 s	1-5	Zeit für die abfallende oder ansteigende Rampe
Seq.Zyklen	∞ oder 1999	-	Anzahl der Abläufe der Kurve
Zeit t1	0,01 ms36000 s	-	Zeit nach Ablauf der Kurve, bevor wiederholt wird (Zyklen <> 1)

Bildliche Darstellung:

Anwendung und Resultat:

Die Funktion eignet sich für den Betrieb der elektronischen Last im Verbund mit einem Netzgerät, das diese Kurve nicht selbst generieren kann und nur eine statische Spannung liefern würde. Dabei sorgt die Last als Senke für den schnellen Abfall der Ausgangsspannung des Netzgerätes, damit der Ausgangsspannungsverlauf der DIN-Kurve entspricht. Voraussetzung ist nur, daß das Netzgerät strombegrenzt ist.

Die Kurve entspricht dem Prüfimpuls 4 der Norm. Bei entsprechender Einstellung können auch andere Prüfimpulse nachgebildet werden. Soll die Kurve in Sequenzpunkt 4 einen Sinus enthalten, so müßte sie komplett mit dem Arbiträrgenerator nachgebildet werden.

3.10.10 Arbiträr-Funktion

Die Arbiträr-Funktion (arbiträr = beliebig) bietet dem Anwender einen erweiterten Spielraum. Es sind je 99 Sequenzpunkte für die Zuordnung zum Strom I und der Spannung U verfügbar, die alle mit den gleichen Parametern versehen, aber durch die Werte unterschiedlich konfiguriert werden können, um so komplexe Funktionsabläufe "zusammenzubauen". Von den 99 verfügbaren Sequenzpunkten können beliebig viele nacheinander ablaufen. Das ergibt einen Sequenzpunktblock. Der Block von Sequenzpunkt x bis y beliebig festgelegt werden. Er kann zudem 1...999 mal oder unendlich oft wiederholt werden. Ein Sequenzpunkt oder ein Block wirkt immer entweder auf die Spannung oder den Stro, eine Vermischung der Zuordnung U oder I ist nicht möglich.

Die Arbiträrkurve überlagert einen linearen Verlauf (DC) mit einer Sinuskurve (AC), deren Amplitude und Frequenz zwischen Anfangswert und Endwert ausgebildet werden. Bei Startfrequenz (fs) = Endfrequenz (fe) = 0 Hz sind die AC-Werte unwirksam und es wirkt nur der DC-Anteil. Für jeden Sequenzpunkt ist eine Sequenzzeit gegeben, innerhalb der die AC/DC-Kurve von Start bis Ende generiert wird.

Wert	Einstellbereich	Erläuterung
ls(AC) / Us(AC)	050% Nennwert I oder U	Anfangsamplitude des sinusförmigen Anteils (AC)
le(AC) / Ue(AC)	050% Nennwert I oder U	Endamplitude des sinusförmigen Anteils (AC)
fs(1/T)	0 Hz10000 Hz	Anfangsfrequenz des sinusförmigen Anteils (AC)
fe(1/T)	0 Hz10000 Hz	Endfrequenz des sinusförmigen Anteils (AC)
Winkel	0°359°	Anfangswinkel des sinusförmigen Anteils (AC)
ls(DC) / Us(DC)	Is(AC)(Nennwert von I - Is(AC)) oder Us(AC)(Nennwert von U - Us(AC))	Startwert des DC-Anteils
le(DC) / Ue(DC)	le(AC)(Nennwert von I - le(AC)) oder Ue(AC)(Nennwert von U - Ue(AC))	Endwert des DC-Anteils
Seq.Zeit	0,01 ms36000 s	Zeit des gewählten Sequenzpunkts

Folgende Parameter können für jeden Sequenzpunkt der Arbiträr-Funktion konfiguriert werden:

Die Sequenzpunktzeit (Seq.zeit) und die Startfrequenz/Endfrequenz stehen in Zusammenhang. Es besteht ein minimum Δf /s von 9,3. Also würde z. B. eine Einstellung mit fs = 1 Hz, fe = 11 Hz und Seq.zeit = 5 s nicht akzeptiert, weil das Δf /s dann nur 2 wäre. Bei Seq.Zeit = 1 s paßt es wieder oder man müßte bei Seq.Zeit = 5 s mindestens eine fe = 51 Hz einstellen.

Die Amplitudenänderung zwischen Start und Ende steht im Zusammenhang mit der Sequenzpunktzeit. Man kann nicht eine beliebig kleine Änderung über eine beliebig große Zeit hinweg erzeugen. In so einem Fall lehnt das Gerät unpassende Einstellungen mit einer Meldung ab.

Wenn diese Einstellungen für den gerade gewählten Sequenzpunkt mit Bedienfeld SPEICHERN übernommen werden, können noch weitere konfiguriert werden. Betätigt man im Sequenzpunkt-Auswahlfenster das Bedienfeld WEITER, erscheint das zweite Einstellungsmenü, das globale Einstellungen für alle 99 Punkte enthält.

Folgende Parameter können für den Gesamtablauf der Arbiträr-Funktion konfiguriert werden:

Wert	Einstellbereich	Erläuterung
Startseq.	1Endseq.	Erster Sequenzpunkt des Blocks
Endseq.	Startseq 99	Letzter Sequenzpunkt des Blocks
Seq. Zyklen	∞ oder 1999	Anzahl der Abläufe des Blocks

Bildliche Darstellungen:

Anwendungen und Resultate:

Beispiel 1

Betrachtung 1 Ablaufs 1 Sequenzpunkts von 99:

Die DC-Werte von Start und Ende sind gleich, die AC-Werte (Amplitude) auch. Mit einer Frequenz ungleich Null ergibt sich ein sinusförmiger Verlauf des Sollwertes mit einer bestimmten Amplitude, Frequenz und Y-Verschiebung (Offset, DC-Wert von Start/Ende).

Die Anzahl der Sinusperioden pro Sequenzablauf hängt von der Sequenzpunktzeit und der Frequenz ab. Wäre die Zeit beispielsweise 1 s und die Frequenz 1 Hz, entstünde genau 1 Sinuswelle. Wäre bei gleicher Frequenz die Zeit nur 0,5 s, entstünde nur eine Sinushalbwelle.

Bildliche Darstellungen:

Anwendungen und Resultate:

Beispiel 2

Betrachtung 1 Ablaufs 1 Sequenzpunkts von 99:

Die DC-Werte von Start und Ende sind gleich, die AC-Werte (Amplitude) jedoch nicht. Der Endwert ist größer als der Startwert, daher wird die Amplitude mit jeder neu angefangenen Sinushalbwelle kontinuierlich zwischen Anfang und Ende des Sequenzpunktes größer. Dies wird jedoch nur dann sichtbar, wenn die Sequenzpunktzeit zusammen mit der Frequenz überhaupt zuläßt, daß während des Ablaufs eines Punktes mehrere Sinuswellen erzeugt werden können. Bei f=1 Hz und Seq.Zeit=3 s ergäbe das z. B. drei ganze Wellen (bei Winkel=0°), umgekehrt genauso bei f=3 Hz und Seq.Zeit=1 s.

Beispiel 3

Betrachtung 1 Ablaufs 1 Sequenzpunkts von 99:

Die DC-Werte von Start und Ende sind nicht gleich, die AC-Werte (Amplitude) auch nicht. Der Endwert ist jeweils größer als der Startwert, daher steigt der Offset zwischen Start (DC) und Ende (DC) linear an, ebenso die Amplitude mit jeder neu angefangenen Sinushalbwelle.

Zusätzlich startet die erste Sinuswelle mit der negativen Halbwelle, weil der Winkel auf 180° gesetzt wurde. Der Startwinkel kann zwischen 0° und 359° beliebig in 1°-Schritten verschoben werden.

Beispiel 4

Betrachtung 1 Ablaufs 1 Sequenzpunkts von 99:

Ähnlich Beispiel 1, hier jedoch mit anderer Endfrequenz. Die ist hier größer als die Startfrequenz. Das wirkt sich auf die Periode einer Sinuswelle aus, die mit jeder neu angefangenen Sinuswelle kleiner wird, über den Zeitraum des Sequenzpunktablaufs mit Sequenzpunktzeit x.

Beispiel 5

Betrachtung 1 Ablaufs 1 Sequenzpunkts von 99:

Ähnlich Beispiel 1, jedoch mit einer Start- und Endfrequenz von 0 Hz. Ohne einen Frequenzwert wird kein Sinusanteil (AC) erzeugt und ist es wirkt nur die Einstellung der DC-Werte. Erzeugt wird eine Rampe mit horizontalem Verlauf.

Beispiel 6

Betrachtung 1 Ablaufs 1 Sequenzpunkts von 99:

Ähnlich Beispiel 3, jedoch mit einer Start- und Endfrequenz von 0 Hz. Ohne einen Frequenzwert wird kein Sinusanteil (AC) erzeugt und es wirkt nur die Einstellung der DC-Werte. Diese sind hier bei Start (DC) und Ende (DC) ungleich. Generiert wird eine Rampe mit ansteigendem Verlauf. Durch Aneinanderreihung mehrerer unterschiedlich konfigurierter Sequenzpunkte können komplexe Abläufe erzeugt werden. Dabei kann durch geschickte Konfiguration der Arbiträrgenerator die anderen Funktionen wie Dreieck, Sinus, Rechteck oder Trapez nachbilden und somit z. B. eine Sequenz aus Rechteck-Funktionen mit unterschiedlichen Amplituden bzw. Duty Cycles erzeugen.

Bildliche Darstellungen:

Anwendungen und Resultate:

Beispiel 7

Betrachtung 2er Abläufe 1 Sequenzpunkts von 99:

Ein Sequenzpunkt, konfiguriert wie in Beispiel 3, läuft ab. Da die Einstellungen vorgeben, daß der End-Offset (DC) größer ist als der Start-Offset, springt der Anfangswert des zweiten Ablaufs auf denselben Anfangswert zurück wie beim ersten Ablauf, ganz gleich wo der erzeugte Wert der Sinuswelle am Ende des ersten Ablaufs war. Das erzeugt eine gewisse Verzerrung im Gesamtablauf (rote Markierung), die nur mit entsprechend sorgsam gewählten Einstellwerten kompensiert werden kann.

Beispiel 8

Betrachtung 1 Ablaufs von 2 Sequenzpunkten von 99:

Zwei Sequenzpunkte laufen hintereinander ab. Der erste erzeugt einen sinusförmigen Verlauf mit größer werdender Amplitude, der zweite einen mit kleiner werdender Amplitude. Zusammen ergibt sich der links gezeigte Verlauf. Damit die Sinuswelle mit der höchsten Amplitude in der Mitte der Gesamtkurve nur einmal auftaucht, darf die Start-Amplitude (AC) des zweiten Sequenzpunkts nicht gleich der End-Amplitude (AC) des ersten sein oder der erste müßte mit der positiven Halbwelle enden sowie der zweite mit der negativen beginnen, wie links gezeigt.

Beispiel 9

Betrachtung 1 Ablaufs von 4 Sequenzpunkten von 99:

Punkt 1: 1/4 Sinuswelle (Winkel = 270 °)

Punkt 2: 3 Sinuswellen (Verhältnis Frequenz zu Sequenzpunktzeit 1:3)

Punkt 3: Horizontale Rampe (f = 0)

Punkt 4: Abfallende Rampe (f = 0)

3.10.10.1 Laden und Speichern von Arbiträr-Funktionen

Die manuell am Gerät konfigurierbaren 99 Sequenzpunkte der Arbiträr-Funktion können in Form einer Tabelle über die USB-Schnittstelle auf der Vorderseite des Gerätes auf einen USB-Stick (siehe *1.9.6.5*) gespeichert oder von diesem geladen werden. Dabei gilt, daß beim Speichern immer alle 99 Punkte in eine Textdatei vom Typ CSV gespeichert werden, beim Laden umgekehrt genauso. An die Datei gibt es folgende Anforderungen

- Sie muß genau 99 Zeilen mit jeweils 8 aufeinanderfolgenden Werten enthalten und darf keine Lücken aufweisen
- Die 8 Spalten müssen durch entweder Komma oder Semikolon getrennt sein, abhängig von der Einstellung "USB Trennzeichen-Format" im MENU entspricht (siehe 3.4.3.1)
- Die Datei muß im Ordner HMI_FILES liegen, der im Wurzelverzeichnis (root) des USB-Sticks sein muß
- Der Dateiname muß immer mit WAVE_U oder WAVE_I beginnen (Groß-/Kleinschreibung egal)
- Werte mit Nachkommastellen müssen ein Dezimaltrennzeichen (Punkt oder Komma) haben, das der Einstellung zum Trennzeichenformat "USB Trennzeichen-Format" im MENU entspricht (siehe 3.4.3.1)
- Alle Werte in jeder Spalte und Zeile müssen den Vorgaben entsprechen (siehe unten)
- Die Spalten der Tabelle haben eine bestimmte Reihenfolge, die nicht geändert werden darf

Für die Tabelle mit den 99 Zeilen ist, in Anlehnung der Einstellparameter, die bei der manueller Bedienung für den Arbiträrgenerator festgelegt werden können, folgender Aufbau vorgegeben (Spaltenbenamung wie bei Excel):

Spalte	Parameter	Wertebereich
А	AC Startamplitude	050% U oder I
В	AC Endamplitude	050% U oder I
С	Startfrequenz	010000 Hz
D	Endfrequenz	010000 Hz
E	AC Startwinkel	0359°
F	DC Startoffset	0(Nennwert von U oder I) - Startamplitude AC
G	DC Endoffset	0(Nennwert von U oder I) - Endamplitude AC
Н	Sequenzpunktzeit in µs	1036.000.000.000 (36 Mrd. μs)

Für eine genauere Beschreibung der Parameter und der Arbiträr-Funktion siehe "3.10.10. Arbiträr-Funktion". Beispiel-CSV:

	А	В	С	D	E	F	G	Н
1	20,00	30,00	5	5	90	50,00	50,00	50000000
2	30,00	20,00	5	5	90	50,00	50,00	3000000
3	0,00	0,00	0	0	0	0,00	0,00	1000
4	0,00	0,00	0	0	0	0,00	0,00	1000
5	0,00	0,00	0	0	0	0,00	0,00	1000
6	0,00	0,00	0	0	0	0,00	0,00	1000

In dem Beispiel sind nur die ersten zwei Sequenzpunkte konfiguriert, die anderen stehen alle auf Standardwerten. Die Tabelle könnte für das Modell EL 9080-170 B über eine WAVE_U für die Spannung oder eine WAVE_I für den Strom geladen werden, weil sie für beide paßt. Die Benamung ist jedoch durch einen Filter eindeutig gemacht, das heißt man kann bei Arbiträr --> U gewählt keine WAVE_I laden. Diese würde gar nicht erst aufgelistet.

► So laden Sie eine Sequenzpunkttabelle von einem USB-Stick:

- **1.** Stecken Sie den USB-Stick noch nicht ein bzw. ziehen Sie ihn zunächst heraus.
- Öffnen Sie das Funktionsauswahlmenü des Funktionsgenerators über MENU -> Funkt.Generator -> Arbiträr -> U oder I, um zur Hauptanzeige der Sequenzpunktauswahl zu gelangen, wie rechts gezeigt.

3. Tippen Sie auf Daten Import/Export, dann Von USB Jaden und folgen Sie den Anweisungen. Sofern für den aktuellen Vorgang mindestens eine gültige Datei (siehe Pfad und Dateibenamung oben) gefunden wurde,

wird eine Liste zur Auswahl angezeigt, aus der die zu ladende Datei mit 🗹 ausgewählt werden muß.

4. Tippen Sie unten rechts auf **Von USB ladon**. Die gewählte Datei wird nun überprüft und, sofern in Ordnung, geladen. Bei Formatfehlern wird eine entsprechende Meldung angezeigt. Dann muß die Datei korrigiert und der Vorgang wiederholt werden.

So speichern Sie die Sequenzpunkttabelle vom Gerät auf einen USB-Stick:

- 1. Stecken Sie den USB-Stick noch nicht ein bzw. ziehen Sie ihn zunächst heraus.
- 2. Öffnen Sie das Funktionsauswahlmenü des Funktionsgenerators über MENU -> Funkt.Generator -> Arbiträr -> U/I
- **3.** Tippen Sie auf Daten Import/Export, dann Auf USB stehern. Sie werden aufgefordert, den USB-Stick einzustecken. Das Gerät sucht daraufhin nach dem Ordner HMI_FILES auf dem Speicherstick und nach eventuell schon vorhandenen WAVE_U- bzw. WAVE_I-Dateien und listet gefundene auf. Soll eine vorhandene Datei mit den zu speichernden Daten überschrieben werden, wählen Sie diese mit 💟 aus, ansonsten wählen Sie –NEW FILE–.

4. Speichern dann mit Auf USB sich

3.10.11 Rampen-Funktion

Folgende Parameter können für die Rampen-Funktion konfiguriert werden:

Wert	Einstellbereich	Erläuterung
Ustart / Istart	0Nennwert von U, I	Startwert (U,I)
Uend / lend	0Nennwert von U, I	Endwert (U, I)
t1	0,01 ms36000 s	Zeit vor der ansteigenden Flanke des Rampensignals
t2	0,01 ms36000 s	Anstiegszeit des Rampensignals

Bildliche Darstellung:

Anwendung und Resultat:

Diese Funktion generiert eine ansteigende oder abfallende Rampe zwischen Startwert und Endwert über die Zeit t2. Die andere Zeit t1 dient zur Festlegung einer Verzögerung, bevor die Rampe startet.

Die Funktion läuft einmal ab und bleibt dann am Endwert stehen. Um eine sich wiederholende Rampe zu erreichen, kann die Trapezfunktion benutzt werden (siehe *3.10.8*).

Wichtig ist hier noch die Betrachtung des statischen Wertes, der den Startwert vor dem Beginn der Rampe definiert. Es wird empfohlen, den statischen Wert gleich dem A.start einzustellen, es sei denn, die Quelle soll vor dem Beginn der Rampenzeit t1 noch nicht belastet werden. Hier müßte man dann den statischen Wert auf 0 einstellen.

10h nach Erreichen des Rampen-Endes stoppt die Funktion automatisch (I = 0 A, wenn Stromrampe), sofern sie nicht vorher schon anderweitig gestoppt wurde.

3.10.12 UI- und IU-Tabellenfunktion (XY-Tabelle)

Die UI-Funktion bzw. die IU-Funktion bietet dem Anwender die Möglichkeit, in Abhängigkeit von der DC-Eingangsspannung einen bestimmten DC-Strom bzw. in Abhängigkeit vom DC-Eingangsstrom eine bestimmte DC-Eingangsspannung zu setzen. Dazu muß eine Tabelle geladen werden, die genau 4096 Werte enthält, welche sich auf den gemessenen Eingangsstrom oder die gemessene Eingangsspannung im Bereich 0...125% I_{Nenn} bzw. U_{Nenn} aufteilen. Diese Tabelle kann entweder von einem USB-Stick über die frontseitige USB-Buchse des Gerätes oder per Fernsteuerung (ModBus RTU-Protokoll oder SCPI) in das Gerät geladen und dann angewendet werden. Es gilt:

UI- Funktion: U = f(I)

IU-Funktion: I = f(U)

Bei der **UI-Funktion** ermittelt der Meßkreis des Gerätes den Wert des DC-Eingangsstromes. Zu jedem der 4096 möglichen Meßwerte des Eingangsstromes ist in der UI-Tabelle ein Spannungswert hinterlegt, der vom Anwender beliebig zwischen 0 und Nennwert festgelegt werden kann. Die Werte in der vom USB-Stick geladenen Tabelle werden hier immer als Spannungswerte interpretiert, selbst wenn sie vom Anwender als Stromwerte berechnet und dann fälschlicherweise als UI-Tabelle geladen wurden.

Bei der **IU-Funktion** ist die Zuordnung von Meßwert zum aus der Tabelle entnommenen Wert genau andersherum als bei der UI-Funktion, das Verhalten jedoch das gleiche.

Man könnte somit das Verhalten der Last bzw. die Strom- und Leistungsaufnahme in Abhängigkeit von der Eingangsspannung steuern und Lastsprünge erzeugen.

 Die Werte der Tabelle werden auf korrekte Anzahl und Wertebereich hin untersucht. Würde man alle Werte in einem Diagramm darstellen, ergäbe sich eine bestimmte Kurve, die auch sehr starke Sprünge von Strom oder Spannung vom einem Wert zum nächsten enthalten könnte. Das kann zu Komplikationen bei der Belastung einer Quelle führen, wenn z. B. der interne Spannungsmeßwert der elektronischen Last leicht schwankt und dazu führt, daß die Last ständig zwischen zwei Stromwerten aus der Tabelle hin- und herpendelt, wo im ungünstigsten Fall der eine 0 A ist und der andere Maximalstrom. Daher wird empfohlen, daß aufeinanderfolgende Werte sich möglichst nur gering ändern. 		Beim Laden einer Tabelle vom USB-Stick werden nur Textdateien vom Typ CSV akzeptiert. Die Tabelle wird beim Laden auf Plausibilität überprüft (Werte nicht zu groß, Anzahl der Werte korrekt) und eventuelle Fehler gemeldet und dann die Tabelle nicht geladen.
	Â	Die Werte der Tabelle werden auf korrekte Anzahl und Wertebereich hin untersucht. Würde man alle Werte in einem Diagramm darstellen, ergäbe sich eine bestimmte Kurve, die auch sehr starke Sprünge von Strom oder Spannung vom einem Wert zum nächsten enthalten könnte. Das kann zu Komplikationen bei der Belastung einer Quelle führen, wenn z. B. der interne Spannungsmeßwert der elektronischen Last leicht schwankt und dazu führt, daß die Last ständig zwischen zwei Stromwerten aus der Tabelle hin- und herpendelt, wo im ungünstigsten Fall der eine 0 A ist und der andere Maximalstrom. Daher wird empfohlen, daß aufeinanderfolgende Werte sich möglichst nur gering ändern.

3.10.12.1 Laden von UI- und IU-Tabellen über USB

Die sogenannten UI- oder IU-Tabellen können über die USB-Schnittstelle auf der Vorderseite des Gerätes und einen handelsüblichen USB-Stick (FAT32-formatiert) geladen werden. Um dies tun zu können, muß die zu ladende Datei bestimmten Vorgaben entsprechen:

• Der Dateiname startet immer mit IU oder UI (Groß-/Kleinschreibung egal), jenachdem für welche der beiden Funktionen Sie eine Tabelle laden

- Die Datei muß eine Textdatei vom Typ CSV sein und darf nur eine Spalte mit genau 4096 Werten (ohne Lücken) enthalten
- Keiner der 4096 Werte darf den Nennwert überschreiten, also wenn Sie z. B. ein 80 V-Modell haben und laden eine UI-Tabelle mit Spannungswerten, darf keiner größer als 80 sein (Einstellgrenzen gelten hier nicht)
- Werte mit Nachkommastellen müssen ein Dezimaltrennzeichen haben, das der Wahl des Einstellparameters "USB Trennzeichenformat" entspricht, wo bei Format "Standard" das Spaltentrennzeichen = Semikolon und Dezimaltrennzeichen = Komma ist
- Die Datei muß im Ordner HMI_FILES liegen, der im Wurzelverzeichnis (root) des USB-Sticks sein muß

Werden die oben genannten Bedingungen nicht eingehalten, meldet das Gerät das mittels entsprechender Fehlermeldungen und akzeptiert die Datei nicht. Es ist auch nicht möglich, eine UI-Tabelle zu laden, deren Dateiname mit IU oder anders beginnt, weil die Zuordnung nicht paßt. Ein Stick kann natürlich mehrere UI- oder IU-Tabellen als verschiedentlich benamte Dateien enthalten, aus denen eine ausgewählt werden kann.

So laden Sie eine UI- oder IU-Tabelle von einem USB-Stick:

- 1. Stecken Sie den USB-Stick noch nicht ein bzw. ziehen Sie ihn zunächst heraus.
- **2.** Öffnen Sie das Funktionsauswahlmenü des Funktionsgenerators über MENU -> Funkt.Generator -> XY-Tabelle. Wählen Sie die gewünschte Funktion mit "UI-Tabelle" oder "IU-Tabelle" aus.
- 3. Konfigurieren Sie ggf. noch zusätzliche Grenzen für U, I und P.

- **4.** Betätigen Sie das Bedienfeld von USB Taden und stecken Sie nach Aufforderung den USB-Stick ein, um eine kompatible Datei aus eventuell mehreren auszuwählen
- 5. Falls die Datei nicht akzeptiert wird, entspricht sie nicht den Anforderungen. Dann korrigieren und wiederholen.
- **6.** Wird die Datei akzeptiert und erfolgreich geladen, werden Sie nach dem Laden aufgefordert, den Stick zu entfernen.

um Sie dann zu starten und zu bedienen wie gewohnt (siehe auch

"3.10.4.1. Auswahl und Steuerung einer Funktion").

3.10.13 Batterietest-Funktion

Die Batterietest-Funktion dient zum gezielten Entladen von Batterien unterschiedlicher Art in industriellen Produkttests oder auch in Laboranwendungen. Er wird üblicherweise auf den DC-Eingangsstrom angewendet und kann wahlweise "**Statisch**" (**konstanter Strom**) oder "**Dynamisch**" (**gepulster Strom**) ablaufen. Beim statischen Betrieb können die Einstellwerte für die Leistung und den Widerstand bei entsprechender Konfiguration den Funktionsablauf auch auf Konstantleistung (CP) oder Konstantwiderstand (CR) bringen. Wie beim normalen Betrieb der Last bestimmen die gesetzten Werte, welche Regelungsart (CC, CP oder CR) sich ergibt. So muß bzw. sollte für CP-Betrieb der Strom auf Maximum gestellt und der Widerstandsmodus ausgeschaltet werden. Ebenso müssen bzw. sollten dann für CR-Betrieb die Werte für Strom (I) und Leistung (P) auf Maximum gestellt werden.

Beim dynamischen Modus gibt es auch einen einstellbaren Leistungswert. Dieser kann aber nicht genutzt werden, um den dynamischen Batterietest mit gepulster Leistung ablaufen zu lassen. Zumindest jedoch könnte das Ergebnis anders aussehen als erwartet. Es wird daher empfohlen, diesen Wert immer hoch genug einzustellen, damit er den Test mit gepulstem Strom, d. h. die dynamische Batterietest-Funktion nicht stört.

Was bei trägen Blei-Batterien kaum ein Problem darstellt, bei empfindlichen Lithium-Ionen-Batterien aber ein wichtiges Kriterium ist: die **Reaktionszeit** zwischen Erreichen der Schwelle U-DV und dem Stopp des Test, d. h. Abschalten des DC-Eingangs. Diese ist nicht einstellbar und fast 0, praktisch aber 5-20 Millisekunden. Bei Batterietests mit hohen Pulsströmen könnte es vorkommen, daß die Batteriespannung durch die pulsartige Belastung kurz unter die Schwelle U-DV gelangt und dann sofort abgeschaltet wird. Daher sollt hier die U-DV entsprechend niedriger eingestellt werden.

Grafische Verdeutlichung beider Modi:

3.10.13.1 Parameter für den statischen Batterietest

Folgende Parameter können für die statische Batterietest-Funktion konfiguriert werden:

Wert	Einstellbereich	Erläuterung
I	0Nennwert von I	Maximaler Entladestrom in A
Р	0Nennwert von P	Maximale Entladeleistung in W
R	Minmax. Nennwert von R	Maximaler Entladewiderstand in Ω (kann deaktiviert werden> "AUS")

3.10.13.2 Parameter für den dynamischen Batterietest

Folgende Parameter können für die <u>dynamische</u> Batterietest-Funktion konfiguriert werden:

Wert	Einstellbereich	Erläuterung
I ₁	0Nennwert von I	Unterer bzw. oberer Stromwert für gepulsten Betrieb (der höhere Einstell-
I_2	0Nennwert von I	wert von beiden wird automatisch der obere)
Р	0Nennwert von P	Maximale Entladeleistung in W
t ₁	1 s 36000 s	t1 = Zeit für den oberen Stromwert (Puls)
t ₂	1 s 36000 s	t2 = Zeit für den unteren Stromwert (Pause)

3.10.13.3 Andere Parameter

Diese Parameter sind in beiden Modi verfügbar, jedoch mit separaten Einstellwerten.

Parameter	Einstellbereich	Erläuterung
Entlade-Spannung	0Nennwert von U	Variable Entladeschlußspannung, eine Schwelle, bei deren Unter- schreiten der Test automatisch stoppt (ist verknüpft mit der Batterie- spannung am DC-Eingang der Last)
Entladezeit	010 h	Maximale Testzeit, nach welcher der Test automatisch stoppt
Entlade-Kapazität	099999,99 Ah	Maximal zu entnehmende Batteriekapazität, nach deren Erreichen der Test automatisch stoppen kann
Aktion	KEINE, SIGNAL, Test-Ende	Legt für die Parameter "Entladezeit" und "Entlade-Kapazität" fest, was bei Erreichen der Werte der beiden Parameter geschehen soll: KEINE = Nichts passiert, Test läuft weiter SIGNAL = Der Text "Zeit-Limit" erscheint in der Anzeige, der Test läuft weiter Test-Ende = Der Test stoppt
USB-Logging aktivieren	ein/aus	Aktiviert durch Setzen des Hakens das USB-Logging, das Daten während des Batterietests aufzeichnet, falls ein korrekt formatierter USB-Stick in der frontseitigen USB-Buchse eingesteckt ist. Die hier- über aufgezeichneten Daten haben ein etwas anderes Format als die des "normalen" USB-Logging außerhalb vom Batterietest.
Logging-Intervall	100 ms - 1 s, 5 s, 10 s	Legt den Schreibzyklus für das USB-Logging fest

3.10.13.4 Anzeigewerte

Während der Test läuft zeigt die Anzeige des Gerätes folgende Werte an:

- Aktuelle Batteriespannung in V
- Entladeschlußspannung U_{DV} in V
- Aktueller und gesetzter Entladestrom in A
- Aktuelle und gesetzte Leistung in W
- Entnommene Kapazität in Ah
- Entnommene Energie in Wh
- Testzeit in HH:MM:SS,MS
- Reglerstatus (CC, CP, CR)

3.10.13.5 Datenaufzeichnung

Für beide Modi "Statisch" und "Dynamisch" kann am Ende der Konfiguration das "USB-Logging" aktiviert werden, welches standardmäßig ausgeschaltet ist. Ist es aktiviert und ein USB-Stick mit entsprechender Formatierung (siehe *1.9.6.5*) im USB-Port am Bedienteil gesteckt, zeichnet das Gerät für die Testdauer Meßwerte im festgelegten Intervall auf. Dies wird in der Anzeige durch das Symbol Tarkiert. Die aufgezeichneten Daten liegen nach Beendigung des Tests als Textdatei (CSV-Format) vor.

Aufbau der Logdatei:

	А	В	С	D	E	F	G
1	Static:Uset	Iset	Pset	Rset	DV	DT	DC
2	0,00V	0,00A	1200W	OFF	0,00V	10:00:00	99999,00Ah
3							
4	Uactual	Iactual	Pactual	Ah	Wh	Time	
5	0,34V	0,00A	0W	0,00Ah	0,00Wh	00:00:00,800	
6	0,28V	0,00A	0W	0,00Ah	0,00Wh	00:00:01,800	
7	0,28V	0,00A	0W	0,00Ah	0,00Wh	00:00:02,800	
8	0,28V	0,00A	0W	0,00Ah	0,00Wh	00:00:03,800	

Unabhängig davon wie das Zeitintervall für die Aufzeichnung eingestellt wurde, das Gerät berechnet die beiden Werte "Ah" und "Wh" immer nur einmal pro Sekunde. Bei Intervallzeit < 1 s können somit mehrere gleiche Werte im CSV erscheinen.

3.10.13.6 Abbruchbedingungen

Der Ablauf der Batterietest-Funktion kann gewollt oder ungewollt gestoppt werden durch:

- Manuelle Betätigung des Bedienfeldes STOP in der Anzeige
- Irgendeinen Geräte-Alarm
- Erreichen der eingestellten max. Testzeit, falls dafür Aktion = Test-Ende eingestellt ist
- Erreichen des eingestellten max. Ah-Wertes, falls dafür Aktion = Test-Ende eingestellt ist
- Erreichen der Entladeschlußspannung U_{DV}, egal wodurch verursacht

Nach einem automatischen Stopp, bedingt durch einen der genannten Gründe, kann der Test nicht sofort erneut gestartet oder fortgeführt werden, sondern nur nach erneutem Durchlauf der Konfiguration, welche über Bedienfeld ZURÜCK erreichbar ist.

3.10.14 MPP-Tracking-Funktion

Das MPP im Namen der Funktion steht für "maximum power point", also für den Punkt an dem die Leistung eines Solarpaneels am höchsten ist. Siehe Prinzipdarstellung rechts. Diesen Punkt versuchen sog. Solarwechselrichter durch einen Suchvorgang zu finden und zu halten (engl. "tracking"). Die elektronische Last simuliert dieses Verhalten durch eine Funktion und kann somit dem Test von Solarpaneelen dienen, ohne einen Solarwechselrichter betreiben zu müssen, der aufgrund seines Aufbaus am AC-Ausgang wiederum eine Last bräuchte.

Dabei kann die Last in allen für die Funktion verfügbaren Parametern beliebig variiert werden und zwecks Datenerfassung eine Reihe von Meßwerten herausgeben (nur auslesbar über digitale Schnittstelle). Diese Meßwerte stellen 100 Punkte auf der IU-Kurve dar, auf welcher sich der MPP befindet. Alternativ können auch DC-Eingangswerte wie Strom und Spannung am Gerät auf USB-Stick aufgezeichnet werden. Die Last ist dadurch flexibler einsetzbar als ein Solarwechselrichter, weil dessen DC-Eingangsbereich eingeschränkt ist.

Die MPP-Tracking-Funktion bietet vier Modi zur Auswahl. Die Eingabe von Werten erfolgt hier nur über Direkteingabe per Touchscreen.

MPP-Tracking MPP 1 MPP 2 MPP 3 MPP 4 Uoc: 40.00 V At: 00050 ms Isc: 8.0 A AP: 500 W Esc Filter Filter

Voltage

3.10.14.1 Modus MPP1

Dieser Modus wird auch "MPP finden" genannt. Er ist die einfachste Möglichkeit, ein MPP-Tracking durchzuführen. Benötigt werden dazu nur drei Parameter. Der Wert U_{oc} ist erforderlich, damit das Tracking den MPP schneller finden kann als wenn die Last bei 0 V oder Nennspannung starten würde. Trotzdem startet sie leicht oberhalb des eingegebenen U_{oc} -Wertes. I_{Sc} wiederum dient als obere Grenze für den Strom, weil eine elektronische Last die Spannung nach unten hinten nur begrenzen kann, indem sie den Innenwiderstand verringert und somit den Strom erhöht.

Folgende Parameter können für den Tracking-Modus MPP1 konfiguriert werden:

Wert	Einstellbereich	Erläuterung
U _{oc}	0Nennwert von U	Leerlaufspannung des Solarpanels, an dem die Last angeschlossen ist
I _{sc}	0Nennwert von I	Kurzschlußstrom des Solarpanels, an dem die Last angeschlossen ist
Δt	5 ms60000 ms	Meßintervall für die Erfassung von U und I während der Suche nach dem MPP

Anwendung und Resultat:

Nach Eingabe der drei Parameter kann die Funktion direkt gestartet werden. Sobald der MPP gefunden wurde, stoppt die Funktion mit ausgeschaltetem DC-Eingang und die ermittelten Werte für Strom (I_{MPP}), Spannung (U_{MPP}) und Leistung (P_{MPP}) im MPP werden auf der Anzeige ausgegeben. Die Dauer eines Trackingvorgangs hängt dabei maßgeblich vom Parameter Δt ab. Bei den minimal setzbaren 5 ms ergeben sich aber bereits mehrere Sekunden Suchzeit.

3.10.14.2 Modus MPP2

Dieser Modus simuliert das eigentliche Trackingverhalten eines Solarwechselrichters, indem der Funktionsablauf nach dem Finden des MPP nicht gestoppt, sondern um den MPP herum geregelt wird. Das geschieht, der Natur eines Solarpaneels geschuldet, immer unterhalb des MPP. Nach Erreichen des MPP sinkt die Spannung zunächst und somit auch die Leistung. Der zusätzliche Parameter ΔP definiert, wie weit die Leistung absinken darf, bevor die Richtung der Spannungsänderung wieder umgekehrt und der MPP erneut angefahren wird. Spannung und Strom resultieren dadurch in einem zickzackförmigen Verlauf.

Eine typische Darstellung des Verlaufs ist im Bild rechts zu sehen. Durch einen kleinen ΔP -Wert erscheint die Leistungskurve fast linear. Die Last arbeitet dann immer nah am MPP.

Folgende Parameter können für den Tracking-Modus **MPP2** konfiguriert werden:

Wert	Einstellbereich	Erläuterung
U _{oc}	0Nennwert von U	Leerlaufspannung des Solarpanels, an dem die Last angeschlossen ist
I _{sc}	0Nennwert von I	Kurzschlußstrom des Solarpanels, an dem die Last angeschlossen ist
Δt	5 ms60000 ms	Meßintervall für die Erfassung von U und I während der Suche nach dem MPP
ΔP	0 WP _{Nenn}	Regeltoleranz unter dem MPP

3.10.14.3 Modus MPP3

Auch genannt "Fast track" (schnelles Finden), ist dieser Modus ähnlich Modus MPP2, aber ohne die anfängliche Suche des MPP, da dieser anhand der Benutzervorgaben (U_{MPP} , P_{MPP}) direkt angefahren wird. Dies kann helfen, falls die MPP-Werte des zu testenden Prüflings bekannt sind, die Zeit der Suche nach dem MPP einzusparen. Das restliche Verhalten ist wie bei Modus MPP2. Während und nach dem Ablauf der Funktion werden die ermittelten Werte für Strom (I_{MPP}), Spannung (U_{MPP}) und Leistung (P_{MPP}) im MPP auf der Anzeige ausgegeben.

Folgende Parameter können für den Tracking-Modus MPP3 konfiguriert werden:

Wert	Einstellbereich	Erläuterung
U_{MPP}	0Nennwert von U	Spannung im MPP
I _{sc}	0Nennwert von I	Kurzschlußstrom des Solarpanels, an dem die Last angeschlossen ist
P_{MPP}	0Nennwert von P	Leistung im MPP
Δt	5 ms60000 ms	Meßintervall für die Erfassung von U und I während der Suche nach dem MPP
ΔP	0 WP _{Nenn}	Regeltoleranz unterhalb des MPP

3.10.14.4 Modus MPP4

Dieser Modus bietet kein Tracking im Sinne der anderen Modi, dient aber durch eine benutzerdefinierbare Kurve zur gezielten Auswertung. Der Anwender kann bis zu 100 Punkte auf einer beliebigen Spannungskurve vorgeben und alle oder Teile der 100 Punkte abfahren lassen. Die Punkte lassen sich auch von USB-Stick laden bzw. auf einen speichern. Zwischen zwei Punkten vergeht die einstellbare Zeit Δt, der Durchlauf der definierten Punkte kann 0-65535 mal wiederholt werden. Nach Ende der Funktion stoppt sie automatisch mit ausgeschaltetem DC-Eingang und stellt dann pro benutzerdefiniertem Kurvenpunkt einen Meßwertsatz (Istwerte U, I, P) zur Verfügung. Außerdem werden die Werte des Datensatzes mit der höchsten Ist-Leistung auf der Anzeige ausgegeben. Geht man dann auf dem Bildschirm ZURÜCK, können die erfaßten Daten als Datei auf einen USB-Stick gespeichert werden. Alternativ ist nach dem Stopp der Funktion das Auslesen über digitale Schnittstelle möglich.

Folgende	Parameter	können fü	ir den	Tracking-Modus	MPP4	konfiguriert werden:	

Wert	Einstellbereich	Erläuterung
$U_{1}U_{100}$	0Nennwert von U	Spannungwert für die bis zu 100 Punkte auf einer benutzerdefinierten Kurve
Start	1-100	Startpunkt für den Ablauf von x aus 100 aufeinanderfolgenden Punkten
Ende	1-100	Endpunkt für den Ablauf von x aus 100 aufeinanderfolgenden Punkten
Δt	5 ms60000 ms	Zeit bis zum Anfahren des Spannungswertes des nächsten Punktes
Wdh.	0-65535	Anzahl der Wiederholungen des Durchlaufs von Start bis Ende

3.10.15 Fernsteuerung des Funktionsgenerators

Der Funktionsgenerator ist fernsteuerbar, allerdings geschehen Konfiguration und Steuerung von Funktionen mittels einzelner Befehle und prinzipiell anders als bei manueller Bedienung. Die externe Dokumentation "Programmieranleitung ModBus & SCPI" erläutert die Vorgehensweise. Folgendes gilt außerdem:

- Der Funktionsgenerator ist nicht über die analoge Schnittstelle fernbedienbar
- Der Funktionsgenerator ist nicht verfügbar, wenn der sog. Widerstands-Betrieb (R-Modus) aktiviert wurde
- Einige Funktionen basieren auf dem Arbiträrgenerator, andere auf dem XY-Generator. Daher sind beide getrennt zu bedienen

3.11 Weitere Anwendungen

3.11.1 Parallelschaltung als Master-Slave (MS)

Mehrere Geräte gleicher Art und gleichen Modells können zu einer Parallelschaltung verbunden werden, um eine höhere Gesamtleistung zu erzielen. Dabei werden alle Lasten an ihren DC-Eingängen verbunden, sowie zusätzlich über den digitalen Master-Slave-Bus und den Share-Bus.

Der digitale Master-Slave-Bus dient hierbei zur Aufsummierung der Istwerte am Mastergerät, sowie zur zentralen Erfassung der Gerätestatus.

Der Share-Bus wiederum dient zur dynamischen Ausregelung des Eingangsstromes, besonders wenn am Mastergerät der Funktionsgenerator genutzt werden soll. Das erfordert, daß zumindest die DC-Minus-Eingänge aller über Share-Bus verschalteten Geräte verbunden sein müssen, damit das Referenzpotential stimmt und der Share-Bus sauber regeln kann.

Prinzipdarstellung (ohne Qelle):

3.11.1.1 Einschränkungen

Gegenüber dem Normalbetrieb eines Einzelgerätes hat Master-Slave-Betrieb folgende Einschränkungen:

- Das MS-System reagiert zum Teil anders auf Alarmsituationen (siehe unten bei 3.11.1.6)
- Die Share-Bus-Verbindung hilft dem System, den Strom aller beteiligter Geräte so schnell wie möglich auszuregeln, trotzdem ist eine Parallelschaltung nicht so dynamisch wie ein Einzelgerät

3.11.1.2 Verkabelung der DC-Eingänge

Der DC-Eingang jedes beteiligten Gerätes wird hier einfach mit dem des nächsten Gerätes verbunden usw. Dabei sind möglichst kurze Kabel oder Kupferschienen mit ausreichendem Querschnitt zu benutzen. Der Querschnitt richtet sich nach dem Gesamtstrom der Parallelschaltung.

3.11.1.3 Verkabelung des Share-Bus'

Der Share-Bus wird mittels einer zweipoligen, möglichst verdrillten Leitung von Gerät zu Gerät verbunden. Der Querschnitt ist dabei unkritisch. Wir empfehlen, 0.5 mm² bis 1 mm² zu verwenden.

 Der Share-Bus ist gepolt. Achten Sie auf polrichtige Verkabelung! Die Verwendung des Share-Bus' bedingt die Verbindung (zumindest) der DC-Minus-Ein- gänge der Geräte als Bezugspunkt

Es können max. 16 Geräte über den Share-Bus verbunden werden.

3.11.1.4 Verkabelung und Einrichtung des Master-Slaves-Busses

Der Master-Slave-Bus ist fest im Gerät integriert und muß vor der Benutzung per Netzwerkkabel (≥CAT3, Patchkabel) verbunden und dann manuell (empfohlen) oder per Fernsteuerung konfiguriert werden. Folgendes ist dabei gegeben:

- Maximal 16 Geräte können über den Bus zusammengeschaltet werden: 1 Master, bis zu 15 Slaves
- Nur Verbindung zu Geräten gleicher Art und gleichen Modells, also elektronische Last zu elektronischer Last wie z. B. EL 9080-170 B mit EL 9080-170 B
- Geräte an den Enden des Busses sollten terminiert werden (siehe unten)

Der Master-Slave-Bus darf nicht über Crossover-Kabel verbunden werden!

Für den späteren Betrieb des MS-Systems gilt dann:

- Am Master werden Istwerte aller Geräte aufsummiert und angezeigt bzw. sind per Fernsteuerung auslesbar
- Die Einstellbereiche der Sollwerte am Master werden an die Anzahl der Geräte angepaßt. Wenn z. B. fünf Einheiten mit 4,8 kW zu einem 24 kW-System zusammengeschaltet werden, kann am Master 0...24 kW eingestellt werden
- Die Slaves sind nicht bedienbar, solange wie vom Master gesteuert
- Slaves zeigen den Alarm "MSS" in der Anzeige, solange sie noch nicht durch den Master initialisiert wurden. Derselbe Alarm wird bei einem Verbindungsverlust zum Master ausgegeben
- Soll der Funktionsgenerator am Master verwendet werden, muß zusätzlich der Share-Bus verbunden werden

So stellen Sie die Master-Slave-Verbindung her

- 1. Alle zu verbindenden Geräte ausschalten und mittels Netzwerkkabel (CAT3 oder besser, nicht im Lieferumfang des Gerätes enthalten) untereinander verbinden. Dabei ist es egal, welche der beiden Master-Slave-Anschlußbuchsen (RJ45, Rückseite) zum jeweils nächsten Gerät verbunden wird.
- 2. Je nach gewünschter Konfiguration nun auch die Geräte DC-seitig verbinden. Die beiden Geräte am Anfang und am Ende der Kette sollten bei langen Verbindungsleitungen terminiert werden. Dies erfolgt mittels eines dreipoligen DIP-Schalters, der auf der Rückseite des Gerätes zugänglich ist (neben den Master-Slave-Anschlüssen).

Stellung: nicht terminiert (Standard)

Stellung: terminiert

Nun muß das Master-Slave-System noch auf jedem Gerät noch für Master-Slave konfiguriert werden. Als Reihenfolge empfiehlt es sich, zuerst alle Slave-Geräte zu konfigurieren und dann das Master-Gerät.

Schritt 1: So konfigurieren Sie die Slave-Geräte (Standardmodelle mit TFT-Anzeige)

1. Wechseln Sie in das MENU , dann auf ALLG. EINSTELLUNGEN und betätigen Sie auf Seite 11 gelangen.

- **2.** Mit **SLAVE** aktivieren Sie den Master-Slave-Modus (MS) und legen gleichzeitig das Gerät als Slave-Gerät fest. Die Warnmeldung bestätigen Sie mit OK, ansonsten wird die Änderung nicht übernommen.
- 3. Übernehmen Sie die Einstellungen mit Bedienfeld

und verlassen Sie das Einstellmenü.

Schritt 1: So konfigurieren Sie die Slave-Geräte (EL 9000 B Slave-Modelle ohne Anzeige)

- 1. Verbinden Sie das Slave-Gerät über den rückseitigen USB-Port oder eine Ethernet-Schnittstelle mit einem PC.
- 2. Starten Sie die Software EA Power Control und lassen Sie die Software das Gerät finden.
- **3.** Öffnen Sie die App "Settings" für das Gerät und stellen Sie im Reiter "Master-Slave" den Parameter "Master-Slave-Modus" auf "SLAVE".

Das Slave-Gerät ist hiermit fertig konfiguriert. Für jedes weitere Slave-Gerät genauso wiederholen.

EL 9000 B Serie

bis

Schritt 2: So konfigurieren Sie das Master-Gerät

- 1. Wechseln Sie in das MENU und dann auf ALLG. EINSTELLUNGEN und betätigen Sie Sie auf Seite 11 gelangen.
- **2.** Mit MASTER aktivieren Sie den Master-Slave-Modus und legen gleichzeitig das Gerät als Master-Gerät fest. Die Warnmeldung bestätigen Sie mit OK, ansonsten wird die Änderung nicht übernommen.
- **3.** Übernehmen Sie die Einstellungen mit Bedienfeld

und verlassen Sie das Einstellmenü.

Schritt 3: Master initialisieren

Das Master-Gerät startet nach Aktivierung des MS-Betriebes automatisch eine Initialisierungsroutine, um das MS-System zu konfigurieren. In der Hauptanzeige erscheint dann nach Verlassen des Einstellmenüs eine Meldung mit dem Ergebnis der Initialisierung:

ſ	Ma	ster-Slave	e-Modus	3
▦	Anzahl der S Erkannte Sl	Blaves: 1 laves:		_
Ħ	U-nom: I-nom:	80.00V 340.0A		Š
	P-nom:	4.80kW nitialisieren	ОК	_

Durch Betätigung von INITIALISIEREN kann die Initialisierung wiederholt werden, falls nicht alle Slaves erkannt wurden. Das ist normalerweise nur nötig, wenn ein Verdrahtungsfehler am digitalen MS-Bus vorliegt oder nicht alle Geräte als SLAVE konfiguriert wurden. Das Fenster listet auf, wieviele Slaves gefunden wurden, sowie die sich aus dem Verbund ergebende Gesamtleistung und Gesamtstrom.

Im Falle, daß kein Slave-Gerät gefunden wurde, wird das MS-System mit nur dem Master verwendet.

Die Initialisierung des Masters und des Master-Slave-Systems wird, solange wie der Master-Slave-Modus aktiviert ist, nach dem Einschalten des Mastergerätes jedesmal erneut ausgeführt. Die Initialisierung kann über das MENU des Mastergerätes in den ALLG. EINSTELLUNGEN auf Seite 12 jederzeit wiederholt werden.

3.11.1.5 Bedienung des Master-Slave-Systems

Nach erfolgreicher Konfiguration und Initialisierung des Master-Gerätes und der Slave-Geräte zeigen diese ihren Status in der Anzeige an. Der Master zeigt lediglich "Master" im Statusfeld, die Slaves zeigen, solange wie durch den Master ferngesteuert, den Status wie rechts im Bild an:

Die Slaves sind dann nicht manuell bedienbar und auch nicht per analoger oder digitaler Schnittstelle fernsteuerbar. Sie könnten jedoch, falls nötig, überwacht werden (Monitoring).

Am Master-Gerät wechselt die Anzeige nach der Initialisierung und vormals eingestellte Sollwerte werden zurückgesetzt. Der Master zeigt nun die Ist- und Sollwerte des Gesamtsystems an. Je nach Anzahl der Geräte vervielfachen sich der Gesamtstrom und die Gesamtleistung. Es gilt dann:

- Der Master ist bedienbar wie ein Einzelgerät
- Der Master übergibt Sollwerte prozentual an die Slaves weiter und steuert diese
- Der Master ist über analoge oder digitale Schnittstelle fernsteuerbar
- Sämtliche Einstellungen zu den Sollwerten U, I und P (Überwachung, Einstellgrenzen usw.) werden an die neuen Gesamtwerte angepaßt
- Bei allen initialisierten Slave werden Einstellgrenzen (U_{Min}, I_{Max} etc.), Überwachungsgrenzen (OVP, OPP ect.) und Event-Einstellungen (UCD, OVD) auf Standardwerte zurückgesetzt, damit diese nicht die Steuerung durch den Master stören. Werden diese Grenzen am Master angepaßt, werden sie 1:1 an die Slaves übertragen. Beim Betrieb später können daher Slaves durch ungleichmäßige Lastverteilung und unterschiedlich schnelle Reaktion anstelle des Masters Alarme wie OCP, OVP oder Events usw. auslösen

Um alle diese Werte nach dem Verlassen des MS-Betriebs schnell wieder herstellen zu können, wird die Anwendung der Nutzerprofile empfohlen (siehe "3.9. Nutzerprofile laden und speichern")

• Wenn ein oder mehrere Slaves einen Gerätealarm melden, so wird dies am Master angezeigt und muß, wie bei Einzelgeräten, auch dort bestätigt werden, damit der Slave weiterarbeiten kann. Im Fall, daß der Alarm den DC-Eingang ausgeschaltet hat, wird dieser durch das Master-Gerät automatisch wieder eingeschaltet, sobald der Alarm bestätigt wurde.

- Verbindungsabbruch zu einem oder mehreren Slaves führt aus Sicherheitsgründen zur Abschaltung aller DC-Eingänge und der Master meldet diesen Zustand als Master-Slave-Sicherheitsmodus. Dann muß das MS-System durch Betätigung des Bedienfeldes "Initialisieren" neu initialisiert werden, mit oder ohne den/die Slaves, die den Verbindungsabbruch verursachten.
- Alle Geräte, auch die Slaves, können über den Pin "Rem-SB" der analogen Schnittstelle DC-seitig ausgeschaltet werden. Das ist eine Art Notfallabschaltung (kein Not-Aus!), die üblicherweise über einen Kontakt gesteuert zu allen beteiligten Geräten parallel verdrahtet wird.

3.11.1.6 Alarm- und andere Problemsituationen

Beim Master-Slave-Betrieb können, durch die Verbindung mehrerer Geräte und deren Zusammenarbeit, zusätzliche Problemsituationen entstehen, die beim Betrieb einzelner Geräte nicht auftreten können. Es wurden für solche Fälle folgende Festlegungen getroffen:

- Falls ein oder mehrere Geräte durch Überhitzung ausfallen arbeiten die anderen weiter. Ist der Master betroffen, nimmt dieser zwar zeitweise keine Leistung auf, kann aber weiterhin Werte stellen, welche von den noch arbeitenden Geräten umgesetzt werden.
- Falls ein oder mehrere Slave-Geräte AC-seitig ausfallen (ausgeschaltet am Netzschalter, Stromausfall, auch bei Netzunterspannung) werden sie nach der Wiederkehr nicht automatisch wieder als Slaves eingebunden. Die Initialisierung des MS-System muß dann wiederholt werden.
- Falls das Master-Gerät AC-seitig ausfällt (ausgeschaltet am Netzschalter, Stromausfall) und später wiederkommt, initialisiert es automatisch das MS-System neu und bindet alle erkannten Slaves ein. In diesem Fall kann MS-Betrieb automatisch fortgeführt werden, wenn z. B. eine Software das Master-Gerät überwacht und steuert.
- Falls mehrere Master-Geräte oder gar keines definiert wurde, kann das Master-Slave-System nicht initialisiert werden.

In Situationen, wo ein oder mehrere Geräte einen Gerätealarm wie OV oder PF erzeugen, gilt Folgendes:

- Jeder Gerätealarm eines Slaves wird auf dem Display des Slaves und auf dem des Masters angezeigt.
- Bei gleichzeitig auftretenden Alarmen mehrerer Slaves zeigt der Master nur den zuletzt aufgetretenen Alarm an. Hier könnten die konkret anliegenden Alarme dann nur bei den Slaves erfaßt selbst werden. Über eine Software kann die Alarmhistorie ausgelesen werden.
- Alle Geräte im MS-System überwachen ihre eigenen Werte hinsichtlich Überstrom (OC) und anderer Schwellen und melden Alarme an den Master. Es kann daher auch vorkommen, hauptsächlich wenn durch irgendeinen Grund der Strom zwischen den Geräten nicht gleichmäßig aufgeteilt ist, daß ein Gerät bereits OC meldet auch wenn die globale OCP-Schwelle des MS-System noch gar nicht erreicht wurde. Das Gleiche gilt für OP.

3.11.1.7 Allgemeine Hinweise

Sollten ein oder mehrere Geräte im Parallelsystem nicht genutzt werden und deshalb ausgeschaltet bleiben, so kann es abhängig von der Anzahl der aktiven Einheiten und wie dynamisch das System arbeiten soll erforderlich sein, bei den inaktiven Einheiten den Share-Bus-Stecker abzuziehen, weil sie auch im ausgeschaltetem Zustand durch ihre Impedanz auf den Share Bus wirken und ihn negativ beeinflußen könnten.

3.11.2 Reihenschaltung

Reihenschaltung ist keine zulässige Betriebsart von elektronischen Lasten und darf daher unter keinen Umständen so verbunden und betrieben werden!

3.11.3 Zwei-Quadranten-Betrieb (2QB)

3.11.3.1 Einleitung

Diese Betriebsart bezieht sich auf die Verwendung einer Quelle, in dem Fall ein Netzgerät aus einer kompatiblen Serie (siehe *"1.9.10. Share-Bus-Anschluß"*) und einer Senke, hier eine elektronische Last der Serie EL 9000 B. Die Quelle und die Senke treten abwechselnd in Funktion, um einen Prüfling, wie z. B. eine Batterie, im Rahmen eines Funktions- oder Endtests gezielt zu laden und zu entladen.

Dabei kann der Anwender entscheiden, ob er das System manuell bedient, nur das Netzgerät als bestimmende Einheit per PC steuert oder beide Geräte. Wir empfehlen die Bedienung des Netzgerätes allein, das dann bei Verbindung beider Geräte über den Share-Bus das Verhalten der Last bestimmt. Der Zwei-Quadranten-Betrieb ist nur für Spannungskonstantbetrieb (CV) geeignet.

Mit einer Kombination Quelle-Senke können nur die Quadranten I + II abgebildet werden. Dies bedeutet, nur positive Spannungen sind möglich. Der positive Strom wird von der Quelle, ggf. von der Anwendung, generiert und der negative Strom fließt in die Last.

An der Last müssen die für den Anwendungsfall benötigten Sollwerte für Strom und Leistung eingestellt werden. Dies kann auch über eine Schnittstelle erfolgen. Am Netzgerät ist vorzugsweise die Betriebsart CV zu wählen. Nur dann wird es mittels des Share-Bus' die Eingangsspannung der Last entsprechend steuern.

Typische Anwendungen:

- Brennstoffzellen
- Kondensatortests
- Motorisch betriebene Anwendungen
- Elektroniktests, wo eine höhere Dynamik für Entladevorgänge erforderlich ist

3.11.3.2 Verbindung der Geräte zum 2QB

Es gibt verschiedene Möglichkeiten, Quelle(n) und Senke(n) zum 2QB zu verbinden:

Konfiguration A:

1x E-Last und 1x Netzgerät, plus 1x Prüfling (E.U.T).

Dies ist eine sehr gebräuchliche Konfiguration für 2QB.

Die Nennwerte U und I beider Geräte sollten zueinander passen, also z. B. EL 9080-170 B und PSI 9080-170 3U. Das System wird vom Netzgerät gesteuert, welches dazu im Setup-Menü als "Master" gesetzt werden muß, auch wenn kein Master-Slave-Betrieb stattfindet.

Konfiguration B:

Mehrere E-Lasten und mehrere Netzgeräte zur Aufstockung für höhere Gesamtleistung, plus ein Prüfling (E.U.T).

Der Lastenverbund und der Netzgeräteverbund bilden jeder für sich ein Gesamtsystem mit einer bestimmten Leistung. Auch hier gilt: die Nennwerte der beiden Systeme müssen zueinander passen.

Grundsätzlich werden alle Quellen und Senken über den Share-Bus verbunden, wobei sich die Anzahl auf max. 16 Geräte begrenzt. Im Bezug auf den Share-Bus müssen alle Lasten Slaves sein, sowie eins der PSUs Master.

3.11.3.3 Einstellungen an den Geräten

Die Master-Slave-Einstellungen im MENU wirken sich auch auf die Funktion des Share-Bus' aus. Für den korrekten Betrieb des 2QB muß an den beteiligten Lasten sichergestellt sein, daß sie auf den Share-Bus nicht bestimmend einwirken. Das geschieht bei Slave-Lasten automatisch mit der Master-Slave-Einstellung SLAVE bzw. wenn kein Master-Slave-Betrieb gefahren wird, mit Einstellung OFF. Bei einer eventuell vorhandenen Master-Last (Einstellung: MASTER) muß zusätzlich der Parameter "PSI/ELR System" aktiviert sein.

Bei einem der Netzgeräte hingegen muß die Master-Slave-Einstellung MASTER definiert werden, wenn nicht ohnehin schon eins Master auf dem digitalen MS-Bus ist. Siehe auch *3.4.3.1*.

Zur Sicherheit der Gesamtanwendung und hauptsächlich des Prüflings wird empfohlen, die Überwachungsgrenzen wie OVP, OCP oder OPP bei allen beteiligten Geräten auf passende Werte zu setzen, damit im Fehlerfall der DC-Ausgang der Quelle bzw. DC-Eingang der Senke abgeschaltet wird und der Prüfling keinen Schaden nimmt.

3.11.3.4 Einschränkungen

Nachdem die elektronischen Lasten (Slaves) über den Share-Bus mit dem Master-Gerät (hier: Netzgerät) verbunden wurden können sie ihre eigenen Spannung nicht mehr begrenzen. Direkter CV-Betrieb ist dann nicht verfügbar und die Begrenzung der Eingangsspannung nach unten hin muß durch korrekte Einstellung des Masters erfolgen.

3.11.3.5 Anwendungsbeispiel

Laden und Entladen einer Batterie 24 V/400 Ah, gemäß Konfiguration A (siehe oben):

- Netzgerät PSI 9080-170 3U mit: I_{Soll} = 40 A (Ladestrom, 1/10 der Kapazität), P_{Soll} = 5000 W
- Elektronische Last EL 9080-340 B, eingestellt auf: I_{Soll} = max. Entladestrom der Batterie (z. B. 100 A), P_{Soll} = 4800 W, U_{Soll} = 24 V, eventuell UVD = 20 V (oder anders) mit Event-Typ "Alarm", um Tiefentladung zu vermeiden
- Annahme: die Batterie hat zu Beginn eine Spannung von 26 V
- Bei allen Geräten ist der DC-Eingang bzw. DC-Ausgang ausgeschaltet

Bei dieser Kombination von Geräten wird empfohlen, stets zuerst den DC-Ausgang der Quelle einzuschalten und dann erst den DC-Eingang der Senke.

1. Entladung der Batterie auf 24 V

Vorgabe: Spannung am Netzgerät auf 24 V eingestellt, DC-Ausgang Netzgerät und DC-Eingang Last eingeschaltet

Reaktion: Die Last wird die Batterie mit dem eingestellten Strom belasten, um die Spannung von 24 V durch Entladung zu erreichen. Das Netzgerät liefert in diesem Fall keinen Strom, weil die Batteriespannung noch höher ist als die am Netzgerät eingestellte. Die Last wird sukzessive den Strom reduzieren, um die Spannung konstant bei 24 V zu halten. Hat die Batteriespannung bei ca. 0 A Entladestrom die 24 V erreicht, wird diese Spannung konstant gehalten, ggf. durch Nachladen der Batterie vom Netzgerät.

Das Netzgerät bestimmt die Spannungsvorgabe der Last. Damit durch versehentliches Verstellen des Spannungssollwertes am Netzgerät, z. B. auf 0 V, die Batterie nicht tiefentladen wird, empfehlen wir, bei der Last die sog. Unterspannungsüberwachung (UVD) zu konfigurieren, damit bei Erreichen der minimal zulässigen Entladeschlußspannung der DC-Eingang abgeschaltet wird. Der über den Share-Bus vorgegebene Sollwert ist nicht auf der Anzeige der Last ablesbar.

2. Laden der Batterie auf 27 V

Vorgabe: Spannung am Netzgerät auf 27 V einstellen

Reaktion: Das Netzgerät wird nun die Batterie mit max. 40 A Ladestrom aufladen, welcher sich mit sukzessive steigender Batteriespannung verringert, als Reaktion auf den sich ändernden Innenwiderstand der Batterie. Die Last nimmt während der Aufladephase keinen Strom auf, weil sie über die Share-Bus-Verbindung einen Spannungssollwert übermittelt bekommt und dieser höher liegt als die momentane Batteriespannung. Bei Erreichen von 27 V wird das Netzgerät nur noch den Erhaltungsladestrom für die Batterie liefern.

4. Instandhaltung & Wartung

4.1 Wartung / Reinigung

Die Gerät erfordern keine Wartung. Reinigung kann, jenachdem in welcher Umgebung sie betrieben werden, früher oder später für die internen Lüfter nötig sein. Diese dienen zur Kühlung der internen Komponenten, die durch die zwangsweise entstehende, hohe Verlustleistung erhitzt werden. Stark verdreckte Lüfter können zu unzureichender Luftzufuhr führen und damit zu vorzeitiger Abschaltung des DC-Eingangs wegen Überhitzung bzw. zu vorzeitigen Defekten.

Die Reinigung der internen Lüfter kann mit einem Staubsauger oder ähnlichem Gerät erfolgen. Dazu ist das Gerät zu öffnen.

4.2 Fehlersuche / Fehlerdiagnose / Reparatur

Im Fall, daß sich das Gerät plötzlich unerwartet verhält, was auf einen möglichen Defekt hinweist, oder es einen offensichtlichen Defekt hat, kann und darf es nicht durch den Anwender repariert werden. Konsultieren Sie bitte im Verdachtsfall den Lieferanten und klären Sie mit ihm weitere Schritte ab.

Üblicherweise wird es dann nötig werden, das Gerät an Elektro-Automatik zwecks Reparatur (mit Garantie oder ohne) einzuschicken. Im Fall, daß eine Einsendung zur Überprüfung bzw. Reparatur ansteht, stellen Sie sicher, daß...

- Sie vorher Ihren Lieferanten kontaktiert und mit ihm abgeklärt haben, wie und wohin das Gerät geschickt werden soll
- es in zusammengebautem Zustand sicher für den Transport verpackt wird, idealerweise in der Originalverpackung.
- mit dem Gerät zusammen betriebene Optionen, wie z.B. ein digitales Schnittstellenmodul, mit dem Gerät mit eingeschickt werden, wenn sie mit dem Problemfall in Zusammenhang stehen.
- eine möglichst detaillierte Fehlerbeschreibung beiliegt.
- bei Einsendung zum Hersteller in ein anderes Land alle für den Zoll benötigten Papiere beiliegen.

4.2.1 Defekte Netzsicherung tauschen

Die Absicherung des Gerätes erfolgt über eine Schmelzsicherung, die sich in einem Sicherungshalter auf der Geräterückseite befindet. Wert siehe Aufdruck neben dem Sicherungshalter. Ersetzen Sie die Sicherung stets nur durch eine gleicher Größe und gleichen Wertes.

4.2.2 Firmware-Aktualisierungen

Firmware-Updates sollten nur dann durchgeführt werden, wenn damit Fehler in der bisherigen Firmware des Gerätes behoben werden können!

Die Firmwares der Bedieneinheit HMI, der Kommunikationseinheit KE und des digitalen Reglers DR können über die rückseitige USB-Schnittstelle aktualisiert werden. Dazu wird die Software EA Power Control benötigt, die mit dem Gerät mitgeliefert wird, welche aber auch als Download von der Herstellerwebseite erhältlich ist, zusammen mit einer Firmware-Datei.

Es wird jedoch davor gewarnt, Updates bedenkenlos zu installieren. Jedes Update birgt das Risiko, das Gerät oder ganze Prüfsysteme vorerst unbenutzbar zu machen. Daher wird empfohlen, nur dann Updates zu installieren, wenn...

- damit ein am Gerät bestehendes Problem direkt behoben werden kann, insbesondere wenn das von uns im Rahmen der Unterstützung zur Problembehebung vorgeschlagen wurde.
- neue Funktionen in der Firmware-Historie aufgelistet sind, die genutzt werden möchten. In diesem Fall geschieht die Aktualisierung des Gerätes auf eigene Gefahr!

Außerdem gilt im Zusammenhang mit Firmware-Aktualisierung folgendes zu beachten:

- Simple Änderungen in Firmwares können für den Endanwender zeitaufwendige Änderungen von Steuerungs-Applikationen mit sich bringen. Es wird empfohlen, die Firmware-Historie in Hinsicht auf Änderungen genauestens durchzulesen
- Bei neuen Funktionen ist eine aktualisierte Dokumentation (Handbuch und/oder Programmieranleitung, sowie LabView VIs) teils erst viel später verfügbar

4.3 Nachjustierung (Kalibrierung)

4.3.1 Einleitung

Die Geräte der Serie EL 9000 B verfügen über eine Nachjustierungsfunktion, die im Rahmen einer Kalibrierung dazu dient, Abweichungen zwischen den Stellwerten und tatsächlichen Werten bis zu einem gewissen Grad zu kompensieren. Gründe, die eine Nachjustierung der Gerätestellwerte nötig machen, gibt es einige: Bauteilalterung, Bauteilverschleiß, extreme Umgebungsbedingungen, häufige Benutzung.

Um festzustellen, ob die zulässige Toleranz bei Stellwerten überschritten wurde, erfordert es präzise externe Meßgeräte, deren Meßfehler weitaus geringer sein muß, jedoch höchstens die Hälfte der Toleranz des Gerätes betragen darf. Erst dann kann ein Vergleich zwischen Stellwert und tatsächlichem Eingangswert gezogen werden.

Wenn Sie z. B. den Strom des Modells EL 9080-510 B bei den max. 510 A kalibrieren wollten, wobei der Strom in den technischen Daten mit einem max. Fehler von 0,2% angegeben ist, dürfte der zu verwendende Meßshunt max. 0,1% Fehler haben, sollte jedoch möglichst noch besser sein. Auch und gerade bei hohen Strömen darf der Meßvorgang nicht zu lange dauern bzw. der Meßshunt nicht zu 100% belastet werden, weil er dann seinen max. Fehler voraussichtlich überschreiten wird. Es wird daher empfohlen einen Shunt zu wählen, der für mindestens 25% mehr Strom ausgelegt ist.

Bei Strommessung über Shunts addiert sich außerdem der Fehler des Meßgeräts (Multimeter am Shunt) zu dem des Shunts. Die Summe der Fehler darf bzw. sollte die max. Fehlertoleranz des Gerätes nicht überschreiten.

4.3.2 Vorbereitung

Für eine erfolgreiche Messung und Nachkalibrierung werden bestimmte Meßmittel und Umgebungsbedingungen benötigt:

- Ein Meßmittel (Multimeter) für die Spannungsmessung, das im Meßbereich, in dem die Nennspannung des EL-Gerätes zu messen ist, eine Fehlertoleranz besitzt, die maximal nur halb so groß ist wie die Spannungsfehlertoleranz der EL. Dieses Meßmittel kann eventuell auch für die Messung der Shuntspannung benutzt werden
- Falls der Strom zu kalibrieren ist: geeigneter Meßshunt, der für mindestens 125% des Maximalstromes der EL ausgelegt ist und der eine Fehlertoleranz besitzt, die maximal nur halb so groß ist wie die Stromfehlertoleranz der EL
- Normale Umgebungstemperatur von ca. 20-25 °C
- Eine einstellbare Spannungs- und Stromquelle, die mind. 102% Spannung und Strom der Maximalwerte des zu kalibrierenden EL-Gerätes liefern kann oder zwei einzelne Geräte und die abgeglichen ist

Vor Beginn des Kalibriervorgangs sind noch einige Maßnahmen zu treffen:

- Das EL-Gerät mit der Spannungs- / Stromquelle verbinden und mindestens 10 Minuten lang mit 50% Leistung warmlaufen lassen
- Für den Anschluß des Fernfühlungseingangs (SENSE) ein Verbindungskabel zum DC-Eingang vorbereiten, aber nicht stecken
- Jegliche Fernsteuerung beenden, Master-Slave deaktivieren, Widerstandsmodus deaktivieren
- Shunt zwischen Quelle und elektronischer Last installieren und so plazieren, daß er durch Luftbewegung gekühlt wird, z. B. im Luftstrom, der aus der Quelle austritt und welcher nur mäßig warm sein dürfte. Der Shunt kommt so zusätzlich auf Betriebstemperatur.
- Geeignete Meßmittel am DC-Eingang und am Shunt anschließen, jenachdem ob zuerst Spannung oder Strom kalibriert werden soll

4.3.3 Abgleichvorgang

bunden sein.

Nach der Vorbereitung kann der Abgleich starten. Wichtig ist jetzt die Reihenfolge. Generell müssen nicht immer alle drei Parameter abgeglichen werden, es wird aber empfohlen. Es gilt dabei:

Der Eingangsstrom sollte immer zuerst abgeglichen werden, weil dessen Sollwert im Spannungsabgleich eine Rolle spielt. Während die Eingangsspannung abgeglichen wird, darf der Fernfühlungseingang nicht ver-

Die Erläuterung des Abgleichvorgangs erfolgt anhand des Beispiel-Modells EL 9080-170 B. Andere Modelle sind auf gleiche Weise zu behandeln, mit entsprechenden Werten für Spannung und Strom beim Gerät und auch der angeschlossenen Quelle.

EL 9000 B Serie

4.3.3.1 Sollwerte abgleichen

► So gleichen Sie die Spannung ab

 Die Spannungsquelle auf etwa 102% Nennspannung des EL-Gerätes, in diesem Beispiel dann rechnerisch 81,6 V, einstellen und deren Ausgang einschalten. Die Strombegrenzung der Quelle auf 5% des Nennstromes der Last, hier 8,5 A, einstellen. Prüfen Sie zu nochmals, daß für den Spannungsabgleich der Fernfühlungseingang (Sense) hinten am Gerät <u>nicht</u> verbunden ist.

- 2. In der Anzeige der EL in das MENU wechseln, dann "Allg. Einstellungen", dann Seite 7 und auf START.
- **3.** In der folgenden Übersicht wählen: **Spannungs-Abgleich**, dann **Eingangsabgleich** und **WEITER**. Das Gerät schaltet dann den DC-Eingang ein, belastet die Quelle und mißt die Eingangsspannung (**U-mon**).
- **4.** Im nächsten Bildschirm ist eine manuelle Eingabe erforderlich. Geben Sie hier die mit dem externen Meßmittel gemessene Eingangsspannung bei **Messwert=** über die Zehnertastatur ein (vorher auf den Wert tippen) und vergewissern Sie sich, daß der Wert richtig eingegeben wurde. Dann mit **ENTER** bestätigen.
- 5. Wiederholen Sie Punkt 4. für die nächsten Schritte (insgesamt vier).

► So gleichen Sie den Strom ab

- 1. Die Stromquelle auf etwa 102% Nennstrom des EL-Gerätes, in diesem Beispiel dann rechnerisch 173,4 A bzw. aufgerundet 174 A, einstellen. Die Spannung der Quelle auf etwa 10% der Nennspannung der EL, in diesem Beispiel also 8 V, einstellen und den Ausgang der Quelle einschalten.
- 2. In der Anzeige in das MENU wechseln, dann "Allg. Einstellungen" und dort auf Seite 7 auf START.
- **3.** In der folgenden Übersicht wählen: **Stromabgleich**, dann **Eingangsabgleich** und **WEITER**. Das Gerät schaltet dann den DC-Eingang ein, belastet die Quelle und mißt den Eingangsstrom (**I-mon**).
- 4. Im nächsten Bildschirm ist eine Eingabe erforderlich. Geben Sie hier den mit dem externen Meßmittel (Shunt) gemessenen Eingangsstrom bei **Messwert=** über die Zehnertastatur ein und vergewissern Sie sich, daß der Wert richtig eingegeben wurde. Dann mit **ENTER** bestätigen.
- 5. Wiederholen Sie Punkt 4. für die nächsten Schritte (insgesamt vier).

4.3.3.2 Fernfühlung abgleichen

Falls Fernfühlung (Sense) genutzt wird, sollte die Fernfühlungsspannung auch abgeglichen werden. Die Vorgehensweise ist dabei identisch mit dem Spannungsabgleich, außer daß hierbei der Fernfühlungseingang (Sense) mit dem DC-Eingang der EL polrichtig verbunden sein muß.

► So kalibrieren Sie die Sense-Spannung

- 1. Die Spannungsquelle auf etwa 102% Nennspannung des EL-Gerätes, in diesem Beispiel dann rechnerisch 81,6 V, einstellen und deren Ausgang einschalten. Die Strombegrenzung der Quelle auf 5% des Nennstromes der Last, hier 8,5 A, einstellen. Prüfen Sie zu nochmals, daß für den Spannungsabgleich der Fernfühlungseingang (Sense) hinten am Gerät verbunden ist.
- 2. In der Anzeige in das MENU wechseln, dann "Allg. Einstellungen", dann Seite 7 und auf START
- 3. In der folgenden Übersicht wählen: Sense-Sp. abgleichen, dann Eingangsabgleich und WEITER.
- **4.** Im nächsten Bildschirm ist eine manuelle Eingabe erforderlich. Geben Sie hier die mit dem externen Meßmittel gemessene Fernfühlungsspannung bei **Messwert=** über die Zehnertastatur ein (vorher auf den Wert tippen) und vergewissern Sie sich, daß der Wert richtig eingegeben wurde. Dann mit **ENTER** bestätigen.
- **5.** Wiederholen Sie Punkt 4. für die nächsten Schritte (insgesamt vier).

4.3.3.3 Anzeigewerte abgleichen

Die Vorgehensweise beim Abgleich der Istwerte für die Eingangsspannung, den Eingangsstrom und die Eingangsspannung bei Fernfühlungs-Betrieb ist weitgehend identisch mit der für die Sollwerte. In den Untermenüs wird statt "**Eingangsabgleich**" dann jeweils "**Anzeigeabgleich**" gewählt. Der Unterschied zum Sollwerteabgleich ist, daß hier nichts eingegeben werden muß, sondern nur angezeigte Meßwerte bestätigt werden müssen, wie in der Anzeige dazu aufgefordert. Bitte beachten Sie, den angezeigten Meßwert immer erst nach etwa mindestens 2 Sekunden zu bestätigen, weil eine Einpendelung des Meßwertes gewartet wird.

4.3.3.4 Speichern und beenden

Zum Schluß kann noch über das Bedienfeld eingegeben und auch abgerufen werden.

das Datum des Abgleichs im Format JJJJ / MM / TT

Danach sollten die Abgleichwerte unbedingt noch mit dem Bedienfeld

gespeichert werden.

Verlassen des Abgleichmenüs ohne auf "Speichern und beenden" zu tippen verwirft alle ermittelten Abgleichdaten und die Abgleichprozedur müßte wiederholt werden!

5. Service & Support

5.1 Reparaturen

Reparaturen, falls nicht anders zwischen Anwender und Lieferant ausgemacht, werden durch Elektro-Automatik durchgeführt. Dazu muß das Gerät im Allgemeinen an den Hersteller eingeschickt werden. Es wird keine RMA-Nummer benötigt. Es genügt, das Gerät ausreichend zu verpacken, eine ausführliche Fehlerbeschreibung und, bei noch bestehender Garantie, die Kopie des Kaufbelegs beizulegen und an die unten genannte Adresse einzuschicken.

5.2 Kontaktmöglichkeiten

Bei Fragen und Problemen mit dem Betrieb des Gerätes, Verwendung von optionalen Komponenten, mit der Dokumentation oder Software kann der technische Support telefonisch oder per E-Mail kontaktiert werden.

Adressen	E-Mailadressen	Telefonnummern
EA Elektro-Automatik GmbH	Technische Hilfe:	Zentrale: 02162 / 37850
Helmholtzstr. 31-37	support@elektroautomatik.de	Support: 02162 / 378566
41747 Viersen	Alle anderen Themen:	
Deutschland	ea1974@elektroautomatik.de	

EA Elektro-Automatik GmbH & Co. KG

Entwicklung - Produktion - Vertrieb

Helmholtzstraße 31-37 41747 Viersen

Telefon: 02162 / 37 85-0 Telefax: 02162 / 16 230 E-Mail: ea1974@elektroautomatik.de Internet: www.elektroautomatik.de

Operating Manual

Electronic DC Load

Attention! This document is only valid for devices with firmwares "KE: 2.25", "HMI: 2.15" and "DR: 1.6.5" or higher. For availability of updates for your device check our website or contact us.

Doc ID: EL9BEN Revision: 08 Date: 09/2018 (6

TABLE OF CONTENTS

1 GENERAL

1.1	About this document	5
1.1.1	Retention and use	5
1.1.2	Copyright	5
1.1.3	Validity	5
1.1.4	Symbols and warnings	5
1.2	Warranty	5
1.3	Limit of liability	5
1.4	Disposal of equipment	6
1.5	Product key	6
1.6	Intended usage	6
1.7	Safety	7
1.7.1	Safety notices	7
1.7.2	Responsibility of the user	7
1.7.3	Responsibility of the operator	8
1.7.4	User requirements	8
1.7.5	Alarm signals	9
1.8	Technical data	9
1.8.1	Approved operating conditions	9
1.8.2	General technical data	9
1.8.3	Specific technical data	10
1.8.4	Views (3U models)	18
1.8.5	Views (6U models)	21
1.8.6	Control elements	24
1.9	Construction and function	25
1.9.1	General description	25
1.9.2	Block diagram	25
1.9.3	Scope of delivery	26
1.9.4	Accessories	26
1.9.5	Options	26
1.9.6	The control panel (HMI)	27
1.9.7	USB port (type B, rear side)	30
1.9.8	Interface module slot	30
1.9.9	Analog interface	30
1.9.10	"Share" connector	31
1.9.11	"Sense" connector (remote sensing)	31
1.9.12	Master-Slave bus	31

2 INSTALLATION & COMMISSIONING

2.1	Transport and storage	.32
2.1.1	Transport	.32
2.1.2	Packaging	.32
2.1.3	Storage	.32
2.2	Unpacking and visual check	.32
2.3	Installation	.32
2.3.1	Safety procedures before installation and	
	use	.32
2.3.2	Preparation	.33
2.3.3	Installing the device	.33
2.3.4	Connection to DC sources (3U models)	.34
2.3.5	Connection to DC sources (6U models)	.35

2.3.6	Grounding of the DC input	.36
2.3.7	Connecting the "Share" bus	.36
2.3.8	Connection of remote sensing	.36
2.3.9	Connecting the USB port (rear side)	.37
2.3.10	Installation of an interface module	.37
2.3.11	Connecting the analog interface	.38
2.3.12	Initial commission	.38
2.3.13	Commission after a firmware update or a	
	long period of non use	.38

3 OPERATION AND APPLICATION

3.1	Personal safety	39
3.2	Operating modes	39
3.2.1	Voltage regulation / Constant voltage	39
3.2.2	Current regulation / constant current / cur	rent
	limitation	40
3.2.3	Resistance regulation / constant resistan	ce40
3.2.4	Power regulation / constant power / power	er
	limitation	40
3.2.5	Dynamic characteristics and stability crite) -
	ria	41
3.3	Alarm conditions	42
3.3.1	Power Fail	42
3.3.2	Overtemperature	42
3.3.3	Overvoltage	42
3.3.4	Overcurrent	42
3.3.5	Overpower	42
3.4	Manual operation	43
3.4.1	Powering the device	43
3.4.2	Switching the device off	43
3.4.3	Configuration via MENU	43
3.4.4	Adjustment limits	53
3.4.5	Changing the operating mode	53
3.4.6	Manual adjustment of set values	54
3.4.7	Switching the main screen view	54
3.4.8	The meter bars	55
3.4.9	Switching the DC input on or off	55
3.4.10	Recording to USB stick (logging)	56
3.5	Remote control	57
3.5.1	General	57
3.5.2	Controls locations	57
3.5.3	Remote control via a digital interface	57
3.5.4	Remote control via the analog interface	
	(AI)	58
3.6	Alarms and monitoring	62
3.6.1	Definition of terms	62
3.6.2	Device alarm and event handling	62
3.7	Control panel (HMI) lock	65
3.8	Limits lock	65
3.9	Loading and saving a user profile	66
3.10	The function generator	67
3.10.1	Introduction	67

3.10.2	General67
3.10.3	Method of operation68
3.10.4	Manual operation68
3.10.5	Sine wave function69
3.10.6	Triangular function70
3.10.7	Rectangular function70
3.10.8	Trapezoidal function71
3.10.9	DIN 40839 function71
3.10.10	Arbitrary function72
3.10.11	Ramp function76
3.10.12	UI and IU table functions (XY table)76
3.10.13	Battery test function78
3.10.14	MPP tracking function80
3.10.15	Remote control of the function generator82
3.11	Other applications83
3.11.1	Parallel operation in master-slave (MS)83
3.11.2	Series connection86
3.11.3	Two quadrants operation (2QO)87

4 SERVICE AND MAINTENANCE

4.1	Maintenance / cleaning	89
4.2	Fault finding / diagnosis / repair	89
4.2.1	Replacing a defect mains fuse	89
4.2.2	Firmware update	89
4.3	Calibration	90
4.3.1	Preface	90
4.3.2	Preparation	90
4.3.3	Calibration procedure	90

5 CONTACT AND SUPPORT

5.1	Repairs	92
5.2	Contact options	92

1. General

1.1 About this document

1.1.1 Retention and use

This document is meant to be kept in the vicinity of the equipment for future reference and explanation of the operation of the device. This document is also meant to be delivered and kept with the equipment in case of change of location and/or user.

1.1.2 Copyright

Reprinting, copying, also partially, usage for other purposes as foreseen of this manual are forbidden and breach may lead to legal process.

1.1.3 Validity

This manual is valid for the following equipment, including derived variants.

Model	Article nr.	Model	Article nr.	Model	Article nr.
EL 9080-170 B	33 200 260	EL 9360-80 B	33 200 267	EL 9750-60 B	33 200 274
EL 9200-70 B	33 200 261	EL 9500-60 B	33 200 268	EL 9080-1020 B	33 200 275
EL 9360-40 B	33 200 262	EL 9750-40 B	33 200 269	EL 9200-420 B	33 200 276
EL 9500-30 B	33 200 263	EL 9080-510 B	33 200 270	EL 9360-240 B	33 200 277
EL 9750-20 B	33 200 264	EL 9250-210 B	33 200 271	EL 9500-180 B	33 200 278
EL 9080-340 B	33 200 265	EL 9360-120 B	33 200 272	EL 9750-120 B	33 200 279
EL 9200-140 B	33 200 266	EL 9500-90 B	33 200 273		

1.1.4 Symbols and warnings

Warning and safety notices as well as general notices in this document are shown in a box with a symbol as follows:

Symbol for a life threatening danger
Symbol for general safety notices (instructions and damage protection bans)
Symbol for general notices

1.2 Warranty

EA Elektro-Automatik guarantees the functional competence of the device within the stated performance parameters. The warranty period begins with the delivery of free from defects equipment.

Terms of guarantee are included in the general terms and conditions of EA Elektro-Automatik.

1.3 Limit of liability

All statements and instructions in this manual are based on current norms and regulations, up-to-date technology and our long term knowledge and experience. EA Elektro-Automatik accepts no liability for losses due to:

- Usage for purposes other than defined
- Use by untrained personnel
- Rebuilding by the customer
- Technical changes
- Use of unauthorised spare parts

The actual delivered device(s) may differ from the explanations and diagrams given here due to latest technical changes or due to customized models with the inclusion of additionally ordered options.

1.4 Disposal of equipment

A piece of equipment which is intended for disposal must, according to European laws and regulations (ElektroG, WEEE) be returned to EA Elektro-Automatik for scrapping, unless the person operating the piece of equipment or another, delegated person is conducting the disposal. Our equipment falls under these regulations and is accordingly marked with the following symbol:

1.5 Product key

Decoding of the product description on the label, using an example:

<u>EL</u>	<u>936</u>	<u> 60</u>	- 40	<u>)</u> E	<u>3U zzz 3U zzz</u>				
						Field for identification of installed options and/or special models			
						Rack units:			
						3U = 3 rack units of height			
						Construction/Version:			
B = 2nd generation			B = 2nd generation						
N					Maximum current of the device in Ampere				
						Maximum voltage of the device in Volt			
						Series : 9 = Series 9000			
						Type identification:			
						EL = Electronic Load, always programmable			

0

Special models are always derived from standard models and can vary in input voltage and current from those given.

1.6 Intended usage

The equipment is intended to be used, if a power supply or battery charger, only as a variable voltage and current source, or, if an electronic load, only as a variable current sink.

Typical application for a power supply is DC supply to any relevant user, for a battery charger the charging of various battery types and for electronic loads the replacement of Ohm resistance by an adjustable DC current sink in order to load relevant voltage and current sources of any type.

• Claims of any sort due to damage caused by wrong usage will not be accepted.

• All damage caused by wrong usage is solely the responsibility of the operator.

1.7 Safety

1.7.1 Safety notices

	 Mortal danger - Hazardous voltage Electrical equipment operation means that some parts will be under dangerous voltage. Therefore all parts under voltage must be covered! All work on connections must be carried out under zero voltage (input not connected to voltage sources) and may only be performed by qualified and informed persons. Improper actions can cause fatal injury as well as serious material damage. Never touch cables or connectors directly after unplugging from mains supply as the danger of electric shock remains. There can be dangerous potential between DC minus to PE or DC plus to PE due to charged X capacitors, even if the device is switched off and disconnected from an external source. The potential either only discharges very slowly or not at all.
	The equipment must only be used as intended
	• The equipment is only approved for use within the connection limits stated on the product label.
	 Do not insert any object, particularly metallic, through the ventilator slots
	 Avoid any use of liquids near the equipment. Protect the device from wet, damp and conden- sation.
	 For power supplies and battery chargers: do not connect users, particularly low resistance, to devices under power; sparking may occur which can cause burns as well as damage to the equipment and to the user.
	 For electronic loads: do not connect power sources to equipment under power, sparking may occur which can cause burns as well as damage to the equipment and to the source.
	• ESD regulations must be applied when plugging interface cards or modules into the relative slot
	• Interface cards or modules may only be attached or removed after the device is switched off. It is not necessary to open the device.
	 Do not connect external power sources with reversed polarity to DC input or outputs! The equipment will be damaged.
	 For power supply devices: avoid where possible connecting external power sources to the DC output, and never those that can generate a higher voltage than the nominal voltage of the device.
	 For electronic loads: do not connect a power source to the DC input which can generate a volt- age more than 120% of the nominal input voltage of the load. The equipment is not protected against over voltage and may be irreparably damaged.
	 Never insert a network cable which is connected to Ethernet or its components into the master- slave socket on the rear side of the device!

• Always configure the various protecting features against overcurrent, overpower etc. for sensitive sources to what the currently used application requires

1.7.2 Responsibility of the user

The equipment is in industrial operation. Therefore the operators are governed by the legal safety regulations. Alongside the warning and safety notices in this manual the relevant safety, accident prevention and environmental regulations must also be applied. In particular the users of the equipment:

- must be informed of the relevant job safety requirements
- must work to the defined responsibilities for operation, maintenance and cleaning of the equipment
- before starting work must have read and understood the operating manual
- must use the designated and recommended safety equipment.

Furthermore, anyone working with the equipment is responsible for ensuring that the device is at all times technically fit for use.

1.7.3 Responsibility of the operator

Operator is any natural or legal person who uses the equipment or delegates the usage to a third party, and is responsible during its usage for the safety of the user, other personnel or third parties.

The equipment is in industrial operation. Therefore the operators are governed by the legal safety regulations. Alongside the warning and safety notices in this manual the relevant safety, accident prevention and environmental regulations must also be applied. In particular the operator has to

- be acquainted with the relevant job safety requirements
- identify other possible dangers arising from the specific usage conditions at the work station via a risk assessment
- introduce the necessary steps in the operating procedures for the local conditions
- regularly check that the operating procedures are current
- update the operating procedures where necessary to reflect changes in regulation, standards or operating conditions.
- define clearly and unambiguously the responsibilities for operation, maintenance and cleaning of the equipment.
- ensure that all employees who use the equipment have read and understood the manual. Furthermore the users are to be regularly schooled in working with the equipment and the possible dangers.

• provide all personnel who work with the equipment with the designated and recommended safety equipment Furthermore, the operator is responsible for ensuring that the device is at all times technically fit for use.

1.7.4 User requirements

Any activity with equipment of this type may only be performed by persons who are able to work correctly and reliably and satisfy the requirements of the job.

- Persons whose reaction capability is negatively influenced by e.g. drugs, alcohol or medication may not operate the equipment.
- Age or job related regulations valid at the operating site must always be applied.

Danger for unqualified users

Improper operation can cause person or object damage. Only persons who have the necessary training, knowledge and experience may use the equipment.

Delegated persons are those who have been properly and demonstrably instructed in their tasks and the attendant dangers.

Qualified persons are those who are able through training, knowledge and experience as well as knowledge of the specific details to carry out all the required tasks, identify dangers and avoid personal and other risks.

1.7.5 Alarm signals

The equipment offers various possibilities for signalling alarm conditions, however, not for danger situations. The signals may be optical (on the display as text) acoustic (piezo buzzer) or electronic (pin/status output of an analog interface). All alarms will cause the device to switch off the DC input.

The meaning of the signals is as follows:

Signal OT	Overheating of the device
(OverTemperature)	DC input will be switched off
	Non-critical
Signal OVP	• Overvoltage shutdown of the DC input occurs due to high voltage entering the device
(OverVoltage)	Critical! The device could be damaged
Signal OCP	Shutdown of the DC input due to excess of the preset limit
(OverCurrent)	Non-critical, protects the source from excessive current drain
Signal OPP	Shutdown of the DC input due to excess of the preset limit
(OverPower)	Non-critical, protects the source from excessive power drain
Signal PF	DC input shutdown due to AC undervoltage or internal auxiliary supply defect
(Power Fail)	Critical on AC overvoltage! AC mains input circuit could be damaged

1.8 Technical data

1.8.1 Approved operating conditions

- Use only inside buildings with dry rooms
- Ambient temperature 0-50 °C (32..122 °F)
- Operational altitude: max. 2000 m (1.242 mi) above sea level
- Maximum 80% humidity, not condensing

1.8.2 General technical data

Display: Colour TFT touch screen with gorilla glass, 4.3", 480pt x 272pt, capacitive

Controls: 2 rotary knobs with pushbutton functions, 1 button

The nominal values for the device determine the maximum adjustable ranges.

1.8.3 Specific technical data

	Model					
Up to 2400 W	EL 9080-170 B	EL 9200-70 B	EL 9360-40 B	EL 9500-30 B	EL 9750-20 B	
AC mains supply						
Supply voltage	90264 V AC	90264 V AC	90264 V AC	90264 V AC	90264 V AC	
Connection type	Wall socket	Wall socket	Wall socket	Wall socket	Wall socket	
Frequency	4565 Hz	4565 Hz	4565 Hz	4565 Hz	4565 Hz	
Fuse	T 6.3 A	T 6.3 A	T 6.3 A	T 6.3 A	T 6.3 A	
Power consumption	Max. 45 W	Max. 45 W	Max. 45 W	Max. 45 W	Max. 45 W	
Leak current	< 3.5 mA	< 3.5 mA	< 3.5 mA	< 3.5 mA	< 3.5 mA	
DC Input						
Max. input voltage U _{Max}	80 V	200 V	360 V	500 V	750 V	
Peak input power P _{Peak}	2400 W	2000 W	1800 W	1200 W	1200 W	
Steady input power P _{Steady} ⁽²	1500 W	1500 W	1500 W	1200 W	1200 W	
Max. input current I _{Max}	170 A	70 A	40 A	30 A	20 A	
Overvoltage protection range	01.03 * U _{Max}	01.03 * U _{Max}	01.03 * U _{Max}	01.03 * U _{Max}	01.03 * U _{Max}	
Overcurrent protection range	01.1 * I _{Max}	01.1 * I _{Max}	01.1 * I _{Max}	01.1 * I _{Max}	01.1 * I _{Max}	
Overpower protection range	01.1 * P _{Peak}	01.1 * P _{Peak}	01.1 * P _{Peak}	01.1 * P _{Peak}	01.1 * P _{Peak}	
Max. allowed input voltage	88 V	220 V	396 V	550 V	825 V	
Min. input voltage for I _{Max}	Approx. 2.2 V	Approx. 2 V	Approx. 2 V	Approx. 6.5 V	Approx. 5.5 V	
Temperature coefficient for set values Δ / K	Voltage / current: 30 ppm					
Derating	Approx. 19 W/°K					
Voltage regulation						
Adjustment range	080 V	0200 V	0360 V	0500 V	0750 V	
Stability at ∆l	< 0.05% U _{Max}	< 0.05% U _{Max}	< 0.05% U _{Max}	< 0.05% U _{Max}	< 0.05% U _{Max}	
Accuracy ⁽¹ (at 23±5°C / 73±9°F)	$\leq 0.1\% U_{Max}$	≤ 0.1% U _{Max}	≤ 0.1% U _{Max}	$\leq 0.1\% \text{ U}_{\text{Max}}$	$\leq 0.1\% U_{Max}$	
Display: Adjustment resolution	See section "1.9.	6.4. Resolution o	f the displayed va	lues"		
Display: Accuracy ⁽³	≤ 0.1%					
Remote sensing compensation	Max. 5% U _{Max}				<u>.</u>	
Current regulation						
Adjustment range	0170 A	070 A	040 A	030 A	020 A	
Stability at ∆U	< 0.1% I _{Max}	< 0.1% I _{Max}	< 0.1% I _{Max}	< 0.1% I _{Max}	< 0.1% I _{Max}	
Accuracy ⁽¹ (at 23±5°C / 73±9°F)	$\leq 0.2\%$ I _{Max}	≤ 0.2% I _{Max}	≤ 0.2% I _{Max}	≤ 0.2% I _{Max}	$\leq 0.2\%$ I _{Max}	
Display: Adjustment resolution	See section "1.9.	6.4. Resolution o	f the displayed va	lues"		
Display: Accuracy ⁽³	≤0.1%					
Rise time 1090% I _{Nom}	< 23 µs	< 40 µs	< 24 µs	< 22 µs	< 18 µs	
Fall time 9010% I _{Nom}	< 46 µs	< 42 µs	< 38 µs	< 29 µs	< 40 µs	
Power regulation						
Adjustment range	0…P _{Peak}	0…P _{Peak}	0P _{Peak}	0P _{Peak}	0P _{Peak}	
Accuracy ⁽¹ (at 23±5°C / 73±9°F)	< 0.5% P _{Steady}	< 0.5% P _{Steady}	< 0.5% P _{Steady}	< 0.5% P _{Steady}	< 0.5% P _{Steady}	
Display: Adjustment resolution	See section "1.9.	6.4. Resolution o	f the displayed va	lues"		
Display: Accuracy ⁽³	≤ 0.2%					
Resistance regulation						
Adjustment range	0.04515 Ω	0.2585 Ω	0.8270 Ω	1.5500 Ω	3.51100 Ω	
Accuracy ⁽⁴ (at 23±5°C / 73±9°F)	≤1% of maximum resistance + 0.3% of maximum current					
Display: Adjustment resolution	See section "1.9.6.4. Resolution of the displayed values"					

(1 In relation to a rated values, the accuracy defines the maximum deviation between a set value and the corresponding actual value on the DC input. Example: the 170 A model has min. 0.2% current accuracy, that is 340 mA. When adjusting the current to 10 A, the actual value is allowed to be between 9.66 A and 10.34 A.

(2 At 21°C ambient temperature

(3 The accuracy or max. error of a value on display adds to the error of the actual value on the DC input

(4 Includes the accuracy of the display actual value

EL 9000 B Series

Lin to 2400 M/	Mode!						
Up to 2400 W	EL 9080-170 B	EL 9200-70 B	EL 9360-40 B	EL 9500-30 B	EL 9750-20 B		
Analog interface ⁽¹		<u> </u>	•	2			
Set value inputs	U, I, P, R						
Actual value output	U, I						
Control signals	DC input on/off, I	remote control on	off, R mode on/of	f			
Status signals	CV, OVP, OT						
Galvanic isolation to the device	Max. 1500 V DC						
Sample rate (set value inputs)	500 Hz						
Insulation							
Input (DC) to enclosure	DC minus: perma DC plus: perman	anent max. ±400 v ent max. ±400 V	√ + max. input volta	ge			
Input (AC) to input (DC)	Max. 2500 V, sho	ort-term					
Environment							
Cooling	Temperature con	Temperature controlled fans					
Ambient temperature	050 °C (3212	2 °F)					
Storage temperature	-2070 °C (-4?	158 °F)					
Digital interfaces							
Featured	1x USB-B for communication, 1x USB-A for functions, 1x Master-slave bus						
Slot for digital modules	CAN, CANopen, Profibus, Profinet, RS232, Ethernet, ModBus TCP, EtherCAT						
Galvanic isolation to the device	Max. 1500 V DC						
Terminals							
Rear side	Share Bus, DC input, AC input, remote sensing, analog interface, USB-B, master-slave bus, interface module slot						
Front side	USB-A						
Dimensions							
Enclosure (WxHxD)	19" x 3U x 461 mm (18.1")						
Total (WxHxD)	483 mm x 133 mm x 568 mm (19" x 5.2" x 22.4")						
Standards	EN 60950:2006 + A11:2009 + A1:2010 + A12:2011 + AC:2011 + A2:2013 EN 61000-6-3:2011-09, EN 61000-6-1:2007-10						
Weight	≈ 9 kg (19.8 lb)	≈ 9 kg (19.8 lb)	≈ 9 kg (19.8 lb)	≈ 9 kg (19.8 lb)	≈ 9 kg (19.8 lb)		
Article number	33200260	33200261	33200262	33200263	33200264		

(1 For technical specifications of the analog interface refer to "3.5.4.4 Analog interface specification" on page 59

EL 9000 B Series

11p to 4900 W	Model					
	EL 9080-340 B	EL 9200-140 B	EL 9360-80 B	EL 9500-60 B	EL 9750-40 B	
AC mains supply						
Supply voltage	90264 V AC	90264 V AC	90264 V AC	90264 V AC	90264 V AC	
Connection type	Wall socket	Wall socket	Wall socket	Wall socket	Wall socket	
Frequency	4565 Hz	4565 Hz	4565 Hz	4565 Hz	4565 Hz	
Fuse	T 6.3 A	T 6.3 A	T 6.3 A	T 6.3 A	T 6.3 A	
Power consumption	Max. 90 W	Max. 90 W	Max. 90 W	Max. 90 W	Max. 90 W	
Leak current	< 3.5 mA	< 3.5 mA	< 3.5 mA	< 3.5 mA	< 3.5 mA	
DC Input						
Max. input voltage U _{Max}	80 V	200 V	360 V	500 V	750 V	
Peak input power P _{Max}	4800 W	4000 W	3600 W	2400 W	2400 W	
Steady input power P _{Steady} ⁽²	3000 W	3000 W	3000 W	2400 W	2400 W	
Max. input current I _{Max}	340 A	140 A	80 A	60 A	40 A	
Overvoltage protection range	01.03 * U _{Max}	01.03 * U _{Max}	01.03 * U _{Max}	01.03 * U _{Max}	01.03 * U _{Max}	
Overcurrent protection range	01.1 * I _{Max}	01.1 * I _{Max}	01.1 * I _{Max}	01.1 * I _{Max}	01.1 * I _{Max}	
Overpower protection range	01.1 * P _{Peak}	01.1 * P _{Peak}	01.1 * P _{Peak}	01.1 * P _{Peak}	01.1 * P _{Peak}	
Max. allowed input voltage	88 V	220 V	396 V	550 V	825 V	
Min. input voltage for I _{Max}	Approx. 2.2 V	Approx. 2 V	Approx. 2 V	Approx. 6.5 V	Approx. 5.5 V	
Temperature coefficient for set values Δ / K	Voltage / current	: 30 ppm				
Derating	Approx. 38 W/°K					
Voltage regulation						
Adjustment range	080 V	0200 V	0360 V	0500 V	0750 V	
Stability at ∆l	< 0.05% U _{Max}	< 0.05% U _{Max}	< 0.05% U _{Max}	< 0.05% U _{Max}	< 0.05% U _{Max}	
Accuracy ⁽¹ (at 23±5°C / 73±9°F)	$\leq 0.1\% U_{Max}$	≤ 0.1% U _{Max}	≤ 0.1% U _{Max}	≤ 0.1% U _{Max}	≤ 0.1% U _{Max}	
Display: Adjustment resolution	See section "1.9.	6.4. Resolution of	the displayed val	lues"		
Display: Accuracy ⁽³	≤ 0.1%					
Remote sensing compensation	Max. 5% U _{Max}					
Current regulation						
Adjustment range	0340 A	0140 A	080 A	060 A	040 A	
Stability at ∆U	< 0.1% I _{Max}	< 0.1% I _{Max}	< 0.1% I _{Max}	< 0.1% I _{Max}	< 0.1% I _{Max}	
Accuracy ⁽¹ (at 23±5°C / 73±9°F)	$\leq 0.2\%$ I _{Max}	$\leq 0.2\%$ I _{Max}	≤ 0.2% I _{Max}	≤ 0.2% I _{Max}	$\leq 0.2\%$ I _{Max}	
Display: Adjustment resolution	See section "1.9.6.4. Resolution of the displayed values"					
Display: Accuracy ⁽³	≤ 0.1%					
Rise time 1090% I _{Nom}	< 23 µs	< 40 µs	< 24 µs	< 22 µs	< 18 µs	
Fall time 9010% I _{Nom}	< 46 µs	< 42 µs	< 38 µs	< 29 µs	< 40 µs	
Power regulation						
Adjustment range	0…P _{Peak}	0…P _{Peak}	0…P _{Peak}	0…P _{Peak}	0P _{Peak}	
Accuracy ⁽¹ (at 23±5°C / 73±9°F)	< 0.5% P _{Steady}	< 0.5% P _{Steady}	< 0.5% P _{Steady}	< 0.5% P _{Steady}	< 0.5% P _{Steady}	
Display: Adjustment resolution	See section "1.9.	6.4. Resolution of	the displayed va	lues"		
Display: Accuracy ⁽³	≤ 0.2%					
Resistance regulation						
Adjustment range	0.0237.5 Ω	0.1343 Ω	0.4135 Ω	0.75250 Ω	1.75550 Ω	
Accuracy ⁽⁴ (at 23±5°C / 73±9°F)	≤1% of maximun	n resistance + 0.3	% of maximum cu	rrent		
Display: Adjustment resolution	See section "1.9.6.4. Resolution of the displayed values"					

(1 In relation to a rated values, the accuracy defines the maximum deviation between a set value and the corresponding actual value on the DC input. Example: the 170 A model has min. 0.2% current accuracy, that is 340 mA. When adjusting the current to 10 A, the actual value is allowed to be between 9.66 A and 10.34 A.

(2 At 21°C ambient temperature

(3 The accuracy or max. error of a value on display adds to the error of the actual value on the DC input (4 Includes the accuracy of the display actual value
	Model										
Up to 4800 W	EL 9080-340 B	EL 9200-140 B	EL 9360-80 B	EL 9500-60 B	EL 9750-40 B						
Analog interface ⁽¹				<u>.</u>							
Set value inputs	U, I, P, R										
Actual value output	U, I										
Control signals	DC input on/off, I	emote control on/	off, R mode on/of	F							
Status signals	CV, OVP, OT										
Galvanic isolation to the device	Max. 1500 V DC										
Sample rate (set value inputs)	500 Hz										
Insulation											
Input (DC) to enclosure	DC minus: permanent max. ±400 V DC plus: permanent max. ±400 V + max. input voltage										
Input (AC) to input (DC)	Max. 2500 V, sho	ort-term									
Environment											
Cooling	Temperature con	trolled fans									
Ambient temperature	050 °C (3212	2 °F)									
Storage temperature	-2070 °C (-4?	158 °F)									
Digital interfaces											
Featured	1x USB-B for cor	nmunication, 1x L	ISB-A for function	s, 1x Master-slave	e bus						
Slot for digital modules	CAN, CANopen,	Profibus, Profinet	, RS232, Ethernet	t, ModBus TCP, E	therCAT						
Galvanic isolation to the device	Max. 1500 V DC										
Terminals											
Rear side	Share Bus, DC ir bus, interface mo	nput, AC input, rer odule slot	note sensing, ana	log interface, USE	3-B, master-slave						
Front side	USB-A										
Dimensions											
Enclosure (WxHxD)	19" x 3U x 461 mm (18.1")										
Total (WxHxD)	483 mm x 133 mm x 568 mm (19" x 5.2" x 22.4")										
Standards	EN 60950:2006 + A11:2009 + A1:2010 + A12:2011 + AC:2011 + A2:2013 EN 61000-6-3:2011-09, EN 61000-6-1:2007-10										
Weight	≈13 kg (28.7 lb)	≈13 kg (28.7 lb)	≈13 kg (28.7 lb)	≈13 kg (28.7 lb)	≈13 kg (28.7 lb)						
Article number 33200265 33200266 33200267 33200268 33200											

(1 For technical specifications of the analog interface refer to "3.5.4.4 Analog interface specification" on page 59

Lin to 7200 W/	Model										
Up to 7200 W	EL 9080-510 B	EL 9200-210 B	EL 9360-120 B	EL 9500-90 B	EL 9750-60 B						
AC mains supply											
Supply voltage	90264 V AC	90264 V AC	90264 V AC	90264 V AC	90264 V AC						
Connection type	Wall socket	Wall socket	Wall socket	Wall socket	Wall socket						
Frequency	4565 Hz	4565 Hz	4565 Hz	4565 Hz	4565 Hz						
Fuse	T 6.3 A	T 6.3 A	T 6.3 A	T 6.3 A	T 6.3 A						
Power consumption	Max. 130 W	Max. 130 W	Max. 130 W	Max. 130 W	Max. 130 W						
Leak current	< 3.5 mA	< 3.5 mA	< 3.5 mA	< 3.5 mA	< 3.5 mA						
DC Input											
Max. input voltage U _{Max}	80 V	200 V	360 V	500 V	750 V						
Peak input power P _{Max}	7200 W	6000 W	5400 W	3600 W	3600 W						
Steady input power P _{Steady} ⁽²	4500 W	4500 W	4500 W	3600 W	3600 W						
Max. input current I _{Max}	510 A	210 A	120 A	90 A	60 A						
Overvoltage protection range	01.03 * U _{Max}	01.03 * U _{Max}	01.03 * U _{Max}	01.03 * U _{Max}	01.03 * U _{Max}						
Overcurrent protection range	01.1 * I _{Max}	01.1 * I _{Max}	01.1 * I _{Max}	01.1 * I _{Max}	01.1 * I _{Max}						
Overpower protection range	01.1 * P _{Peak}	01.1 * P _{Peak}	01.1 * P _{Peak}	01.1 * P _{Peak}	01.1 * P _{Peak}						
Max. allowed input voltage	88 V	220 V	396 V	550 V	825 V						
Min. input voltage for I _{Max}	Approx. 2.2 V	Approx. 2 V Approx. 2 V		Approx. 6.5 V	Approx. 5.5 V						
Temperature coefficient for set values Δ / K	Voltage / current: 30 ppm										
Derating	Approx. 57 W/°K										
Voltage regulation											
Adjustment range	080 V	0200 V	0360 V	0500 V	0750 V						
Stability at ∆l	< 0.05% U _{Max}	< 0.05% U _{Max}	< 0.05% U _{Max}	< 0.05% U _{Max}	< 0.05% U _{Max}						
Accuracy ⁽¹ (at 23±5°C / 73±9°F)	≤ 0.1% U _{Max}	≤ 0.1% U _{Max}	≤ 0.1% U _{Max}	≤ 0.1% U _{Max}	≤ 0.1% U _{Max}						
Display: Adjustment resolution	See section "1.9.6.4. Resolution of the displayed values"										
Display: Accuracy ⁽³	≤0.1%										
Remote sensing compensation	Max. 5% U _{Max}										
Current regulation											
Adjustment range	0510 A	0210 A	0120 A	090 A	060 A						
Stability at ∆U	< 0.1% I _{Max}	< 0.1% I _{Max} < 0.1% I _{Max}		< 0.1% I _{Max}	< 0.1% I _{Max}						
Accuracy ⁽¹ (at 23±5°C / 73±9°F)	≤ 0.2% I _{Max}	$\leq 0.2\%$ I _{Max}	$\leq 0.2\%$ I _{Max}	$\leq 0.2\%$ I _{Max} $\leq 0.2\%$ I _{Max}							
Display: Adjustment resolution	See section "1.9.6.4. Resolution of the displayed values"										
Display: Accuracy ⁽³	≤0.1%										
Rise time 1090% I _{Nom}	< 23 µs	< 40 µs	< 24 µs	< 22 µs	< 18 µs						
Fall time 9010% I _{Nom}	< 46 µs	< 42 µs	< 38 µs	< 29 µs	< 40 µs						
Power regulation											
Adjustment range	0P _{Peak}	0…P _{Peak}	0…P _{Peak}	0…P _{Peak}	0P _{Peak}						
Accuracy ⁽¹ (at 23±5°C / 73±9°F)	< 0.5% P _{Steady}	< 0.5% P _{Steady}	< 0.5% P _{Steady}	< 0.5% P _{Steady}	< 0.5% P _{Steady}						
Display: Adjustment resolution	See section "1.9.	6.4. Resolution of	f the displayed val	ues"							
Display: Accuracy ⁽³	≤0.2%										
Resistance regulation											
Adjustment range	0.0155 Ω	0.0828 Ω	0.2790 Ω	0.5167 Ω	1.2360 Ω						
Accuracy ⁽⁴ (at 23±5°C / 73±9°F)	≤1% of maximun	n resistance + 0.3	% of maximum cu	rrent							
Display: Adjustment resolution	See section "1.9.6.4. Resolution of the displayed values"										

(1 In relation to a rated values, the accuracy defines the maximum deviation between a set value and the corresponding actual value on the DC input. Example: the 170 A model has min. 0.2% current accuracy, that is 340 mA. When adjusting the current to 10 A, the actual value is allowed to be between 9.66 A and 10.34 A.

(2 At 21°C ambient temperature

(3 The accuracy or max. error of a value on display adds to the error of the actual value on the DC input (4 Includes the accuracy of the display actual value

Lin to 7000 M/	Model										
	EL 9080-510 B	EL 9200-210 B	EL 9360-120 B	EL 9500-90 B	EL 9750-60 B						
Analog interface ⁽¹		<u>.</u>	•	2	2						
Set value inputs	U, I, P, R										
Actual value output	U, I										
Control signals	DC input on/off, I	emote control on/	off, R mode on/of	f							
Status signals	CV, OVP, OT										
Galvanic isolation to the device	Max. 1500 V DC	Max. 1500 V DC									
Sample rate (set value inputs)	500 Hz										
Insulation											
Input (DC) to enclosure	DC minus: permanent max. ±400 V DC plus: permanent max. ±400 V + max. input voltage										
Input (AC) to input (DC)	Max. 2500 V, short-term										
Environment	Environment										
Cooling	Temperature con	trolled fans									
Ambient temperature	050 °C (3212	2 °F)									
Storage temperature	-2070 °C (-4?	158 °F)									
Digital interfaces											
Featured	1x USB-B for cor	nmunication, 1x L	JSB-A for function	s, 1x Master-slave	e bus						
Slot for digital modules	CAN, CANopen,	Profibus, Profinet	, RS232, Etherne	t, ModBus TCP, E	therCAT						
Galvanic isolation to the device	Max. 1500 V DC										
Terminals											
Rear side	Share Bus, DC ir bus, interface mo	nput, AC input, rer odule slot	note sensing, ana	log interface, USE	3-B, master-slave						
Front side	USB-A										
Dimensions											
Enclosure (WxHxD)	19" x 3U x 461 mm (18.1")										
Total (WxHxD)	483 mm x 133 mm x 568 mm (19" x 5.2" x 22.4")										
Standards	EN 60950:2006 + A11:2009 + A1:2010 + A12:2011 + AC:2011 + A2:2013 EN 61000-6-3:2011-09, EN 61000-6-1:2007-10										
Weight	≈17 kg (37.5 lb)	≈17 kg (37.5 lb)	≈17 kg (37.5 lb)	≈17 kg (37.5 lb)	≈17 kg (37.5 lb)						
Article number 33200270 33200271 33200272 33200273 33200274											

(1 For technical specifications of the analog interface refer to "3.5.4.4 Analog interface specification" on page 59

Lin to 11100 W	Model										
	EL 9080-1020 B	EL 9200-420 B	EL 9360-240 B	EL 9500-180 B	EL 9750-120 B						
AC mains supply											
Supply voltage	90264 V AC	90264 V AC	90264 V AC	90264 V AC	90264 V AC						
Connection type	Wall socket	Wall socket	Wall socket	Wall socket	Wall socket						
Frequency	4565 Hz	4565 Hz	4565 Hz	4565 Hz	4565 Hz						
Fuse	T 6.3 A	T 6.3 A	T 6.3 A	T 6.3 A	T 6.3 A						
Power consumption	Max. 260 W	Max. 260 W	Max. 260 W	Max. 260 W	Max. 260 W						
DC Input											
Max. input voltage U _{Max}	80 V	200 V	360 V	500 V	750 V						
Peak input power P _{Max}	14400 W	12000 W	10800 W	7200 W	7200 W						
Steady input power P _{Steady} ⁽²	9000 W	9000 W	9000 W	7200 W	7200 W						
Max. input current I _{Max}	1020 A	420 A	240 A	180 A	120 A						
Overvoltage protection range	01.03 * U _{Max}	01.03 * U _{Max}	01.03 * U _{Max}	01.03 * U _{Max}	01.03 * U _{Max}						
Overcurrent protection range	01.1 * I _{Max}	01.1 * I _{Max}	01.1 * I _{Max}	01.1 * I _{Max}	01.1 * I _{Max}						
Overpower protection range	01.1 * P _{Peak}	01.1 * P _{Peak}	01.1 * P _{Peak}	01.1 * P _{Peak}	01.1 * P _{Peak}						
Max. allowed input voltage	88 V	220 V	396 V	550 V	825 V						
Min. input voltage for I _{Max}	Approx. 2.2 V	Approx. 2 V	Approx. 2 V	Approx. 6.5 V	Approx. 5.5 V						
Temperature coefficient for set values Δ / K	Voltage / current: 30 ppm										
Derating	Approx. 114 W/°K										
Voltage regulation											
Adjustment range	080 V	0200 V	0360 V	0500 V	0750 V						
Stability at ∆l	< 0.05% U _{Max}	< 0.05% U _{Max}	< 0.05% U _{Max}	< 0.05% U _{Max}	< 0.05% U _{Max}						
Accuracy ⁽¹ (at 23±5°C / 73±9°F)	≤ 0.1% U _{Max}	≤ 0.1% U _{Max}	≤ 0.1% U _{Max}	≤ 0.1% U _{Max}	≤ 0.1% U _{Max}						
Display: Adjustment resolution	See section "1.9.	ee section "1.9.6.4. Resolution of the displayed values"									
Display: Accuracy ⁽³	≤0.1%										
Remote sensing compensation	Max. 5% U _{Max}										
Current regulation											
Adjustment range	01020 A	0420 A	0240 A	0180 A	0120 A						
Stability at ∆U	< 0.1% I _{Max}	< 0.1% I _{Max}	< 0.1% I _{Max}	< 0.1% I _{Max}	< 0.1% I _{Max}						
Accuracy ⁽¹ (at 23±5°C / 73±9°F)	≤ 0.2% I _{Max}	$\leq 0.2\%$ I _{Max}	$\leq 0.2\%$ I _{Max}	$\leq 0.2\%$ I _{Max}	$\leq 0.2\%$ I _{Max}						
Display: Adjustment resolution	See section "1.9.6.4. Resolution of the displayed values"										
Display: Accuracy ⁽³	≤0.1%										
Rise time 1090% I _{Nom}	< 23 µs	< 40 µs	< 24 µs	< 22 µs	< 18 µs						
Fall time 9010% I _{Nom}	< 46 µs	< 42 µs	< 38 µs	< 29 µs	< 40 µs						
Power regulation											
Adjustment range	0…P _{Peak}	0…P _{Peak}	0…P _{Peak}	0…P _{Peak}	0…P _{Peak}						
Accuracy ⁽¹ (at 23±5°C / 73±9°F)	< 0.5% P _{Steady}	< 0.5% P _{Steady}	< 0.5% P _{Steady}	< 0.5% P _{Steady}	< 0.5% P _{Steady}						
Display: Adjustment resolution	See section "1.9.	6.4. Resolution of	f the displayed val	ues"							
Display: Accuracy ⁽³	≤0.2%										
Resistance regulation											
Adjustment range	0.00752.5 Ω	0.0414 Ω	0.1445 Ω	0.2584 Ω	0.6180 Ω						
Accuracy ⁽⁴ (at 23±5°C / 73±9°F)	≤1% of maximum	n resistance + 0.3	% of maximum cu	rrent							
Display: Adjustment resolution	See section "1.9.6.4. Resolution of the displayed values"										

Example: the 1020 A model has min. 0.2% current accuracy, that is 2.04 A. When adjusting the current to 300 A, the actual value is allowed to be between approx 298 A and 302 A.

(2 At 21°C ambient temperature

(3 The accuracy or max. error of a value on display adds to the error of the actual value on the DC input (4 Includes the accuracy of the display actual value

⁽¹ In relation to a rated values, the accuracy defines the maximum deviation between a set value and the corresponding actual value on the DC input.

	Model										
Up to 14400 W	EL 9080-1020 B	EL 9200-420 B	EL 9360-240 B	EL 9500-180 B	EL 9750-120 B						
Analog interface ⁽¹			•	•							
Set value inputs	U, I, P, R										
Actual value output	U, I	U, I									
Control signals	DC input on/off, remote control on/off, R mode on/off										
Status signals	CV, OVP, OT										
Galvanic isolation to the device	Max. 1500 V DC										
Sample rate (set value inputs)	500 Hz										
Insulation											
Input (DC) to enclosure	DC minus: perma DC plus: perman	anent max. ±400 \ ent max. ±400 V ·	/ + max. input volta	ge							
Input (AC) to input (DC)	Max. 2500 V, sho	ort-term									
Environment											
Cooling	Temperature con	trolled fans									
Ambient temperature	050 °C (3212	2 °F)									
Storage temperature	-2070 °C (-41	58 °F)									
Digital interfaces											
Featured	1x USB-B for cor	nmunication, 1x L	ISB-A for function	s, 1x Master-slave	e bus						
Slot for digital modules	CAN, CANopen,	Profibus, Profinet	, RS232, Ethernet	t, ModBus TCP, E	therCAT						
Galvanic isolation to the device	Max. 1500 V DC										
Terminals											
Rear side	Share Bus, DC ir bus, interface mo	nput, AC input, rer odule slot	note sensing, ana	log interface, USE	3-B, master-slave						
Front side	USB-A										
Dimensions											
Enclosure (WxHxD)	19" x 6U x 464 mm (18.1")										
Total (WxHxD)	483 mm x 266 mm x max. 570 mm (19" x 10.5" x 22.4")										
Standards	EN 60950:2006 + A11:2009 + A1:2010 + A12:2011 + AC:2011 + A2:2013 EN 61000-6-3:2011-09, EN 61000-6-1:2007-10										
Weight	≈33 kg (72.7 lb)	≈33 kg (72.7 lb)	≈33 kg (72.7 lb)	≈33 kg (72.7 lb)	≈33 kg (72.7 lb)						
Article number	33200275	33200276	33200277	33200278	33200279						

(1 For technical specifications of the analog interface refer to "3.5.4.4 Analog interface specification" on page 59

Figure 1 - Front view

Figure 2 - Rear view

EA Elektro-Automatik GmbH Helmholtzstr. 31-37 • 41747 Viersen Germany

EA Elektro-Automatik GmbH Helmholtzstr. 31-37 • 41747 Viersen Germany

Fon: +49 2162 / 3785-0 Fax: +49 2162 / 16230

Figure 5 - Top view, with DC terminal type 2

0 0 С 00000000000000 ELECTRONIC DC LOA EL 9080-1020 B 0..80V 0..1020A 0.14400W 0.0075...2.0 NC DC LOAD 94 0 P 1 0 0 0 266 mm (10.5") 0 0 O C

Figure 6 - Front view

1.8.5

Views (6U models)

Figure 7 - Rear view, without DC cover (models with 500 V or 750 V rated voltage

For a legend of the connector, terminal and control elements see section 1.8.4.

Figure 8 - Side view, with DC cover (models with 500 V or 750 V rated voltage

Figure 9 - Rear view, without DC cover (models with 80 V up to 360 V rated voltage)

Figure 10 - Side view, with DC cover (models up to 360 V rated voltage)

1.8.6 Control elements

Figure 11 - Control Panel

Overview of the elements on the control panel

For a detailed description see section "1.9.6. The control panel (HMI)".

	Touchscreen display
(1)	Used for selection of set values and menus , as well as display of actual values and status.
	The touchscreen can be operated with the fingers or with a stylus.
	Rotary knob with push button function
	Left knob (turn): adjusting the voltage, power or resistance set values, or setting the parameter values in the menu.
(2)	Left knob (push): selection of the decimal position to be changed (cursor) in the current value selection.
	Right knob (turn): adjusting the current set value, or setting parameter values in the menu.
	Right knob (push): selection of the decimal position to be changed (cursor) in the current value selection.
	On/Off Button for DC input
(3)	Used to toggle the DC input between on and off, also used to start a function run. The LEDs "On" and "Off" indicate the state of the DC input, no matter if the device is manually controlled or remotely
	USB-A port
(4)	For the connection of standard USB sticks. See section "1.9.6.5. USB port (front side)" for more details.

1.9 Construction and function

1.9.1 General description

The electronic DC loads of the EL 9000 B series are especially suitable for test systems due to their compact construction with a 19" enclosure in 3 or 6 rack units of height. Apart from basic functions of electronic loads, set point curves can be generated in the integrated function generator (sine, rectangular, triangular and other curve types). Arbitrary curves can be stored on and uploaded from an USB stick.

For remote control using a PC or PLC the devices are provided as standard with an USB port on the rear side as well as a galvanically isolated analog interface.

Via optional plug-in interface modules another digital interface such as Profibus, Ethernet, RS232, ProfiNet, ModBus TCP, CANopen, CAN or EtherCAT can be added. These enable the devices to be connected to standard industrial buses simply by changing or adding a small module. The configuration, if at all necessary, is simple.

In addition the devices offer the possibility to connect to compatible power supplies via a Share Bus, in order to create a so-called two-quadrants system. This operation mode uses the source-sink principle for testing devices, components and other parts in many industrial areas.

A genuine master-slave connection with totalling of the slave units is also provided as standard. Operating in this way allows up to 16 units to be combined to a single system with a total power of up to 230 kW.

All models are controlled by microprocessors. These enable an exact and fast measurement and display of actual values.

1.9.2 Block diagram

The block diagram illustrates the main components inside the device and their relationships.

There are digital, microprocessor controlled components (KE, DR, HMI), which can be target of firmware updates.

1.9.3 Scope of delivery

- 1 x Electronic load device
- 1 x Share Bus plug
- 1 x Remote sensing plug
- 1 x 1.8 m (5.9 ft) USB cable
- 1 x Set of DC terminal cover(s)
- 1 x USB stick with documentation and software
- 1 x Mains cord
- 1 x UK wall socket adapter (only included in delivery to the UK)

1.9.4 Accessories

For these devices the following accessories are available:

Digital interface modules	Pluggable and retrofittable digital interface modules for RS232, CANopen, Ethernet, Profibus, ProfiNet, ModBus TCP, CAN or EtherCAT are available.
	Details about the interface modules and the programming of the device can be found in separate documentation that is available on an USB stick, which is included with the device, or as PDF download on the Elektro-Automatik website.

1.9.5 Options

These options are not retrofittable as they are permanently built in or preconfigured during the manufacturing process.

POWER RACKS 19"-rack	19" cabinets in various configurations up to 42U as parallel systems are available, even mixed with power supply devices to create test systems. Further information in our catalogue or upon request.								
3W GPIB interface	Replaces the standard slot for pluggable interface modules by a rigidly installed GPIB port. This option can be retrofitted upon request. The device will keep the USB and analog interfaces. Via the GPIB port, it can only support SCPI commands.								
EL 9000 B SLAVE Additional slave units	 These slave units are intended to extend the power of specific standard m this series. They don't feature an HMI and are intended to only run being co by the master. The slave units can be ordered by their article number and retrofitted on I A patch cable for master-slave bus connection of the additional slave is incention. 								
	Model EL 9080-510 B Slave EL 9200-210 B Slave EL 9360-120 B Slave EL 9500-90 B Slave EL 9750-60 B Slave	Article number 33290270 33290271 33290272 33290273 33290274	Can be used to extend EL 9080-510 B EL 9200-210 B EL 9360-120 B EL 9500-90 B EL 9750-60 B						

1.9.6 The control panel (HMI)

The HMI (Human-Machine Interface) consists of a display with touchscreen, two rotary knobs, a button and an USB port.

1.9.6.1 Touchscreen display

The graphic touchscreen display is divided into a number of areas. The complete display is touch sensitive and can be operated by finger or stylus to control the equipment.

In normal operation the left hand side is used to show actual and set values and the right hand side to display status information:

• Actual / set values area (left hand side)

In normal operation the DC input values (large numbers) and set values (small numbers) for voltage, current and power are displayed. The resistance set value of the is only displayed when resistance mode is activated.

While the DC input is switched on, the actual regulation mode CV, CC, CP or CR is displayed next to the corresponding actual value, as in the example figure above.

The set values can be adjusted with the rotary knobs next to the display screen or can be entered directly via the touchscreen. When adjusting with the knobs, pushing the knob will select the digit to be changed. Logically, the values are increased by clockwise turning and decreased by anti-clockwise turning.

Display	Unit	Range	Description
Actual voltage	V	0-125% U _{Nom}	Actual value of DC input voltage
Set value of voltage (1	V	0-102% U _{Nom}	Set value for limiting the DC input voltage
Actual current	A	0.2-125% I _{Nom}	Actual value of DC input current
Set value of current ⁽¹	А	0-102% I _{Nom}	Set value for limiting the DC input current
Actual power	W	0-125% P _{Peak}	Calculated actual value of input power, P = $U_{IN} * I_{IN}$
Set value of power ⁽¹	W	0-102% P _{Peak}	Set value for limiting DC input power
Actual resistance	Ω	0999999 Ω	Calculated actual internal resistance, R = U_{IN} / I_{IN}
Set value resistance ⁽¹	Ω	x ⁽² -102% R _{Max}	Set value for the target internal resistance
Adjustment limits	A,V,W,Ω	0-102% nom	U-max, I-min etc., related to the physical values
Protection settings 1	A,W	0-110% nom	OCP and OPP, related to the physical values
Protection settings 2	V	0-103% nom	OVP, related to the physical values

General display and setting ranges:

⁽¹ Valid also for values related to these physical quantities, such as OVD for voltage and UCD for current

⁽² The minimum adjustable resistance set value varies depending on the model. See technical specifications in 1.8.3

• Status display (upper right)

This area displays various status texts and symbols:

Display	Description
Locked	The HMI is locked
Unlocked	The HMI is unlocked
Remote:	The device is under remote control from
Analog	the built-in analog interface
USB & others	the built-in USB port or a plug in interface module
Local	The device has been locked by the user explicitly against remote control
Alarm:	Alarm condition which has not been acknowledged or still exists.
Event:	A user defined event has occurred which is not yet acknowledged.
Master	Master-slave mode activated, device is master
Slave	Master-slave mode activated, device is slave
Function:	Function generator activated, function loaded
Stopped / Running	Status of the function generator resp. of the function
	Data logging to USB stick active or failed

Area for assigning the rotary knobs

The two rotary knobs next to the display screen can be assigned to various functions. This area shows the actual assignments. These can be changed by tapping this area, as long as it's not locked. The display changes to:

The physical quantities on the depiction of the knobs show the current assignment. With an electronic load, the right-hand knob is always assigned to the current I, while the left knob can be switched by tapping the depiction.

The area will then show the assignment:

U I Left rotary knob: voltage Right rotary knob: current ΡΙ

Left rotary knob: power Right rotary knob: current

R I

Left rotary knob: resistance Right rotary knob: current

The other set values can't be adjusted via the rotary knobs, unless the assignment is changed. However, values

can be entered directly with a ten-key pad by tapping on the small icon **Line**. Alternatively to the knob depiction, the assignment can also be changed by tapping the coloured set value areas.

1.9.6.2 Rotary knobs

As long as the device is in manual operation the two rotary knobs are used to adjust set values as well as setting the parameters in SETTINGS and MENU. For a detailed description of the individual functions see section *"3.4 Manual operation" on page 43*.

1.9.6.3 Button function of the rotary knobs

The rotary knobs also have a pushbutton function which is used in all menu options for value adjustment to move the cursor by rotation as shown:

1.9.6.4 Resolution of the displayed values

In the display, set values can be adjusted in fixed increments. The number of decimal places depends on the device model. The values have 3 to 5 digits. Actual and set values always have the same number of digits.

Adjustment resolution and number of digits of set values in the display:

Volt OVP, UV U-min,	age /D, U-	e, OVD, max	Curre OCP, UCI I-min, I	urrent, Power, UCD, OCD, OPP, OPD, in, I-max P-max		D,	Resis R-r	ce ,			
Nominal	Digits	Step width	Nominal	Digits	Step width		Digits	Step width	Nominal	Digits	Step width
80 V	4	0.01 V	20 A	5	0.001 A	Single unit	4	1 W	2.5 Ω - 7.5 Ω	5	0.0001 Ω
200 V	5	0.01 V	30 A - 90 A	4	0.01 A	Master-slave	3	0.1 kW	14 Ω - 90 Ω	5	0.001 Ω
360 V	4	0.1 V	120 A - 240 A	5	0.01 A	<10 kW			135 Ω - 550 Ω	5	0.01 Ω
500 V	4	0.1 V	420 A / 510 A	4	0.1 A	Master-slave	4	0.01 kW	1100 Ω	5	0.1 Ω
750 V	4	0.1 V	>=1020 A	4	1 A	10<100 kW					
						Master-slave >100 kW	4	0.1 kW			

1.9.6.5 USB port (front side)

The frontal USB port, located to the right of the rotary knobs, is intended for the connection of standard USB sticks and can be used for loading or saving sequences for the arbitrary and tables for the XY generator, as well as for logging data. USB 2.0 sticks are well accepted, but must be **FAT32** formatted and have a **maximum capacity of 32GB**. USB 3.0 sticks are accepted as well, but not from all manufacturers.

All supported files must be held in a designated folder in the root path of the drive in order to be found. This folder must be named **HMI_FILES**, such that a PC would recognise the path G:\HMI_FILES if the drive were to be assigned the letter G.

The control panel of the device can read the following file types from a stick:

wave_u <arbitrary_text>.csv</arbitrary_text>	Sequence point table for an arbitrary function, either voltage (U) or current (I)
wave_i <arbitrary_text>.csv</arbitrary_text>	The name must begin with wave_u of wave_i, the rest is user defined.
iu <arbitrary_text>.csv</arbitrary_text>	IU table for the XY function generator.
	The name must begin with <i>iu</i> , the rest can be user defined.
ui <arbitrary_text>.csv</arbitrary_text>	UI table for the XY function generator.
	The name must begin <i>with ui</i> , the rest can be user defined.
profile_ <nr>.csv</nr>	Saved user profile. The number in the file name is a counter and not related to the actual user profile number in the HMI. A max. of 10 files to select from is shown when loading a user profile.
mpp_curve_ <arbitrary_ text>.csv</arbitrary_ 	User-defined curve data (100 voltage values) for mode MPP4 of the MPPT function

The control panel of the device can save the following file types to an USB stick:

battery_test_log_ <nr>.csv</nr>	File with log data recorded from the battery test function. For a battery test log, data different and/or additional to log data of normal logging is recorded. The <nr> field in the file name is automatically counted up if equally named files already exist in the folder.</nr>
usb_log_ <nr>.csv</nr>	File with log data recorded during normal operation in all modes. The file layout is identical to the those generated from the Logging feature in EA Power Control. The <nr> field in the file name is automatically counted up if equally named files already exist in the folder.</nr>
profile_ <nr>.csv</nr>	Selected user profile. The number in the file name is a counter and not related to the actual user profile number in the HMI.
wave_u_ <nr>.csv wave_i_<nr>.csv</nr></nr>	Sequence point data of the arbitrary function generator, according to the current selection of voltage (U) or current (I). Already existing files are listed and can be overwritten.
mpp_result_ <nr>.csv</nr>	Result data from mode MPP4 (MPPT function) with 100 sets of Umpp, Impp and Pmpp

1.9.7 USB port (type B, rear side)

The USB-B port on the rear side of the device is provided for communication with the device and for firmware updates. The included USB cable can be used to connect the device to a PC (USB 2.0 or 3.0). The driver is delivered on the included medium (USB stick) and installs a virtual COM port.

The device can be addressed via this port either using the international standard ModBus RTU protocol or by SCPI language. The device recognises the used message protocol automatically. Details about remote control can be found in a programming guide which is also on the included USB stick or on the web site of Elektro-Automatik.

If remote control is in operation the USB port has no priority over any of the other interfaces, digital or analog, and can therefore only be used alternatively to these. However, monitoring is always available.

1.9.8 Interface module slot

This slot on the rear side of the device is only available with standard models, i. e. those where option 3W isn't installed, and is used to install various interface modules types of the IF-AB interface series. The following interfaces are available:

Article number	Name	Description
35400100	IF-AB-CANO	CANopen, 1x Sub-D 9-pole male
35400101	IF-AB-RS232	RS 232, 1x Sub-D 9-pole male (null modem)
35400103	IF-AB-PBUS	Profibus DP-V1 Slave, 1x Sub-D 9-pole female
35400104	IF-AB-ETH1P	Ethernet, 1x RJ45
35400105	IF-AB-PNET1P	ProfiNET IO, 1x RJ45
35400107	IF-AB-MBUS1P	ModBus TCP, 1x RJ45
35400108	IF-AB-ETH2P	Ethernet, 2x RJ45
35400109	IF-AB-MBUS2P	ModBus TCP, 2x RJ45
35400110	IF-AB-PNET2P	ProfiNET IO, 2x RJ45
35400111	IF-AB-CAN	CAN 2.0A & 2.0B, 1x Sub-D 9-pole male
35400112	IF-AB-ECT	EtherCAT, 1x RJ45

The modules are installed by the user and can be retrofitted without problem. A firmware update of the device may be necessary in order to recognize and support certain modules.

If remote control is in operation the interface module has no priority over either the USB port or the analog interface and can, therefore, only be used alternately to these. However, monitoring is always available.

Switch off device before adding or removing modules!

1.9.9 Analog interface

This 15 pole Sub-D socket on the rear side of the device is provided for remote control of the device via analog or digital signals.

If remote control is in operation this analog interface can only be used alternately to the digital interface. However, monitoring is always available.

The input voltage range of the set values and the output voltage range of the monitor values, as well as reference voltage level can be switched in the settings menu of the device between 0-5 V and 0-10 V, in each case for 0-100%.

"Share" connector 1.9.10

The 2 pole socket ("Share") on the rear side of the device is provided for connection to equally named sockets on compatible electronic loads when establishing parallel connection where symmetric current distribution is required, as well as compatible power supplies to build a two-quadrants operation setup. For details about these feature refer to "3.11.1. Parallel operation in master-slave (MS)" and "3.11.3. Two quadrants operation (2QO)". Following power supply and electronic load series are compatible:

- PSI 9000 2U
- PSI 9000 3U / PSI 9000 WR / PSI 9000 3U SLAVE / PSI 9000 WR SLAVE
- ELR 9000 / ELR 9000 HP / ELR 9000 HP SLAVE
- EL 9000 B / EL 9000 B HP / EL 9000 2Q / EL 9000 B SLAVE
- PSE 9000
- PS 9000 1U / 2U / 3U (from revision 2) *
- PSB 9000 / PSBE 9000 / PSB 9000 SLAVE

* The revision (of hardware) is stated on the type plate. In case the type plate does not state the revision, the device always has hardware revision 1.

1.9.11 "Sense" connector (remote sensing)

When running constant voltage operation (CV) and in order to compensate the unavoidable voltage drops along the DC cables, the Sense input can be connected to the source's DC terminal. The maximum possible compensation is given in the technical data.

> For safety reasons and to comply to international directives, insulation of high voltage models, i. e. such with a nominal voltage of 500 V or higher, is ensured by using only the two outer pins of the 4-pole terminal. The inner two pins, marked with NC, must remain unconnected.

1.9.12 Master-Slave bus

A further port is provided on the rear side of the device, comprising two RJ45 sockets which enable multiple devices of the same model to be connected via a digital bus to create a master-slave system. Connection is made using standard CAT5 cables. The units on both ends are usually terminated by bus termination resistors which are switched on or off using the three DIP switches next to the ports. Refer to section 3.11.1.4 for more information.

EL 9000 B Series

2. Installation & commissioning

2.1 Transport and storage

2.1.1 Transport

	 The handles on the front side of the device are <u>not</u> for carrying!
	• Because of its weight, transport by hand should be avoided where possible. If unavoidable then only the housing should be held and not on the exterior parts (handles, DC input terminal, rotary knobs).
	 Do not transport while the device is powered or connected to a voltage source!
	 When relocating the equipment use of the original packing is recommended
	 The device should always be carried and mounted horizontally
	 Use suitable safety clothing, especially safety shoes, when carrying the equipment, as due to its weight a fall can have serious consequences.

2.1.2 Packaging

It is recommended to keep the complete transport packaging for the lifetime of the device for relocation or return to Elektro-Automatik for repair. Otherwise the packaging should be disposed of in an environmentally friendly way.

2.1.3 Storage

In case of long term storage of the equipment it is recommended to use the original packaging or similar. Storage must be in dry rooms, if possible in sealed packaging, to avoid corrosion, especially internal, through humidity.

2.2 Unpacking and visual check

After every transport, with or without packaging, or before commissioning, the equipment should be visually inspected for damage and completeness using the delivery note and/or parts list (see section *"1.9.3. Scope of delivery"*). An obviously damaged device (e.g. loose parts inside, damage outside) must under no circumstances be put in operation.

2.3 Installation

2.3.1 Safety procedures before installation and use

	• The device may, depending on the model, have a considerable weight. Therefore the proposed location of the equipment (table, cabinet, shelf, 19" rack) must be able to support the weight without restriction.
	 When using a 19" rack, rails suitable for the width of the housing and the weight of the device are to be used. (see "1.8.3. Specific technical data")
	 Before connecting to the mains ensure that the connection is as shown on the product label. Overvoltage on the AC supply can cause equipment damage.
	 Before connecting a voltage source to the DC input make sure, that the source can not gener- ate a voltage higher than specified for a particular model or install measures which can prevent damaging the device by overvoltage input

2.3.2 Preparation

Connection to mains of electronic loads of EL 9000 B only requires a standard wall socket. The mains cord is included in the scope of delivery. The devices only consume little power, so there are no further installation or safety measures required. The loads can also be operated together with different devices on the same distribution box.

2.3.3 Installing the device

- Select the location for the device so that the connection to the source is as short as possible.
- Leave sufficient space behind the equipment, minimum 30 cm (1 ft), for ventilation of warm air that will be exhausted.

A device in a 19" housing will usually be mounted on suitable rails and installed in 19" racks or cabinets. The depth of the device and its weight must be taken into account. The handles on the front are for sliding in and out of the cabinet. Slots on the front plate are provided for fixing the device (fixing screws not included).

On some models the mounting brackets provided to fix the device in a 19" cabinet can be removed so that the device can be operated on any flat surface as a desk top device.

Acceptable and unacceptable installation positions:

Standing surface

2.3.4 Connection to DC sources (3U models)

In the case of a device with a high nominal current and hence a thick and heavy DC connection cable it is necessary to take account of the weight of the cable and the strain imposed on the DC connection. Especially when mounted in a 19" cabinet or similar, where the cable hangs on the DC input, a strain reliever has to be used.

The DC input is located on the rear side of the device and is **not** protected by a fuse. The cross section of the connection cable is determined by the current consumption, cable length and ambient temperature.

For cables up to 5 m (16.4 ft)and average ambient temperatures up to 50 °C (122 °F) we recommend:

up to 30 A :	6 mm²	up to 70 A :	16 mm²
up to 90 A :	25 mm²	up to 140 A :	50 mm²
up to 170 A :	70 mm²	up to 210 A :	95 mm²
up to 340 A :	2x 70 mm ²	up to 510 A :	2x 120 mm ²

per connection pole (multi-conductor, insulated, openly suspended). Single cables of, for example, 70 mm² may be replaced by 2x 25 mm² etc. If the cables are long then the cross section must be increased to avoid voltage loss and overheating.

2.3.4.1 DC terminal types

The table below shows an overview of the various DC terminals. It is recommended that cables are always connected using ring lugs.

2.3.4.2 Cable lead and plastic cover

A plastic cover for contact protection is included for the DC terminal. It should always be installed. The cover for type 2 (see picture above) is fixed to the connector itself, for type 1 to the back of the device. Furthermore the cover for type 1 has break outs so that the supply cable can be laid in various directions.

The connection angle and the required bending radius for the DC cable must be taken into account when planning the depth of the complete device, especially when installing in a 19" cabinet or similar. For type 2 connectors only a horizontal lead can be used to allow for installation of the cover.

Examples of the type 1 terminal:

2.3.5 Connection to DC sources (6U models)

Connecting a suitable DC source to a 6U model of this series is basically the same as with 3U models. The differences lie in the higher required cross section of cables and the connection point, which is important concerning protection against physical contact.

For cables up to 5 m (16.4 ft) and average ambient temperature up to 50 °C (122 °F), we recommend:

up to 120 A :	35 mm²	up to 180 A :	70 mm²
up to 240 A :	95 mm²	up to 420 A :	2 x 70 mm ²

up to **1020 A**: 4 x 95 mm²

per connection pole (multi-conductor, insulated, openly suspended). Single cables of, for example, 70 mm² may be replaced by 2 x 25 mm² etc. If the cables are long then the cross section must be increased to avoid voltage loss and overheating.

2.3.5.1 Connection points

The default connection points on the DC input of 6U models are defined as shown below (red arrows). If more than two cable per DC pole is going to be connected, the upper or lower screw connection points (terminal type 1) can also be used:

Models with DC terminal type 2

Models with DC terminal type 1

It is recommended to lay the cables in a way so they lead to the DC input vertically from below or above. This shall make it possible to install the safety DC cover, which should be mounted all the time, and to avoid the cables from being permanently positioned within the warm or hot exhaust air stream at the rear of the load device.

2.3.6 Grounding of the DC input

Grounding one of the DC input poles is allowed. Doing so results in a potential shift of the grounded pole against PE.

Because of insulation, there is a max. allowed potential shift of the DC input poles, which also depends on the device model. Also see technical specification sheets in *"1.8.3. Specific technical data"*, item "Insulation".

2.3.7 Connecting the "Share" bus

The "Share" bus connector on the rear side is intended to balance the current of multiple units in parallel operation, especially when using the integrated function generator of the master unit. Alternatively, it can be connected to a compatible power supply, like from series PSI 9000 3U, in order to run a two-quadrants operation. For further information about this mode of operation can be found in section *"3.11.3. Two quadrants operation (2QO)"*.

For the connection of the share bus the following must be paid attention to:

- Connection is only permitted between up to 16 units and only between compatible devices as listed in section *"1.9.10. "Share" connector"*
 - If a two-quadrants operation system has to be set up where multiple power supplies are connected to one electronic load unit or a group of electronic loads, all units should be connected via Share bus.

 When not using one or several units of a system configured with Share bus, because less power is required for an application, it is recommended to disconnect the unit's from the Share bus, because even when not powered they can have a negative impact on the control signal on the bus due to their impedance. Disconnection can be done by simply unplugging them from the bus or using switches.

• The Share bus is referenced to DC minus. When grounding DC plus, the DC minus will shift its potential and so will the Share bus

2.3.8 Connection of remote sensing

- Both pins "NC" on the "Sense" terminal must not be connected!
- This series features models with up to 750 V DC rated voltage, so it is required to only use remote sensing leads with proper electric strength
- Remote sensing is only effective during constant voltage operation (CV) and for other regulation
 modes the sense input should be disconnected, if possible, because connecting it generally
 increases the oscillation tendency.
- The cross section of the sensing cables is noncritical. Recommendation for cables up to 5 m (16.4 ft): use at least 0.5 mm²
- Sensing cables should be twisted and laid close to the DC cables to damp oscillation. If necessary, an additional capacitor should be installed at the source to eliminate oscillation
- Sensing cables must be connected + to + and to at the source, otherwise the sense input of the electronic load can be damaged. For an example see Figure 12 below.
- In master-slave operation, the remote sensing should be connected to the master unit only

Figure 12 - Example for remote sensing wiring

2.3.9 Connecting the USB port (rear side)

In order to remotely control the device via this port, connect the device with a PC using the included USB cable and switch the device on.

2.3.9.1 Driver installation (Windows)

On the initial connection with a PC the operating system will identify the device as new hardware and will try to install a driver. The required driver is for a Communications Device Class (CDC) device and is usually integrated in current operating systems such as Windows 7 or 10. But it is strongly recommended to use and install the included driver installer (on USB stick) to gain maximum compatibility of the device to our softwares.

2.3.9.2 Driver installation (Linux, MacOS)

We cannot provide drivers or installation instructions for these operating systems. Whether a suitable driver is available can be found out by searching the Internet.

2.3.9.3 Alternative drivers

In case the CDC drivers described above are not available on your system, or for some reason do not function correctly, commercial suppliers can help. Search the Internet for suppliers using the keywords "cdc driver windows" or "cdc driver linux" or "cdc driver macos".

2.3.10 Installation of an interface module

The various interface modules, which are available for EL 9000 B standard version models with interface slot, can be retrofitted by the user and are exchangeable with each other. The settings for the currently installed module vary and need to be checked and, if necessary, corrected on initial installation and after module exchange.

- Common ESD protection procedures apply when inserting or exchanging a module!
- The device must be switched off before insertion or removal of a module!
- Never insert any other hardware other than these interface modules into the slot!
 If no module is in use it is recommended that the slot cover is mounted in order to avoid
- internal dirtying of the device and changes in the air flow

Installation steps:

Remove the slot cover. If needed use a screw driver.

Check that the fixing screws of an already installed module are fully retracted. If not, unscrew them (Torx 8) and remove module.

Insert the interface module into the slot. The shape ensures correct alignment.

When inserting take care that it is held as close as possible to a 90 $^{\circ}$ angle to the rear wall of the device. Use the green PCB, which you can recognize on the open slot, as guide. At the end is a socket for the module.

On the bottome side of the module are two plastic nibs which must click into the green PCB so that the module is properly aligned on the rear plate of the device.

3.

Slide the module into place as far as it will go.

The screws (Torx 8) are provided for fixing the module and should be fully screwed in. After installation, the module is ready for use and can be connected.

Removal follows the reverse procedure. The screws can be used to assist in pulling out the module.

2.3.11 Connecting the analog interface

The 15 pole connector (type: Sub-D, D-Sub) on the rear side is an analog interface. To connect this to a controlling hardware (PC, electronic circuit), a standard plug is necessary (not included in the scope of delivery). It is generally advisable to switch the device completely off before connecting or disconnecting this connector, but at least the DC input.

The analog interface is galvanically isolated from the device internally. Therefore do not connect any ground of the analog interface (AGND) to the DC minus input as this will cancel the galvanic isolation.

2.3.12 Initial commission

For the first start-up after purchasing and installing the device, the following procedures have to be executed:

- Confirm that the connection cables to be used are of a satisfactory cross section!
- Check if the factory settings of set values, safety and monitoring functions and communication are suitable for your intended application of the device and adjust them if required, as described in the manual!
- In case of remote control via PC, read the additional documentation for interfaces and software!
- In case of remote control via the analog interface, read the section in this manual concerning analog interfaces!

2.3.13 Commission after a firmware update or a long period of non use

In case of a firmware update, return of the equipment following repair or a location or configuration change, similar measures should be taken to those of initial start up. Refer to *"2.3.12. Initial commission".*

Only after successful checking of the device as listed may it be operated as usual.

3. Operation and application

3.1 Personal safety

- In order to guarantee safety when using the device, it is essential that only persons operate the device who are fully acquainted and trained in the required safety measures to be taken when working with dangerous electrical voltages
 - For models which accept dangerous voltages, the included DC terminal cover, or an equivalent, must always be used
 - Whenever the DC input is being re-configured, you must switch off or even better, disconnect the source!

3.2 Operating modes

An electronic load is internally controlled by different control or regulation circuits, which shall bring voltage, current and power to the adjusted values and hold them constant, if possible. These circuits follow typical laws of control systems engineering, resulting in different operating modes. Every operating mode has its own characteristics which is explained below in short form.

3.2.1 Voltage regulation / Constant voltage

Constant voltage operation (CV) or voltage regulation is a subordinate operating mode of electronic loads. In normal operation, a voltage source is connected to electronic the load, representing a certain input voltage. If the set value for the voltage in constant voltage operation is higher than the actual voltage of the source, the value cannot be reached. The load will then sink no current from the source. If the voltage set value is lower than the input voltage then the load will attempt to sink enough current from the source to achieve the desired voltage level. If the resulting current reaches the adjusted current set value or the actual power according to $P = U_{IN} * I_{IN}$ reaches the adjusted power set value, the load will automatically switch to constant current or constant power operation, depending on what occurs first. Then the adjusted input voltage can no longer be achieved.

While the DC input is switched on and constant voltage mode is active, then the condition "CV mode active" will be shown on the graphics display by the abbreviation CV, as well it will be passed as a signal to the analog interface (depending on the settings) and stored as internal status which can be read via digital interface.

3.2.1.1 Speed of the voltage controller

The internal voltage controller can be switched between "Slow" and "Fast" (see "3.4.3.1. Menu "General Settings""). Factory default value is "Slow". Which of both is the best setting depends on the actual situation in which the device is going to be operated, but primarily it depends on the type of voltage source. An active, regulated source such as a switching mode power supply has its own voltage control circuit which works concurrently to the load's circuit. Both might work against each other and lead to oscillation. If this occurs it's recommended to set the controller speed to "Slow".

In other situations, e.g. operating the function generator and applying various functions to the load's input voltage and setting of small time increments, it might be necessary to set the voltage controller to "Fast" in order to achieve the expected results.

3.2.1.2 Minimum voltage for maximum current

Due to technical reasons, all models in this series have a minimum internal resistance that makes the unit to be supplied with a minimum input voltage (U_{MIN}) in order to be able to draw the full current (I_{MAX}) . This minimum input voltage varies from model to model and is listed in the technical specifications. If less voltage than U_{MIN} is supplied, the load proportionally draws less current than adjusted, which can be calculated easily.

See principle view to the right.

3.2.2 Current regulation / constant current / current limitation

Current regulation is also known as current limitation or constant current mode (CC) and is fundamental to the normal operation of an electronic load. The DC input current is held at a predetermined level by varying the internal resistance according to Ohm's law R = U / I such that, based on the input voltage, a constant current flows. Once the current has reached the adjusted value, the device automatically switches to constant current mode. However, if the power consumption reaches the adjusted power level or the maximum possible power in derating, the device will automatically switch to power limitation and adjust the input current according to $I_{MAX} = P_{SET} / U_{IN}$, even if the maximum current set value is higher. The current set value, as determined by the user, is always and only an upper limit.

While the DC input is switched on and constant current mode is active, the condition "CC mode active" will be shown on the graphics display by the abbreviation CC and can also be read via digital interface.

3.2.3 Resistance regulation / constant resistance

Inside electronic loads, whose operating principle is based on a variable internal resistance, constant resistance mode (CR) is almost a natural characteristic. The load attempts to set the internal resistance to the user defined value by determining the input current depending on the input voltage according to Ohm's law $I_{IN} = U_{IN} / R_{SET}$. The internal resistance is naturally limited between almost zero and maximum (resolution of current regulation too inaccurate). As the internal resistance cannot have a value of zero, the lower limit is defined to an achievable minimum. This ensures that the electronic load, at very low input voltages, can consume a high input current from the source, up to the maximum.

While the DC input is switched on and constant resistance mode is active, the condition "CR mode active" will be shown on the graphics display by the abbreviation CR, as well it will be stored as internal status which can be read via digital interface.

3.2.4 Power regulation / constant power / power limitation

Power regulation, also known as power limitation or constant power (CP), limits the DC input power of the device at the adjusted value, so that the current flowing from the source, together with the input voltage, achieves the desired value. Power limitation then limits the input current according to $I_{IN} = P_{SET} / U_{IN}$ as long as the power source is able to provide this power.

Power limiting operates according to the auto-range principle such that at lower input voltages higher current can flow and vice versa, in order to maintain constant power within the range P_N (see diagram to the right).

While the DC input is switched on and constant power operation is active, the condition "CP mode active" will be shown on the graphic display by the abbreviation CP, as well it will be stored as internal status which can be read via digital interface.

Constant power operation impacts the internal set current value. This means that the maximum set current may not be reachable if the set power value according to I = P / U sets a lower current. The user defined and displayed set current value is always the upper limit only.

3.2.4.1 Temperature dependent derating

This series consists of conventional electronic loads which convert the consumed electrical energy into heat which is dissipated into the environment. In order to avoid overheating, the device will automatically reduce i.e. derate the actual input power when heating up. It means, at a cold start it can take the peak power (see technical specs) for a certain time before it starts reducing.

The derating depends on the ambient temperature. It means, that at 10°C the load can take the peak power for a much longer time than at 20°C ambient temperature or higher. Disregarding the ambient temperature, the derating will be constant at a certain power per degree Kelvin (see technical specifications), down to the steady power which is rated at an ambient temperature of 21°C (70°F) and further down.

The time which elapses during the derating phase, is typically between 150 and 200 seconds. It includes the peak power time.

However, if the device is supplied with less power than the corresponding steady power for the ambient temperature of the device's location, the derating won't impact the operation. Though the internal power reduction is always imminent. For example, if you would run a model with 1200 W steady power at 800 W constant actual power, while the power limit is set to 2400 W, and your source would make a voltage step or the load a current step, the power limit of 2400 W could still not be achieved.

See the diagrams below for clarification.

Principle derating progression, depicted on the example of a 2400 W power stage. Models of this series can have several power stages, which not necessarily start derating at the same time.

The peak power is absorbed by the load device for a time x, until derating starts. After the start of derating, the max. power of the load will settle around the point of steady power. The momentary true value of steady power can only be read from the device's actual power value (display or via interface). In case the ambient temperature rises, the derating will continue.

Derating progression after a cold start of the device at 25°C (blue) and 40°C (green) ambient temperature.

The temporal progression shows that the peak power at 40° C is only available for a short time before derating starts. At this ambient temperature, the steady power will settle at a lower value than with 25° C.

3.2.5 Dynamic characteristics and stability criteria

The electronic load is characterised by short rise and fall times of the current, which are achieved by a high bandwidth of the internal regulation circuit.

In case of testing sources with own regulation circuits at the load, like for example power supplies, a regulation instability may occur. This instability is caused if the complete system (feeding source and electronic load) has too little phase and gain margin at certain frequencies. 180 ° phase shift at > 0dB amplification fulfils the condition for an oscillation and results in instability. The same can occur when using sources without own regulation circuit (eg. batteries), if the connection cables are highly inductive or inductive-capacitive.

The instability is not caused by a malfunction of the load, but by the behaviour of the complete system. An improvement of the phase and gain margin can solve this. In practice, a capacity is directly connected to the DC input of the load. The value to achieve the expected result is not defined and has to be found out. We recommend:

80 V models: 1000 μ F....4700 μ F 200 V models: 100 μ F...470 μ F 360 V models: 68 μ F...220 μ F 500 V models: 47 μ F...150 μ F 750 V models: 22 μ F...100 μ F

3.3 Alarm conditions

This section only gives an overview about device alarms. What to do in case your device indicates an alarm condition is described in section "3.6 Alarms and monitoring" on page 62.

As a basic principle, all alarm conditions are signalled optically (text + message in the display), acoustically (if activated), via the digital interface, plus also as status on the analog interface. For later acquisition, an additional alarm counter can be read from the display or via digital interface.

3.3.1 Power Fail

Power Fail (PF) indicates an alarm condition which may have various causes:

• AC input voltage too low (mains undervoltage, mains failure)

As soon as a power fail occurs, the device will stop to sink power and switch off the DC input. In case the power fail was an undervoltage and is gone later on, the alarm will vanish from display and doesn't require to be acknowledged.

The condition of the DC input after a gone PF alarm can be determined in the MENU. See 3.4.3.

Switching off the device with the power switch can not be distinguished from a mains blackout and thus the device will signalise a PF alarm every time it's switched off. This can be ignored.

3.3.2 Overtemperature

An overtemperature alarm (OT) can occur due to an excess temperature inside the device and causes it to stop sinking power temporarily. After cooling down, the device will automatically continue to supply power, while the condition of the DC input remains and the alarm doesn't require to be acknowledged.

3.3.3 Overvoltage

An overvoltage alarm (OVP) will switch off the DC input and can occur if:

the connected voltage source provides a higher voltage to the DC input than set in the overvoltage alarm threshold (OVP, 0...103% U_{NOM})

This function serves to warn the user of the electronic load acoustically or optically that the connected voltage source has generated an excessive voltage and thereby could damage or even destroy the input circuit and other parts of the device.

The device is not fitted with protection from external overvoltage and may even be damaged when not powered.

3.3.4 Overcurrent

An overcurrent alarm (OCP) will switch off the DC input and can occur if:

• The input current in the DC input exceeds the adjusted OCP limit.

This function serves to protect the voltage and current source so that this is not overloaded and possibly damaged, rather than offering protection to the electronic load.

3.3.5 Overpower

An overpower alarm (OPP) will switch off the DC input and can occur if:

• the product of the input voltage and input current in the DC input exceeds the adjusted OPP limit.

This function serves to protect the voltage and current source so that this is not overloaded and possibly damaged, rather than offering protection to the electronic load.

3.4 Manual operation

3.4.1 Powering the device

The device should, as far as possible, always be switched on using the toggle switch on the front of the device. Alternatively this can take place using an external cutout (contactor, circuit breaker) of suitable current capacity.

After switching on, the display firsts show the manufacturers logo and device related information, as well as a language selection screen (for 3 s) and will then be ready for use. In setup (see section *"3.4.3. Configuration via MENU"*), in the second level menu "**General settings**" is an option "**Input after power ON**" in which the user can determine the condition of the DC input after power-up. Factory setting here is "**OFF**", meaning that the DC input will always be switched off on power-up, while "**Restore**" means that the last condition of the DC input will be restored, either on or off. All set values are also restored.

3.4.2 Switching the device off

On switch-off, the last input condition and the most recent set values and input status, as well as activated masterslave operation are saved. Furthermore, a PF alarm (power failure) will be reported, but has to be ignored here.

The DC input is immediately switched off and after a short while fans will shut down and after another few seconds the device will be completely powered off.

3.4.3 Configuration via MENU

The MENU serves to configure all operating parameters which are not constantly required. These can be set by finger touch on the MENU touch area, but only if the DC input is switched OFF. See figure to the right.

If the DC input is switched on the settings menu will not be shown, only status information.

Menu navigation is by finger touch. Values are set using the rotary knobs. The assignment of the knobs to the adjustable values is not indicated in menu pages, but there is an assignment rule: upper value -> left-hand knob, lower value -> right-hand knob.

The menu structure is shown schematically on the following pages. Some setting parameters are self-explanatory, others are not. The latter will be explained on the pages following.

 $\mathbf{\Psi}$

EA Elektro-Automatik GmbH Helmholtzstr. 31-37 • 41747 Viersen

Germany

Parameters in curly brackets describe the selectable range, underlined parameters show the default value after delivery or reset.

EA Elektro-Automatik GmbH Helmholtzstr. 31-37 • 41747 Viersen Germany

Fon: +49 2162 / 3785-0 Fax: +49 2162 / 16230

Page 45

3.4.3.1 Menu "General Settings"

Setting	P .	Description
Allow remote control	1	Selection " NO " means that the device cannot be remotely controlled over either the digital or analog interfaces. If remote control is not allowed, the status will be shown as " Local " in the status area on the main display. Also see section <i>"3.5.2. Controls locations".</i>
Analog interface range	1	Selects the voltage range for the analog set input values, monitoring outputs and reference voltage output.
		• 05 V = Range is 0100% set /actual values, reference voltage 5 V
		• 010 V = Range is 0100% set /actual values, reference voltage 10 V
		Also see "3.5.4 Remote control via the analog interface (AI)" on page 58
Analog interface Rem-SB	2	Selects how the input pin "Rem-SB" of the analog interface shall be working regarding levels and logic:
		• Normal = Levels and function as described in the table in 3.5.4.4
		 Inverted = Levels and function will be inverted
		Also see "3.5.4.7. Application examples"
Analog Rem-SB action	2	Selects the action on the DC input that is initiated when changing the level of analog input "Rem-SB":
		 DC OFF = the pin can only be used to switch the DC input off
		• DC ON/OFF = the pin can be used to switch the DC input off and on again, if it has been switched on before at least from a different control location
Analog interface pin 6	3	Pin 6 of the analog interface (see section <i>3.5.4.4</i>) is by default assigned to only signal the device alarms OT and PF. This parameter allows to also enable signal-ling only one of both (3 possible combinations):
		Alarm OT = Enable/disable signalling of alarm OT on pin 6
		Alarm PF = Enable/disable signalling of alarm PFon pin 6
Analog interface pin 14	3	Pin 14 of the analog interface (see section <i>3.5.4.4</i>) is by default assigned to only signal the device alarm OVP. This parameter allows to also enable signalling further device alarms (7 possible combinations):
		Alarm OVP = Enable/disable signalling of alarm OVP on pin 14
		Alarm OCP = Enable/disable signalling of alarm OCP on pin 14
		Alarm OPP = Enable/disable signalling of alarm OPP on pin 14
Analog interface pin 15	4	Pin 15 of the analog interface (see section <i>3.5.4.4</i>) is by default assigned to only signal the regulation mode CV. This parameter allows to enable signalling a different device status (2 options):
		Regulation mode = Enable/disable signalling of CV reg mode on pin 15
		DC status = Enable/disable signalling of DC input status on pin 15
DC input after power ON	5	Determines the condition of the DC input after power-up.
		 OFF = DC input is always off after switching on the device.
		 Restore = DC input condition will be restored to the condition prior to switch off.
Voltage controller setting	5	Selects the regulation speed of the internal voltage regulator between " Slow " and " Fast ". See <i>"3.2.1.1. Speed of the voltage controller"</i> .
DC input after PF alarm	6	Determines how the DC input shall react after a power fail (PF) alarm has occurred:
		 OFF = DC input will be switched off and remain until user action
		 AUTO = DC input will switch on again after the PF alarm cause is gone and if it was switched on before the alarm occurred
DC input after remote	6	Determines the condition of the DC input after leaving remote control either manually or by command.
		• OFF = DC input will be always off when switching from remote to manual
		AUTO = DC input will keep the last condition
Setting	Р.	Description
-----------------------------------	----	---
Enable R mode	7	Activates (" Yes ") or deactivates (" No ") the internal resistance control. If activated, the resistance set value can be adjusted on the main screen as additional value. For details refer to <i>"3.2.3. Resistance regulation / constant resistance</i> ".
USB file separator format	8	Switches the decimal point format of values and also the CSV file separator for USB logging and for other features where CSV file can be loaded
		US = Comma separator (US standard for CSV files) Default = Semicolon separator (german/european standard for CSV files)
USB logging with units (V,A,W)	8	CSV files generated from USB logging by default add physical units to values. This can be deactivated by setting this option to " No "
Calibrate device	9	Touch area " Start " starts a calibration routine (see <i>"4.3. Calibration"</i>), but only if the device is in U/I or P/I mode.
Reset device to defaults	10	Touch area " Start " will initiate a reset of all settings (HMI, profile etc.) to fac- tory default, as shown in the menu structure diagrams on the previous pages
Restart device	10	Will initiate a warm start of the device
Master-Slave mode	11	Option " OFF " (default) disables the master-slave mode (MS), while options MASTER or SLAVE set the device to the selected position. For details about the MS mode see section <i>"3.11.1. Parallel operation in master-slave (MS)</i> ".
PSI / ELR system	11	This item will only be displayed if the device is set as MASTER
		When activated by finger touch (check mark), it determines that the electronic load is part of a two-quadrant operation (2QO, see <i>"3.11.3. Two quadrants operation (2QO)"</i>) system and thus it will be slave on the Share bus, which is required for a 2QO, because in 2QO all load units have to be slaves.
Repeat master init.	12	Touch area "Initialize" will repeat the initialisation of the master-slave system in case the automatic enumeration of the slave units by the master is once unsuccessful so the system would have less total power than expected or has to be repeated manually in case the master unit couldn't detect a missing slave

3.4.3.2 Menu "User Events"

See "3.6.2.1 User defined events" on page 64.

3.4.3.3 Menu "Profiles"

See "3.9 Loading and saving a user profile" on page 66.

3.4.3.4 Menu "Overview"

This menu page displays an overview of the set values (U, I, P or U, I, P, R) and alarm settings as well as adjustment limits. These can only be displayed, not changed.

3.4.3.5 Menu "About HW, SW..."

This menu page displays an overview of device relevant data such as serial number, article number etc., as well as an alarm history which lists the number of device alarms that probably occurred since the device has been powered.

3.4.3.6 Menu "Function Generator"

See "3.10 The function generator" on page 67.

3.4.3.7 Menu "Communication"

This submenu offers settings for digital communication via the optional or built-in interface. The button for the interface modules or the optional GPIB port opens one or more settings pages, depending on the interface in use. There is furthermore an adjustable communication timeout, to make it possible to successfully transfer fragmented messages (data packets) using higher values. In the screen for "Com Protocols" you can enable both or disable one of the two supported communication protocols, ModBus and SCPI. This can help to avoid mixing both protocols and to receive unreadable messages, for example when expecting a SCPI response and getting a ModBus RTU response instead.

For all Ethernet based interfaces with two ports: "P1" is related to port 1 and "P2" to port 2, like printed on the module face. Two-port interfaces will use one IP only.

IF	Level 1	Level 2	Level 3	Description			
	IP Settings 1	DHCP		The IF allows a DHCP server to allocate an IP address, a subnet mask and a gateway. If no DHCP server is in the network then network parameters will be set as defined in item "Manual"			
		Manual	IP address	This option is activated by default. An IP address can be manually allocated.			
			Gateway	Here a gateway address can be allocated if required			
Ļ			Subnet mask	Here a subnet mask can be defined if the default subnet mask is not suitable.			
:P, 1 & 2 Po		DNS address 1 DNS address 2		Here the addresses of the first and second Domain Name Serv- ers (DNS) can be defined, if needed. It helps for easier access to the device's website in browsers when using the user-defined domain			
us-TC		Port		Range: 065535. Default ports: 5025 = Modbus RTU (all Ethernet interfaces)			
t / ModB				Reserved ports which must not be set with this parameter: 502 = Modbus TCP (Modbus-TCP interface only) other typical reserved ports			
therne	IP Settings 2-P1 IP Settings 2-P2	Αυτο		Settings for the Ethernet ports 1 and 2 (if present), such as transmission speed, are set automatically.			
Ш	J	Manual	Half duplex	Manual selection for transmission speed (10MBit/100MBit) and			
			Full duplex	duplex mode (full/half). It is recommended to use the "AUTO"			
			10Mbit	ferent Ethernet port settings for 2-port modules are possible, as			
			100Mbit	these include an Ethernet switch			
	Host name			Free choice of host name (default: Client)			
	Domain name			Free choice of Domain (default: Workgroup)			
	TCP Keep-Alive	Enable TCP keep-alive					

IF	Level 1	Level 2	Level 3	Description						
Ľ	Function Tag	String inpu Max. lengt	String input box for a user-definable text which describes the Profinet slave function tag. Vax. length: 32 characters							
& 2 Pc	Location Tag	String inpu Max. lengt	String input box for a user-definable text which describes the Profinet slave location tag. Max. length: 22 characters							
/10, 1	Station Name	String input box for a user-definable text which describes the Profinet station name. Max. length: 54 characters								
ofinet	Description	String input box for a user-definable text which describes the Profibus slave. Max. length: 54 characters								
P	Installation Date	String input box for a user-definable text which describes the Profibus slave installation date tag. Max. length: 40 characters								

IF	Level 1	Description
	Node Address	Selection of the Profibus or node address of the device within range 1125 via direct input
٩	Function Tag	String input box for a user-definable text which describes the Profibus slave function tag. Max. length: 32 characters
Profibus D	Location Tag	String input box for a user-definable text which describes the Profibus slave location tag. Max. length: 22 characters
	Installation Date	String input box for a user-definable text which describes the Profibus slave installation date tag. Max. length: 40 characters
	Description	String input box for a user-definable text which describes the Profibus slave. Max. length: 54 characters

IF	Ebene 1	Level 2	Level 3	Description		
	Base ID			Setup of the CAN base ID (11 Bit or 29 Bit, hex format). Default: 0h		
	Baud Rate			Setup of the CAN bus speed or baud rate in typical value be- tween 10 kbps and 1Mbps. Default: 500 kbps		
	Termination			Activates or deactivates CAN bus termination with a built-in resistor. Default: OFF		
	Broadcast ID			Setup of the CAN broadcast ID (11 Bit or 29 Bit, hex format). Default: 7ffh		
	ID Format			Selection of the CAN ID format between Base (11 Bit ID, 0h7ffh) and Extended (29 Bit, 0h1ffffffh)		
	Cyclic Communication	Base ID Cyclic Read		Setup of the CAN base ID (11 Bit or 29 Bit, hex format) for cyclic read of up to 5 object groups (see " Cyclic Read Timing "). The device will automatically send specific object data to the IDs defined with this setting. For more information refer to the programming guide. Default: 100h		
7		Base ID Cyclic Send		Setup of the CAN base ID (11 Bit or 29 Bit, hex format) for cyclic send of the three set values for U, I and P along with status in one single message. For more information refer to the programming guide. Default: 200h		
CA		Cyclic Read	Status	Activation/deactivation and time setting for the cyclic read of status to the adjusted " Base ID Cyclic Read + 1 "		
		Timing		Range: 205000 ms. Default: 0 (deactivated)		
			Actual val.	Activation/deactivation and time setting for the cyclic read of actual values to the adjusted " Base ID Cyclic Read + 2 "		
				Range: 205000 ms. Default: 0 (deactivated)		
			Set val.	Activation/deactivation and time setting for the cyclic read of set values of U & I to the adjusted " Base ID Cyclic Read + 3 "		
				Range: 205000 ms. Default: 0 (deactivated)		
			Limits 1	Activation/deactivation and time setting for the cyclic read of adjust- ment limits of P & R to the adjusted " Base ID Cyclic Read + 4 "		
				Range: 205000 ms. Default: 0 (deactivated)		
			Limits 2	Activation/deactivation and time setting for the cyclic read of adjust- ment limits of P & R to the adjusted " Base ID Cyclic Read + 4 "		
	Data Length			Determines the DLC (data length) of all messages sent from the device.		
				AUTO = length varies between 3 and 8 bytes, depending on object		
				Always 8 Bytes = length is always 8, filled up with zeros		

IF	Level 1	Level 2	Description
	Node Address		Selection of the CANopen node address in the range 1127
en	Baud Rate	AUTO	Automatic detection of the bus baud rate.(speed)
ð		LSS	Automatically sets baud rate and node address
CAN		Manual	Manual selection of the baud rate that is used by the CANopen interface. Possible selections: 10 kbps, 20 kbps, 50 kbps, 100 kbps, 125 kbps, 250 kbps, 500 kbps, 800 kbps, 1Mbps (1Mbps = 1 Mbit/s, 10 kbps = 10 kbit/s)

IF	Level 1	Description
RS232	Baud rate	The baud rate is selectable, other serial settings can't be changed and are defined like this: 8 data bits, 1 stop bit, parity = none Supported baud rates: 2400, 4800, 9600, 19200, 38400, 57600, 115200

IF	Level 1	Description
ଲ୍ଲ Node Address ଓ		Adjustment of the GPIB node address (only with option 3W installed) in the range 130
Ele	ement	Description
Com Timeout		Timeout USB/RS232 (in milliseconds) Default value: 5, Range: 565535 Defines the max. time between two subsequent bytes or blocks of a transferred message. For more information about the timeout refer to the external programming documentation "Programming ModBus & SCPI". Timeout ETH (in seconds) Default value: 5, Range: 0, 565535

	Default value: 5, Range: 0, 565535 If there was no command communication between the controlling unit (PC, PLC etc. and the device for the adjusted time, it will close the socket connection. This timeout becomes ineffective as long as the option "TCP keep-alive" (see above) is activated and working as expected within the network. Setting "0" deactivates the timeout permanently.
Com Protocols	Enables or disables SCPI or ModBus communication protocols for the device. Only one of both can be disabled.

Default setting: disabled
Enables/disables the "log to USB stick" feature. Once enabled, you can define the log interval
(multiple steps, 500 ms 5 s) and the control method. For more refer to "3.4.10. Recording
to USB stick (logging)".

3.4.3.8 Menu "HMI settings"

These settings refer exclusively to the control panel (HMI).

Element	Description					
Language	Selection of the display language between German, English, Russian, Chinese					
Key Sound	Activates or deactivates sounds when touching a touch area in the display. It can usefully signal that the action has been accepted.					
Alarm Sound	Activates or deactivates the additional acoustic signal of an alarm or user defined event which has been set to "Action = ALARM". See also "3.6 Alarms and monitoring" on page 62.					
HMI Lock	See "3.7 Control panel (HMI) lock" on page 65.					
Backlight	The choice here is whether the backlight remains permanently on or if it should be switched off when no input via screen or rotary knob is made for 60 s. As soon as input is made, the backlight returns automatically. Furthermore the backlight intensity can be adjusted here.					
Status page	Enables/disables two display related options for the main screen with actual and set values:					
	Show meter bar : in U/I/P mode, i. e. resistance mode not activated, a meter bar for 0-100% actual values of voltage, current and power is shown. See <i>"3.4.8. The meter bars".</i>					
	Alternative status page : switches the main screen of the device with its actual and set values of voltage, current, power and - if activated - resistance to a simpler display with only voltage and current, plus status. See <i>"3.4.7. Switching the main screen view"</i> .					
	Default setting: both disabled					
Limits Lock	See "3.8 Limits lock" on page 65					

3.4.4 Adjustment limits

 \wedge

Adjustment limits are only effective on the related set values, no matter if using manual adjustment or remote control!

Defaults are, that all set values (U, I, P, R) are adjustable from 0 to 100%.

This may be obstructive in some cases, especially for protection of applications against overcurrent. Therefore upper and lower limits for current (I) and voltage (U) can be set which limit the range of the adjustable set values.

For power (P) and resistance (R) only upper value limits can be set.

► How to configure the adjustment limits:

- 1. Whil the DC input is switched off tap **SETTINGS** on the main screen to access the SETTINGS menu.
- 2. Tap the arrows **A V** to select "3. Limits".
- **3.** In each case a pair of upper and lower limits for U/I or the upper limit for P/R are assigned to the rotary knobs and can be adjusted. Tap the selection area for another choice
- **4.** Accept the settings with

The set values can be entered directly using the ten-key pad. This appears when tapping touch are "Direct input".

0

The adjustment limits are coupled to the set values. It means, that the upper limit may not be set lower than the corresponding set value. Example: If you wish to set the upper limit for the current (I-max) to 350 A while the set value of current is adjusted to 400 A, then the set value would first have to be reduced to 350 A or less, in order to enable setting I-max down to 350 A.

3.4.5 Changing the operating mode

In general, the manual operation of an EL 9000 B distinguishes between three operating modes which are tied to set value input using the rotary knobs or ten-key pad. This assignment must be changed if one of the four set values is to be adjusted which is currently not available.

► How to change the operating mode (two options)

- 1. Unless the device is in remote control or the panel is locked, you can switch the operation mode anytime. Tap on the depiction of the left-hand knob (see figure to the right) to change its assignment between U, P and R, or
- **2.** You directly tap on the coloured areas with the set values, like shown in the figure to the right. The unit next to the set values, when inverted, indicates the assignment of the knobs. In the example to the right they have P and I assigned, which means P/I mode.

Depending on the selection the left rotary knob will be assigned different setting values, the right knob is always assigned to the current.

In order to avoid constant changing of the assignments it is possible, e.g with selection R/I, to change the other values U and P by direct input. Also see section 3.4.6.

The actual operating mode of the load, which is only effective and indicated while the DC input is switched on, solely depends on the set values. For more information see section *"3.2. Operating modes".*

3.4.6 Manual adjustment of set values

The set values for voltage, current, power and resistance are the fundamental operating possibilities of an electronic load and hence the two rotary knobs on the front of the device are always assigned to two of the four values in manual operation.

The set values can be entered manually in two ways: via rotary knob or direct input.

0

Entering a value changes it immediately, no matter if the DC input is switched on or off.

When adjusting the set values, upper or lower limits may come into effect. See section "3.4.4. Adjustment limits". Once a limit is reached, the display will show a note like "Limit: U-max" etc. for 1.5 seconds next to the adjusted value.

How to adjust values with the rotary knobs

- 1. First check if the value you want to change is already assigned to one of the rotary knobs. The main screen displays the assignment as depicted in the figure to the right.
- **2.** If, as shown in the example, the assignment is voltage (U, left) and current (I, right), and it is required to set the power, then the assignments can be changed by tapping this touch area. A set of selection fields then appears.
- **3.** After successful selection, the desired value can be set within the defined limits. Selecting a digit is done by pushing the rotary knob which shifts the cursor from right to left (selected digit will be underlined):

How to adjust values via direct input

 In the main screen, depending on the rotary knob assignment, values can be set for voltage (U), current (I), power (P) or resistance (R) via direct input by tapping on the small keypad symbol in the set/actual value display areas, e.g in the uppermost area of voltage.

2. Enter the required value using the ten-key pad. Similar to a pocket calculator the key c clears the input.

Decimal va	alues a	are se	t by ta	apping	the	point key. F	or example, 54.3 V
is set with	5	4	•	3	and	ENTER	

3. The display reverts to the main page and the set values take effect.

3.4.7 Switching the main screen view

The main screen, also called status page, with its set values, actual values and device status can be switched from the standard view mode with three or four values to a simpler mode with only voltage and current display. The advantage of the alternative view mode is that actual values are displayed with **much bigger characters**, so they read be read from a larger distance. Refer to *"3.4.3.8. Menu "HMI settings""* to see where to switch the view mode in the MENU. Comparison:

Alternative status page

Limitations of the alternative status page:

- Set and actual value of power are not displayed and the set value is only indirectly accessible
- Set and actual value of resistance are not displayed and the set value is only indirectly accessible
- No access to the settings overview (MENU button) while the DC input is on

In alternative status page mode, the set values of power and resistance are not adjustable while the DC input is switched on. They can only be accessed and adjusted in SETTINGS while the DC input is off.

Rules for manual handling of the HMI in alternative status page mode:

- The two rotary knobs are assigned to voltage (left knob) and current (right knob) all the time, except for menus
- Set values input is the same as in standard status page mode, with knobs or by direct input
- Regulation modes CP and CR are displayed alternatively to CC at the same position

3.4.8 The meter bars

Additionally to the actual values being displayed as numbers, meter bars for U, I and P can be enabled in the MENU. Refer to *"3.4.3.8. Menu "HMI settings"*" to see where to enable the meter bars in the MENU.

Depiction:

Standard status page with meter bar

Alternative status page with meter bar

3.4.9 Switching the DC input on or off

The DC input of the device can be manually or remotely switched on and off. This can be restricted in manual operation by the control panel being locked.

Switching the DC input on during manual operation or digital remote control can be disabled by pin REM-SB of the built-in analog interface. For more information refer to 3.4.3.1 and example a) in 3.4.3.7. In such a situation, the device will show a notification in the display.

How to manually switch the DC input on or off

- 1. As long as the control panel (HMI) is not fully locked press the button ON/OFF. Otherwise you are asked to disable the HMI lock (simple unlock or by entering the PIN, if activated in menu "HMI Lock").
- **2.** The ON/OFF button toggles between on and off, as long as a change is not restricted by any alarm or the device being in "Remote".

► How to remotely switch the DC input on or off via the analog interface

1. See section ""3.5.4 Remote control via the analog interface (AI)" on page 58.

► How to remotely switch the DC input on or off via the digital interface

1. See the external documentation "Programming Guide ModBus & SCPI" if you are using custom software, or refer to the external documentation of LabView VIs or other documentation provided by EA Elektro-Automatik.

3.4.10 Recording to USB stick (logging)

Device data can be recorded to USB stick (2.0 / 3.0 may work, but not all vendors are supported) anytime. For specifications of the USB stick and the generated log files refer to section *"1.9.6.5. USB port (front side)*".

The logging stores files of CSV format on the stick. The layout of the log data is the same as when logging via PC with software EA Power Control. The advantage of USB logging over PC logging is the mobility and that no PC is required. The logging feature just has to be activated and configured in the MENU.

3.4.10.1 Configuration

Also see section *3.4.3.7*. After USB logging has been enabled and the parameters "Logging interval" and "Start/ Stop" have been set, logging can be started anytime from within the MENU or after leaving it. This depends on the selected start/stop mode.

3.4.10.2 Handling (start/stop)

With setting "**Start/stop with DC input ON/OFF**" logging will start each time the DC input of the device is switched on, no matter if manually with the front button "On/Off" or remotely via analog or digital interface. With setting "**Manual start/stop**" it's different. Logging is then started and stopped only in the MENU, in the logging configuration page.

Soon after logging has been started, the symbol \square indicates the ongoing logging action. In case there is an error while logging, such as USB stick full or removed, it will be indicated by another symbol (\blacksquare). After every manual stop or when switching the DC input off the logging feature is ended and the log file closed.

3.4.10.3 Log file format

Type: text file in european CSV format

Layout:

	Α	В	С	D	E	F	G	н	Ι	J	K	L	М
1	U set	U actual	l set	I actual	P set	P actual	R set	R actual	R mode	Output/Input	Device mode	Error	Time
2	2,00V	11,92V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:00,942
З	2,00V	11,90V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:01,942
4	2,00V	11,89V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:02,942
5	2,00V	11,87V	1,20A	1,20A	7344W	15W	N/A	N/A	OFF	ON	CC	NONE	00:00:03,942

Legend:

U set / I set / P set / R set: Set values

U actual / I actual / P actual / R actual: Actual values

Error: device alarms

Time: elapsed time since logging start

Device mode: actual regulation mode (also see "3.2. Operating modes")

Important to know:

- R set and R actual are only recorded if R mode is active (refer to section 3.4.5)
- Unlike the logging on PC, every log start here creates a new log file with a counter in the file name, starting generally with 1, but minding existing files

3.4.10.4 Special notes and limitations

- Max. log file size (due to FAT32 formatting): 4 GB
- Max. number of log files in folder HMI_FILES: 1024
- With setting "**Start/stop with DC input ON/OFF**", the logging will also stop on alarms or events with action "Alarm", because they switch off the DC input
- With setting "**Manual start/stop**" the device will continue to log even on occurence of alarms, so this mode can be used to determine the period of temporary alarms like OT or PF

3.5 Remote control

3.5.1 General

Remote control is possible via the built-in analog or USB port or via one of the optional interface modules. Important here is that only the analog or one digital interface can be in control. The integrated master-slave bus belongs to the digital interfaces.

It means that if, for example, an attempt were to be made to switch to remote control via the digital interface whilst analog remote control is active, the device would report an error via the digital interface. In the opposite direction a switch-over via pin REMOTE would be ignored. In both cases, however, status monitoring and reading of values are always possible.

3.5.2 Controls locations

Control locations are those locations from where the device can be controlled. Essentially there are two: at the device (manual control) and external (remote control). The following locations are defined:

Displayed location	Description
-	If neither of the other locations is displayed then manual control is active and access from the analog and digital interfaces is allowed. This control location is not explicitly displayed
Remote	Remote control via any interface is active
Local	Remote control is locked, only manual operation is allowed.

Remote control may be allowed or inhibited using the setting "**Allow remote control**" (see "*"*3.4.3.1. Menu "General Settings""). In <u>inhibited</u> condition, the status "**Local**" will be displayed top right. Activating the lock can be useful if the device is remotely controlled by software or some electronic device, but it is required to make adjustments at the device or deal with emergency, which would not be possible remotely.

Activating condition "Local" causes the following:

- If remote control via the digital interface is active ("**Remote**"), then it is immediately terminated and in order to continue remote control once "**Local**" is no longer active, it has to be reactivated at the PC
- If remote control via the analog interface is active ("**Remote**"), then it is temporarily interrupted until remote control is allowed again by deactivating "**Local**", because pin "Remote" continues to signal "remote control = on", unless this has been changed during the "**Local**" period.

3.5.3 Remote control via a digital interface

3.5.3.1 Selecting an interface

The standard models of series EL 9000 B support, in addition to the built-in USB port, the following optionally available interface modules:

Short ID	Туре	Ports	Description*
IF-AB-CANO	CANopen	1	CANopen slave with generic EDS
IF-AB-RS232	RS232	1	Standard RS232, serial
IF-AB-PBUS	Profibus	1	Profibus DP-V1 slave
IF-AB-ETH1P	Ethernet	1	Ethernet TCP
IF-AB-PNET1P	ProfiNet	1	Profinet DP-V1 slave
IF-AB-MBUS	ModBus TCP	1	ModBus TCP/RTU protocol via Ethernet
IF-AB-ETH2P	Ethernet	2	Ethernet TCP, with switch
IF-AB-MBUS2P	ModBus TCP	2	ModBus TCP/RTU protocol via Ethernet
IF-AB-PNET2P	ProfiNet	2	Profinet DP-V1 slave, with switch
IF-AB-CAN	CAN	1	Modified ModBus RTU via CAN
IF-AB-ECT	EtherCAT	2	Standard EtherCAT slave with CANopen over Ethernet (CoE)

* For technical details of the various modules see the extra documentation "Programming Guide Modbus & SCPI"

3.5.3.2 General information about the interface modules

With the standard models of series EL 9000 B, one of the plug-in and retrofittable modules listed in 3.5.3.1 can be installed. It can take over remote control of the device alternatively to the built-in USB type B on the rear side or the analog interface. For installation see section *"2.3.10. Installation of an interface module"* and separate documentation.

The modules require little or no settings for operation and can be directly used with their default configuration. All specific settings will be permanently stored such that, after changeover between the various models, no reconfiguration will be necessary.

3.5.3.3 Programming

Programming details for the interfaces, the communication protocols etc. are to be found in the documentation "Programming Guide ModBus & SCPI" which is supplied on the included USB stick or which is available as download from the EA Elektro-Automatik website.

3.5.4 Remote control via the analog interface (AI)

3.5.4.1 General

The built-in, galvanically isolated, 15-pole analog interface (short: AI) is on the rear side of the device offers the following possibilities:

- Remote control of current, voltage, power and resistance
- Remote status monitoring (CV, DC input)
- Remote alarm monitoring (OT, OVP, OCP, OPP, PF)
- Remote monitoring of actual values
- Remote on/off switching of the DC input

Setting the <u>three</u> set values for voltage, current and power via the analog interface must always be done **concurrently**. It means, that for example the voltage can not be given via the AI and current and power set by the rotary knobs, or vice versa. Resistance mode is additionally possible and requires to set the corresponding pin.

The OVP set value and other supervision (events) and alarm thresholds cannot be set via the AI and therefore must be adapted to the given situation before the AI will be in control. Analog set values can be supplied by an external voltage or generated from the reference voltage on pin 3. As soon as remote control via the analog interface is activated, the displayed set values will be those provided by the interface.

The AI can be operated in the common voltage ranges 0...5 V and 0...10 V in each case 0...100% of the nominal value. The selection of the voltage range can be done in the device setup. See section *"3.4.3. Configuration via MENU"* for details.

The reference voltage sent out from Pin 3 (VREF) will be adapted accordingly:

0-5 V: Reference voltage = 5 V, 0...5 V set value signal for VSEL, CSEL, PSEL and RSEL correspond to 0...100% nominal value, 0...100% actual values correspond to 0...5 V at the actual value outputs CMON and VMON.

0-10 V: Reference voltage = 10 V, 0...10 V set value signal for VSEL, CSEL, PSEL and RSEL correspond to 0...100% nominal values, 0...100% actual values correspond to 0...10 V at the actual value outputs CMON and VMON.

Input of excess signals (e.g. >5 V in selected 5 V range or >10 V in the 10 V range) are clipped by the device by setting the corresponding set value to 100%.

Before you begin, please read these important notes about the use of the interface:

After powering the device and during the start phase the AI signals undefined statuses on the output pins such as OT or OVP. Those must be ignored until is ready to work.

- Analog remote control of the device must be activated by switching pin "REMOTE" (5) first. Only exception is pin REM-SB, which can be used independently
- Before the hardware is connected that will control the analog interface, it shall be checked that it can't provide voltage to the pins higher than specified
- Set value inputs, such as VSEL, CSEL, PSEL and RSEL (if R mode is activated), must not be left unconnected (i.e. floating) during analog remote control. In case any of the set values is not used for adjustment, it can be tied to a defined level or connected to pin VREF (solder bridge or different), so it gives 100%

The analog interface is galvanically isolated from the DC input. Therefore do not connect any ground of the analog interface to the DC- or DC+ input, if not absolutely necessary!

3.5.4.2 Resolution and sample rate

The analog interface is internally sampled and processed by a digital microcontroller. This causes a limited resolution of analog steps. The resolution is the same for set values (VSEL etc.) and actual values (VMON/CMON) and is 26214 when working with the 10 V range. In the 5 V range this resolution halves. Due to tolerances, the truly achievable resolution can be slightly lower.

There is furthermore a max. sample rate of 500 Hz. It means, the device can acquire analog set values and states on digital pins 500 times per second.

3.5.4.3 Acknowledging device alarms

In case of a device alarm occurring during remote control via analog interface, the DC input will be switched off the same way as in manual control. Alarms are signalled either on pin ALARMS 1 or ALARMS 2, as configured in the MENU (see section *"3.4.3. Configuration via MENU*"). In case several alarms occur at once, the particulars ones can only read from the unit in the display (alarm counter in MENU) or via digital interface.

Some device alarms (OVP, OCP and OPP) have to be acknowledged, either by the user of the device or by the controlling unit. Also see *"3.6.2. Device alarm and event handling"*. Acknowledgement is done with pin REM-SB switching the DC input off and on again, means a HIGH-LOW-HIGH edge (at least 50 ms for LOW), when using the default level setting for this pin.

Pin	Name	Type*	Description	Default levels	Electrical specification		
1	VSEL	AI	Set voltage value	010 V or. 05 V corre- spond to 0100% of U _{Nom}	Accuracy 0-5 V range: < 0.4% *****		
2	CSEL	AI	Set current value	010 V or. 05 V corre- spond to 0100% of I _{Nom}	Input impedance $R_i > 40 \text{ k100 k}$		
3	VREF	AO	Reference voltage	10 V or 5 V	Tolerance < 0.2% at I _{max} = +5 mA Short-circuit-proof against AGND		
4	DGND	POT	Digital ground		For control and status signals.		
5	REMOTE	DI	Remote control	Remote = LOW, U _{Low} <1 V Internal = HIGH, U _{High} >4 V Internal = Open	Voltage range = 030 V I _{Max} = -1 mA bei 5 V U _{LOW to HIGH typ.} = 3 V Rec'd sender: Open collector against DGND		
6	ALARMS 1	DO	Overheating alarm / Power fail	Alarm= HIGH, U _{High} > 4 V No Alarm = LOW, U _{Low} <1 V	Quasi open collector with pull-up against Vcc ** With 5 V on the pin max. flow +1 mA I_{Max} = -10 mA at U_{CE} = 0,3 V U_{Max} = 30 V Short-circuit-proof against DGND		
7	RSEL	AI	Set internal resist- ance value	010 V or. 05 V corre- spond to R _{Min} R _{Max}	Accuracy 0-5 V range: < 0.4% *****		
8	PSEL	AI	Set power value	010 V or. 05 V corre- spond to 0100% of P _{Nom}	Input impedance $R_i > 40 \text{ k}100 \text{ k}$		
9	VMON	AO	Actual voltage	010 V or. 05 V corre- spond to 0100% of U _{Nom}	Accuracy 0-5 V range: < 0.4% ***** Accuracy 0-10 V range: < 0.2% *****		
10	CMON	AO	Actual current	010 V or. 05 V corre- spond to 0100% of I _{Nom}	at I _{Max} = +2 mA Short-circuit-proof against AGND		
11	AGND	POT	Analog ground		For -SEL, -MON, VREF Signals		
12	R-ACTIVE	DI	R mode on / off	On = LOW, U _{Low} <1 V Off = HIGH, U _{High} >4 V Off = Open	Voltage range = 030 V I _{Max} = -1 mA bei 5 V U _{LOW to HIGH typ.} = 3 V Rec'd sender: Open collector against DGND		
13	REM-SB	DI	DC input OFF (DC input ON) (ACK alarms ****)	Off = LOW, U _{Low} <1 V On= HIGH, U _{High} >4 V On = Open	Voltage range = 0…30 V I _{Max} = +1 mA at 5 V Rec'd sender: Open collector against DGND		
14	ALARMS 2	DO	Overvoltage alarm Overcurrent alarm Overpower alarm	Alarm = HIGH, U _{High} > 4 V No alarm = LOW, U _{Low} <1 V	Quasi open collector with pull-up against Vcc **		
15	STATUS***	DO	Constant voltage regulation active	$CV = LOW, U_{Low} < 1 V$ $CC/CP/CR = HIGH, U_{High} > 4 V$	$I_{Max} = -10 \text{ mA at } U_{CE} = 0.3 \text{ V}, U_{Max} = 30 \text{ V}$ Short-circuit-proof against DGND		
		- •	DC input	On = LOW, $U_{Low} < 1 V$ Off = HIGH, $U_{High} > 4 V$			

3.5.4.4 Analog interface specification

* AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, POT = Potential

** Internal Vcc approx. 10 V

*** Only one of both signals possible, see section 3.4.3.1

**** Only during remote control

***** The error of a set value input adds to the general error of the related value on the DC input of the device

3.5.4.6 Simplified diagram of the pins

	Digital Input (DI)]	Analog Input (Al)
	It requires to use a switch with low resist- ance (relay, switch, circuit breaker etc.) in order to send a clean signal to the DGND.		High resistance input (impedance >40 k100 kΩ) for an OA circuit.
+101/ 121/	Digital Output (DO)		Analog Output (AO)
	A quasi open collector, realised as high resistance pull-up against the internal sup- ply. In condition LOW it can carry no load, merely switch, as shown in the diagram with a relay as example.		Output from an OA circuit, only low impedance. See specifications table above.

3.5.4.7 Application examples

a) Switching off the DC input via the pin "REM-SB"

A digital output, e.g. from a PLC, may be unable to cleanly effect this as it may not be of low enough resistance. Check the specification of the controlling application. Also see pin diagrams above.

In remote control, pin REM-SB is be used to switch the DC terminal of the device on and off. This function is also available without remote control being active and can on the one hand block the DC terminal from being switched on in manual or digital remote control and on the other hand the pin can switch the DC on or off, but not standalone. See below at "Remote control has not been activated".

REM-SB

It is recommended that a low resistance contact such as a switch, relay or transistor is used to switch the pin to ground (DGND).

Following situations can occur:

Remote control has been activated

During remote control via analog interface, only pin "REM-SB" determines the states of the DC input, according to the levels definitions in *3.5.4.4*. The logical function and the default levels can be inverted by a parameter in the setup menu of the device. See *3.4.3.1*.

If the pin is unconnected or the connected contact is open, the pin will be HIGH. With parameter "Analog interface REM-SB" being set to "normal", it requests "DC input on". So when activating remote control, the DC input would instantly switch on.

Remote control is not active

In this mode of operation pin "REM-SB" can serve as lock, preventing the DC input from being switched on by any means. There are following possible situations:

DC input	+	Pin "REM-SB"	+	Parameter "REM-SB"	→	Behaviour
	L	HIGH	+	normal		DC input not locked. It can be switched on by pushbutton "On/Off" (front panel) or via command from digital interface
	T	LOW	+	inverted		(non paner) of via command non algranmenace.
is off		HIGH	+	inverted		DC input locked. It can not be switched on by pushbutton "On/Off" (front panel) or via command from digital interface. When trying to
		LOW	+	normal	7	switch on, a popup in the display resp. an error message will be generated.

In case the DC input is already switched on, toggling the pin will switch the DC input off, similar to what it does in analog remote control:

DC input	+	Pin "REM-SB"	+	Parameter "REM-SB"	→	Behaviour
		HIGH	+	normal		DC input remains on, nothing is locked. It can be switched on or off
lia on		LOW	+	inverted	7	by pushbutton of digital command.
	L	HIGH	+	inverted	erted DC	DC input will be switched off and locked. Later it can be switched on
		LOW	+	normal		can delete the request to switch on by pin.

b) Remote control of current and power.

Requires remote control to be activated (Pin "Remote" = LOW)

The set values PSEL and CSEL are generated from, for example, the reference voltage VREF, using potentiometers for each. Hence the electronic load can selectively work in current limiting or power limiting mode. According to the specification of max. 5 mA for the VREF output, potentiometers with a value of 10 k Ω or higher should be used.

The voltage set value VSEL is directly connected to AGND (ground) and therefore has no influence on constant current or power operation.

If the control voltage is fed in from an external source it is necessary to consider the input voltage ranges for set values (0...5 V or 0...10 V).

Use of the input voltage range 0...5 V for 0...100% set value halves the effective resolution.

external voltage

source

Example with potentiometers

c) Reading actual values

The AI provides the DC input values as current and voltage monitor. These can be read using a standard multimeter or similar.

3.6 Alarms and monitoring

3.6.1 Definition of terms

There is a clear distinction between equipment alarms (see *"3.3. Alarm conditions"*) such as overvoltage or overheating, and user defined events such as OCD (overcurrent supervision). Whilst device alarms primarily serve to protect the connected DC source by switching the DC input off, user defined events can do the same (action = ALARM), but can also simply give an acoustic signal to make the user aware. The actions driven by user defined events can be selected:

Action	Impact	Example
NONE	User defined event is disabled.	
SIGNAL	On reaching the condition which triggers the event, the action SIGNAL will show a text message in the status area of the display.	Event: OPD
WARNING	On reaching the condition which triggers the event, the action WARNING will show a text message in the status area of the display and pop up an additional warning message.	Warning!
ALARM	On reaching the condition which triggers the event, the action ALARM will show a text message in the status area of the display with an additional alarm pop-up, and additionally emit an acoustic signal (if activated). Furthermore the DC input is switched off. Certain device alarms are also signalled to the analog interface or can be queried via the digital interface.	Alarm! Alarm! Alarm: OT

3.6.2 Device alarm and event handling

	Important to know:
^	• The current drained from a switching power supply or similar sources can be much higher than expected due to capacities on the source's output, even if the source is current limited, and might thus trigger the overcurrent shutdown OCP or the overcurrent event OCD of the electronic load, in case these supervision thresholds are adjusted to too sensitive levels
	• When switching off the DC input of the electronic load while a current limited source still supplies energy, the output voltage of the source will rise immediately and due to response and settling times in effect, the output voltage can have an overshoot of unknown level which might trigger the overvoltage shutdown OVP or overvoltage supervision event OVD, in case these thresholds are adjusted to too sensitive levels

A device alarm incident will usually lead to DC input switch-off, the appearance of a pop-up in the middle of the display and, if activated, an acoustic signal to make the user aware. The alarm must always be acknowledged. If the alarm condition no longer exists, e.g. the device has cooled down following overheating, the alarm indication will disappear. If the condition persists the displayed alarm remains and, following elimination of the cause, must be acknowledged again.

► How to acknowledge an alarm in the display (during manual control)

- 1. If the alarm is indicated as a pop-up, tap OK.
- **2.** If the alarm has already been acknowledged, but is still displayed in the status area, then first tap the status area to make the alert pop up again and then acknowledge with **OK**.

In order to acknowledge an alarm during analog remote control, see *"3.5.4.3. Acknowledging device alarms"*. To acknowledge in digital remote, refer to the external documentation "Programming ModBus & SCPI".

EL 9000 B Series

Some device alarms, specifically their thresholds are configurable:

Alarm	Meaning	Description	Range	Indication
OVP	OverVoltage Protection	Triggers an alarm if the DC input voltage reaches the defined threshold. The DC input will be switched off	0 V1.03*U _{Nom}	Display, analog & digital interface
ОСР	OverCurrent Protection	Triggers an alarm if the DC input current reaches the defined threshold. The DC input will be switched off	0 A1.1*I _{Nom}	Display, analog & digital interface
OPP	OverPower Protection	Triggers an alarm if the DC input power reaches the defined threshold, The DC input will be switched off	0 W1.1*P _{Nom}	Display, analog & digital interface

These device alarms can't be configured and are based on hardware:

Alarm	Meaning	Description	Indication
PF	Power Fail	AC supply over- or undervoltage. Triggers an alarm if the AC supply is out of specification or when the device is cut from supply, for example when switching it off with the power switch. The DC input will be switched off.	Display, analog & digital interfaces
от	OverTem- perature	Triggers an alarm if the internal temperature exceeds a certain limit. The DC input will be switched off.	Display, analog & digital interfaces
MSP	Master-Slave Protection	Triggers an alarm if the master of an initialised master-slave system loses contact to any slave unit or if a slave has not yet been initialised by the master. The DC input will be switched off. The alarm can be cleared by either deactivating master-slave mode or reinitialising the MS system.	Display, digital interfaces

► How to configure the device alarms

- 1. While the DC input is switched off tap the touch area **SETTINGS** on the main screen.
- 2. On the right side tap the arrows to select "2. Protect".
- **3.** Set the thresholds for the equipment alarm relevant to your application if the default value of 103% resp. 110% is unsuitable.

The user also has the possibility of selecting whether an additional acoustic signal will be sounded if an alarm or user defined event occurs.

► How to configure the alarm sound (also see ",, 3.4.3. Configuration via MENU")

- 1. While the DC input is switched off tap the touch area **MENU** on the main screen.
- 2. In the menu page, tap "HMI Settings".
- 3. In the following menu page, tap "Alarm Sound".
- 4. In the settings page tap on the symbol to either enable or disable the alarm sound and confirm with

3.6.2.1 User defined events

The monitoring functions of the device can be configured for user defined events. By default, events are deactivated (action = NONE). Contrary to device alarms, <u>the events only work while the DC input is switched on</u>. It means, for instance, that the device can't detect undercurrent (UCD) anymore after switching the DC input off and the input current immediately falls down to zero.

The following events can be configured independently and can, in each case, trigger the actions NONE, SIGNAL, WARNING or ALARM (for the definition refer to section *3.6.2*).

Event	Meaning	Description	Range
UVD	UnderVoltage Detection	Triggers an event if the input voltage falls below the defined threshold.	0 VU _{Nom}
OVD	OverVoltage Detection	Triggers an event if the input voltage exceeds the defined threshold.	0 VU _{Nom}
UCD	UnderCurrent Detection	Triggers an event if the input current falls below the defined threshold.	0 A…I _{Nom}
ОСD	OverCurrent Detection	Triggers an event if the input current exceeds the defined threshold.	0 A…I _{Nom}
OPD	OverPower Detection	Triggers an event if the input power exceeds the defined threshold.	0 WP _{Nom}

These events should not be confused with alarms such as OT and PF which are for device protection. User defined events can, however, if set to action ALARM, switch off the DC input and thus protect the source (power supply, battery).

► How to configure user defined events

- **1.** While the DC input is switched off tap the touch area **SETTINGS** on the main screen.
- **2.** On the right side tap the arrows

to select "4.1 Event U" or "4.2 Event I" or "4.3 Event P".

- **3.** Set the monitoring limits with the left hand rotary knob and the triggered action with the right hand knob relevant to the application (also see *"3.6.1. Definition of terms"*).
- Accept the settings with

As soon as an event is set up with an action other than "NONE" and with accepted settings, an incident can occur whether the DC input is switched on or off. On leaving the pages "**User events**" or "**Settings**" an event can be directly displayed.

User events are an integral part of the actual user profile. Thus, if another user profile, or the default profile, is selected and used, the events will be either differently or not configured.

The set values can be entered using a numeric pad, which appears when tapping the numpad symbol below.

3.7 Control panel (HMI) lock

In order to avoid the accidental alteration of a value during manual operation, the rotary knobs or the touchscreen can be locked so that no alteration of values will be accepted without prior unlocking.

► How to lock the HMI

1. In the main page, tap the lock symbol **1** (upper right corner).

- 2. In the settings page "HMI Lock" you are then asked to chose between a complete HMI ("Lock all") lock or one where the On/Off button is still usable ("ON/ OFF possible"), resp. chose to activate the additional PIN ("Enable PIN"). The device would later request to enter this PIN every time you want to unlock the HMI, until the PIN is deactivated again.
- **3.** Activate the lock with right. The status "**Locked**" as shown in the figure to the

If an attempt is made to alter something whilst the HMI is locked, a requester appears in the display asking if the lock should be disabled.

► How to unlock the HMI

- 1. Tap any part of the touchscreen of the locked HMI, or turn one of the rotary knobs or press the button "On/ Off" (only in "Lock all" situation).
- 2. This request pop-up will appear:

3. Unlock the HMI by tapping on "Tap to unlock" within 5 seconds, otherwise the pop-up will disappear and the HMI remains locked. In case the additional PIN code lock has been activated in the menu "HMI Lock", another requester will pop up, asking you to enter the PIN before it finally unlocks the HMI.

3.8 Limits lock

In order to avoid the alteration of the adjustment limits (also see *"3.4.4. Adjustment limits"*) by an unprivileged user, the screen with the adjustment limit settings ("Limits") can be locked by a PIN code. The menu pages "**3.Limits**" in SETTINGS and "**Profiles**" in MENU will then become inaccessible until the lock is removed by entering the correct PIN or in case it has been forgotten, by resetting the device as last resort.

► How to lock the "Limits"

- 1. While the DC input is switched off, tap the touch area **MENU** on the main screen.
- 2. In the menu tap "Limits Lock".
- 3. In the next page set the check mark for "Lock".

The same PIN as with the HMI lock is used here. It should be set before activating the Limits lock. See "3.7. Control panel (HMI) lock"

4. Activate the lock by leaving the settings page with

Be careful to enable the lock if you are unsure what PIN is currently set. In doubt use ESC to exit the menu page. In menu page "HMI Lock" you can define a different PIN, but not without entering the old one.

► How to unlock the limits settings

1. While the DC input is switched off, tap the touch area

MENU on the

on the main screen.

- 2. In the menu tap "Limits Lock".
- **3.** In the next page tap on touch area "**Unlock**" and then you will be asked to enter the 4-digit PIN.
- **4.** Deactivate the lock by entering the correct PIN and submitting with ENTER.

3.9 Loading and saving a user profile

The menu "**Profiles**" serves to select between a default profile and up to 5 user profiles. A profile is a collection of all settings and set values. Upon delivery, or after a reset, all 6 profiles have the same settings and all set values are 0. If the user changes settings or sets target values then these create a working profile which can be saved to one of the 5 user profiles. These profiles or the default one can then be switched. The default profile is read-only.

The purpose of a profile is to load a set of set values, settings limits and monitoring thresholds quickly without having to readjust these. As all HMI settings are saved in the profile, including language, a profile change can also be accompanied by a change in HMI language.

On calling up the menu page and selecting a profile the most important settings can be seen, but not changed.

▶ How to save the current values and settings as a user profile

1. While the DC input is switched off tap the touch area **MENU** the main screen.

on

- 2. In the menu page, tap
- **3.** In the selection screen (right) choose between user profile 1-5 in which the settings are to be saved. The profile will then be displayed and the values can be checked, but not changed.
- 4. Save using the touch area

3.10 The function generator

3.10.1 Introduction

The built-in function generator is able to create various signal forms and apply these to the set value of voltage or current.

The standard functions are based on an **arbitrary generator** and directly accessible and configurable using manual control. For remote control, the fully customisable arbitrary generator replicates the functions with sequences containing 8 parameters each. Further functions, such as UI or IU, are based on a table with 4096 values, working as **XY function**. **Battery test** and **MPP tracking** are software based functions only.

The following functions are retrievable, configurable and controllable:

Function	Short description
Sine wave	Sine wave generation with adjustable amplitude, offset and frequency
Triangle	Triangular wave signal generation with adjustable amplitude, offset, rise and fall times
Rectangular	Rectangular wave signal generation with adjustable amplitude, offset and duty cycle
Trapezoid	Trapezoidal wave signal generation with adjustable amplitude, offset, rise time, pulse time, fall time, idle time
DIN 40839	Simulated automobile engine start curve according to DIN 40839 / EN ISO 7637, split into 5 curve segments, each with a start voltage, final voltage and time
Arbitrary	Generation of a process with up to 99 freely configurable curve points, each with a start and end value (AC/DC), start and end frequency, phase angle and total duration
Ramp	Generation of a linear rise or fall ramp with start and end values and time before and after the ramp
UI-IU	Table (.csv) with values for U or I, uploaded from an USB stick
Battery test	Battery discharge test with constant or pulsed current, along with Ah, Wh and time counters
MPP Tracking	Simulation of the characteristic tracking behaviour of solar inverters when seeking to find the maximum power point (MPP) when being connected to typical sources such as solar panels

3.10.2 General

3.10.2.1 Limitations

The function generator is not accessible, neither for manual access, nor for remote control, if

• resistance mode (R/I adjustment mode, also called UIR mode) is active.

3.10.2.2 Resolution

Amplitudes generated by the arbitrary generator have an effective resolution of approx. 52428 steps. If the amplitude is very low and the time long, the device would generate less steps and set multiple identical values after another, generating a staircase effect. It is furthermore not possible to generate every possible combination of time and a varying amplitude (slope).

The XY generator, which works in table mode, has an effective resolution of 3276 steps for the set value range of 0-100% rated value.

3.10.2.3 Minimum slope / maximum ramp time

When using a rising or falling offset (i.e. DC part) at functions like ramp, trapezoid, triangle and even sine wave, a minimum slope, calculated from the rated values of voltage or current, is required or else the adjusted settings would be neglected by the device. Calculating the minimum slope can help to determine if a certain ramp over time can be achieved by the device or not. Example: model EL 9080-170 B is going to be used, with 80 V and 170 A rating. **Formula: minimum slope = 0.000725 * rated value / s**. For the example model it results in $\Delta U/\Delta t$ of 58 mV/s and $\Delta I/\Delta t$ of 12 mA/s. The maximum time which can be achieved with the minimum slope then calculates as approximately 1379 seconds according to formula t_{Max} = rated value / min. slope.

3.10.3 Method of operation

In order to understand how the function generator works and how the value settings interact, the following should be noted:

The device operates always with the three set values U,I and P, also in function generator mode.

The selected function can be used on <u>one</u> of the values U or I, the other two are then constants and have a limiting effect. That means, if, e.g. a voltage of 10 V is applied to the DC input and a sine wave function should operate on the current with an amplitude of 20 A and offset 20 A, then the function generator will create a sine wave progression of current between 0 A (min) and 40 A (max), which will result in an input power between 0 W (min) and 400 W (max). The input power, however, is limited to its set value. If this were 300 W then, in this case, the current would be limited to 30 A and, if clamped to an oscilloscope, it would be seen to be capped at 30 A and never achieve the target of 40 A.

Another case is when working with a function which is applied to the input voltage. If here the static voltage is set higher than the amplitude plus offset then at function start there will be no reaction, as the voltage regulation limits down to 0 with an electronic load, other than current or power. The correct settings for each of the other set values is therefore essential.

3.10.4 Manual operation

when the input is switched off.

main screen.

3.10.4.1 Function selection and control Via the touchscreen one of the functions described in *3.10.1* can be called

How to select a function and adjust parameters

1. While the DC input is switched off tap touch area

\sim	\sim	Ш
Sine	Triangle	RecLangle
		-1/1-
Trapezoid	DIN 40839	Arbitrary
ESC	Ramp	DOWN

2. In the menu overview tap on the touch area Function Generator and then on the desired function or cess the next page.

up, configured and controlled. Selection and configuration are only possible

Touch area "Function generator" is locked in R mode (adjustable resistance).

MENU

on the

- **3.** Depending on the choice of function there follows a request to which input value the function generator is going to be applied (U) / (I)) or, when accessing the battery test function, to select the battery test mode.
- **4.** Adjust the parameters as you desire, like offset, amplitude and frequency for a sine wave, for example.

For the AC part of a function and if the difference between start and end value of amplitude or frequency is too low (min. $\Delta Y/\Delta t$), depending on the time that is defined for one function run, the function generator will not accept the settings and pop up an error.

5. Also adjust the overall limits of voltage, current and power, which you can access with touch area

When entering function generator mode, those global limits are reset to safe values, which might prevent the function from working at all. For example, if you apply the selected function to the input current, then the overall current limit should not interfere and should at least be as high as offset + amplitude.

Setting the various functions is described below. After setting it up, the function can be loaded.

EL 9000 B Series

► How to load a function

1. After setting the values for the required signal generation, tap on the

touch area 🛃

The device will then load the data into the internal controller and changes the display. Shortly afterwards the static values are set (power and voltage or current), the DC input is switched on and the touch area **START** enabled.

Only then can the function be started.

Because the DC input is automatically switched on in order to settle the start situation, the static values are effective to the source immediately after loading the function. These static values represent the situation before start and after the end of the function, so it doesn't need to start from 0. Only exception: when applying any function to the current (I), there is no adjustable static current value, so the function would always start from 0 A.

► How to start and stop a function

- 1. The function can be **started** either by tapping **START** or pushing the "On/Off" button, if the DC input is currently switched off. The function then starts immediately. In case START is used while the DC input is still switched off, the DC input will be switched on automatically.
- **2.** The function can be **stopped** either by tapping **STOP** or pushing the "On/Off" button. There is different behaviour:

a) The **STOP** are only stops the function, the DC input <u>remains ON</u> with the static value in effect.

b) The "On/Off" button stops the function and switches the DC input off.

Any device alarm (overvoltage, overtemperature etc.), protection (OPP, OCP) or event with action = Alarm stops the function progress automatically, switches off the DC input and reports the alarm.

3.10.5 Sine wave function

The following parameters can be configured for a sine function:

Value	Range	Description
I(A), U(A)	0(Nominal value - (Offs)) von U, I	A = Amplitude of the signal to be generated
I(Offs), U(Offs)	(A)(Nominal value - (A)) von U, I	Offs = Offset, based on the zero point of the mathematic sine curve, may not be smaller than the amplitude.
f (1/t)	110000 Hz	Static frequency of the signal to be generated

Schematic diagram:

Application and result:

A normal sine wave signal is generated and applied to the selected set value, e.g. current (I). At a constant input voltage the current input of the load will follow a sine wave.

For calculating the maximum power input the amplitude and offset values for the current must be added.

Example: with an input voltage of 15 V and sin(I) selected, set the amplitude to 25 A and the offset to 30 A. The resulting maximum input power is then achieved at the highest point of the sine wave and is (30 A + 25 A) * 15 V = 825 W.

3.10.6 Triangular function

The following parameters can be configured for a triangular wave function:

Value	Range	Description			
I(A), U(A)	0(Nominal value - (Offs)) of U, I	A = Amplitude of the signal to be generated			
I(Offs), U(Offs) 0(Nominal value - (A)) of U, I		Offs = Offset, based on the foot of the triangular wave			
t1	0.01 ms36000 s	Time for the positive slope of the triangular wave signal.			
t2	0.01 ms36000 s	Time for the negative slope of the triangular wave signal			

Schematic diagram:

Application and result:

A triangular wave signal for input current (direct) or input voltage (indirect) is generated. The positive and negative slope times are variable and can be set independently.

The offset shifts the signal on the Y-axis.

The sum of the intervals t1 and t2 gives the cycle time and its reciprocal is the frequency.

Example: a frequency of 10 Hz is required and would lead to periodic duration of 100 ms. This 100 ms can be freely allocated to t1 and t2, e.g. 50 ms:50 ms (isosceles triangle) or 99.9 ms:0.1 ms (right-angled triangle or sawtooth).

3.10.7 Rectangular function

The following parameters can be configured for a rectangular wave function:

Value	Range	Description		
I(A), U(A)	0(Nominal value - (Offs)) of U, I	A = Amplitude of the signal to be generated		
I(Offs), U(Offs)	0(Nominal value - (A)) of U, I	Offs = Offset, based on the foot of the rectangular wave		
t1	0.01 ms36000 s	Time (pulse width) of the upper level (amplitude)		
t2	0.01 ms36000 s	Time (pause width) of the lower level (offset)		

Schematic diagram:

Application and result:

A rectangular or square wave signal for input current (direct) or input voltage (indirect) is generated. The intervals t1 and t2 define how long the value of the amplitude (pulse) and how long the value of the offset (pause) are effective.

The offset shifts the signal on the Y axis.

Intervals t1 and t2 can be used to define a duty cycle. The sum of t1 and t2 gives the period and its reciprocal is the frequency.

Example: a rectangular wave signal of 25 Hz and a duty cycle of 80% are required. The sum of t1 and t2, the period, is 1/25 Hz = 40 ms. For a duty cycle of 80% the pulse time (t1) is 40 ms*0.8 = 32 ms and the pause time (t2) is 8 ms

3.10.8 Trapezoidal function

Value	Range	Description			
I(A), U(A)	0(Nominal value - (Offs)) of U, I	A = Amplitude of the signal to be generated			
I(Offs), U(Offs) 0(Nominal value - (A)) of U, I		Offs = Offset, based on the foot of the trapezium			
t1	0.01 ms36000 s	Time for the negative slope of the trapezoidal wave signal			
t2	0.01 ms36000 s	Time for the top value of the trapezoidal wave signal			
t3	0.01 ms36000 s	Time for the negative slope of the trapezoidal wave signal			
t4	0.01 ms36000 s	Time for the base value (offset) of the trapezoidal wave signal			

Schematic diagram:

Application and result:

Here a trapezoidal signal can be applied to a set value of U or I. The slopes of the trapezium can be varied by setting different times for rise and fall.

The periodic duration and repeat frequency are the result of four time elements. With suitable settings the trapezium can be deformed to a triangular or rectangular wave. It has, therefore, universal use.

When adjusting very short time values for t1 not every adjustable amplitude can be gained on the DC input. Rule of thumb: the smaller the time value, the lower the true amplitude.

3.10.9 DIN 40839 function

This function is based on the curve defined in DIN 40839 / EN ISO 7637 (test impulse 4), and is only applicable to voltage. It shall replicate the progress of automobile battery voltage during engine starting. The curve is divided into 5 segments (or sequence points), see diagram below, which each have the same parameters. The standard values from the DIN are set already as default values for the five sequence points.

The following parameters can be configured for the DIN 40839 function:

Value	Range	Seq	Description
Ustart	0Nominal value of U	1-5	Start voltage of the ramp
Uend	0Nominal value of U	1-5	End voltage of the ramp
Seq.time	0.1 ms36000 s	1-5	Time of the ramp
Seq.cycles	∞ or 1999	-	Number of repetitions of the entire curve
Time t1	0.01 ms36000 s	-	Time after cycle before repetition (cycle <> 1)

Schematic diagram:

Application and result:

The function's primary use is to load a source, i. e. power supply, which cannot generate the curve itself and would supply a static DC voltage. The load acts as a sink for the rapid fall of the output voltage of the power supply enabling the voltage progress to follow the DIN curve. The only requirement for the source is that it features (an adjustable) current limitation.

The curve conforms to test impulse 4 of the DIN. With suitable settings, other test impulses can be simulated. If the curve in sequence point 4 should be a sine wave, then these 5 sequence points would have to be reconstructed using the arbitrary generator.

3.10.10 Arbitrary function

The arbitrary i. e. freely definable function offers the user a wider scope. There are 99 sequence points available for use on either current (I) or voltage (U) while having the same set of parameters which can be arbitrarily configured, so that a complex function process can be built up. Any number of points can run one after another in a block, freely defined from point x to y, and this block can then be repeated 1 to 999 times or endlessly. A point or block can only be applied to current or voltage, thus a mix of assignment to current I or voltage U is not possible.

The arbitrary curve overlays a linear progression (DC) with a sine curve (AC), whose amplitude and frequency are shaped between start and end values. If start frequency (fs) and end frequency (fe) are set to 0 Hz then the AC values have no impact and only the DC part is effective. Each sequence point is allocated a sequence point time in which the AC/DC curve will be generated from start to end values.

The following parameters can be configured for each sequence point in the arbitrary function:

Value	Range	Description
ls(AC) / Us(AC)	050% Nominal value of I or U	Start amplitude of the sine wave part (AC)
le(AC) / Ue(AC)	050% Nominal value of I or U	End amplitude of the sine wave part (AC)
fs(1/T)	0 Hz10000 Hz	Start frequency of the sine wave part (AC)
fe(1/T)	0 Hz10000 Hz	End frequency of the sine wave part (AC)
Angle	0°359°	Start angle of the sine wave part (AC)
ls(DC) / Us(DC)	Is(AC)(rated value of I - Is(AC)) or Us(AC)(rated value of U - Us(AC))	Start value of the DC part
le(DC) / Ue(DC)	le(AC)(rated value of I - le(AC)) or Ue(AC)(rated value of U - Ue(AC))	End value of the DC part
Seq.time	0.01 ms36000 s	Time of the sequence point

The sequence point time (seq. time) and the start and end frequency are related. The minimum value for $\Delta f/s$ is 9.3. Thus, for example, a setting of fs = 1 Hz, fe = 11 Hz and Seq.time = 5 s would not be accepted as $\Delta f/s$ is only 2. A seq. time of 1 s would be accepted, or, if the time remains at 5 s, then fe = 51 Hz must be set.

The amplitude change between start and end is related to the sequence point time. A minimal change over an extended time is not possible and in such a case the device will report an inapplicable setting.

After the settings for the selected sequence point are accepted with SAVE, further points can be configured. If the button NEXT is touched a second settings screen appears in which global settings for all 99 points are displayed. The following parameters can be set for the total run of an arbitrary function:

Value	Range	Description		
Start seq.	1Endseq.	First sequence point in the block		
End seq.	Startseq 99	Last sequence point in the block		
Seq. Cycles	∞ or 1999	Number of cycles to run the block.		

Schematic diagram:

Applications and results: **Example 1**

Focussing 1 cycle of 1 sequence point from 99

DC values for start and end are the same, also the AC amplitude. With a frequency >0 a sine wave progression of the set value is generated with a defined amplitude, frequency and Y shift (offset, DC value at start and end)

The number of sine waves per cycle depend on the sequence point time and the frequency. If time was 1 s and the frequency 1 Hz, there would be exactly 1 sine wave. If the time were 0.5 s at the same frequency, there would only be a half sine wave.

Schematic diagram:

Applications and results:

Example 2

Focussing 1 cycle of 1 sequence point from 99:

The DC values at start and end are the same but the AC (amplitude) not. The end value is higher than the start so that the amplitude increases with each new half sine wave continuously through the sequence point. This, of course, only if the sequence point time and frequency allow for multiple waves to be created. e.g. for f=1 Hz and Seq. time = 3 s, three complete waves would be generated (for angle = 0°) and reciprocally the same for f=3 s and Seq. time=1 s.

Example 3

Focussing 1 cycle of 1 sequence point from 99:

The DC values at start and end are unequal, as are also the AC values. In both cases the end value is higher than the start so that the offset increases from start to end (DC) and the amplitude also with each new half sine wave.

Additionally the first sine wave starts with a negative half wave because the angle is set at 180° . The start angle can be shifted at will in 1° steps between 0° and 359° .

Example 4

Focussing 1 cycle of 1 sequence point from 99:

Similar to example 1 but with another end frequency. Here this is shown as higher than the start frequency. This impacts the period of the sine waves such that each new wave will be shorter over the total span of the sequence point time.

Example 5

Focussing 1 cycle of 1 sequence point from 99:

Similar to example 1 but with a start and end frequency of 0 Hz. Without a frequency no sine wave part (AC) will be created and only the DC settings will be effective. A ramp with a horizontal progression is generated.

Example 6

Focussing 1 cycle of 1 sequence point from 99:

Similar to example 1 but with a start and end frequency of 0 Hz. Without a frequency no sine wave part (AC) will be created and only the DC settings will be effective. Here start and end values are unequal and a steadily increasing ramp is generated. By linking together a number of differently configured sequences, complex progressions can be created. Smart configuration of the arbitrary generator can be used to match triangular, sine, rectangular or trapezoidal wave functions and thus, e.g. a sequence of rectangular waves with differing amplitudes or duty cycles could be produced.

Applications and results:

Example 7

Focussing 2 cycles of 1 sequence point of 99:

A sequence point configured as in example 3 is run. As the settings demand that the end offset (DC) is higher than the start, the second cycle will revert to the same start level as the first, regardless of the values achieved at the end of the first run. This can produce a discontinuity in the total progression (marked in red) which may only be compensated with a careful choice of settings.

Example 8

Focussing 1 cycle of 2 sequence points of 99:

Two sequences points run consecutively. The first generates a sine wave with increasing amplitude, the second with a decreasing amplitude. Together they produce a progression as shown left. In order to ensure that the maximum wave in the middle occurs only once, the first one must end with a positive half wave and the second one start with a negative half wave as shown in the diagram.

Example 9

Focussing 1 cycle of 4 sequences points of 99:

Point 1: 1/4th of sine wave (angle = 270 °)

Point 2: 3 Sine waves (ratio of frequency to sequence point time 1:3)

Point 3: Horizontal ramp (f = 0) Point 4: Falling ramp (f = 0)

3.10.10.1 Loading and saving the arbitrary function

The 99 sequence points of the arbitrary function, which can be manually configured with the control panel of the device and which are applicable either to voltage (U) or current (I), can be saved to or loaded from a common USB stick (see *1.9.6.5*) via the front side USB port. Generally, all 99 points are saved or loaded using a text file of type CSV, which represents a table of values. The file has to meet following requirements:

- It must contain exactly 99 rows with 8 subsequent values and must not have gaps
- The 8 columns must be separated by either a comma or semicolon, according to setting "USB file separator format" in the MENU, see 3.4.3.1)
- The files must be stored inside a folder called HMI_FILES which has to be in the root of the USB drive
- The file name must always start with WAVE_U or WAVE_I (not case-sensitive)
- Values with decimal places must use a decimal separator (comma or dot) according to setting "USB file separator format" in the MENU, see 3.4.3.1
- All values in every row and column have to be within the specified range (see below)
- The columns in the table have to be in a defined order which must not be changed

Following value ranges are given for use in the table, related to the manual configuration of the arbitrary generator (column headers like in Excel):

Column	Parameter	Range
А	AC start amplitude	050% U or I
В	AC end amplitude	050% U or I
С	Start frequency	010000 Hz
D	End frequency	010000 Hz
E	AC start angle	0359°
F	DC start offset	0(Nominal value of U or I) - AC start amplitude
G	DC end offset	0(Nominal value of U or I) - AC end amplitude
Н	Sequence point time in µs	1036.000.000.000 (36 billion μs)

For details about the parameter and the arbitrary function refer to "3.10.10. Arbitrary function".

Example CSV:

	А	В	С	D	E	F	G	Н
1	20,00	30,00	5	5	90	50,00	50,00	50000000
2	30,00	20,00	5	5	90	50,00	50,00	3000000
3	0,00	0,00	0	0	0	0,00	0,00	1000
4	0,00	0,00	0	0	0	0,00	0,00	1000
5	0,00	0,00	0	0	0	0,00	0,00	1000
6	0,00	0,00	0	0	0	0,00	0,00	1000

The example shows that only the first two sequence points are configured, while all others are set to default values. The table could be loaded as WAVE_U or WAVE_I when using, for example, the model EL 9080-170 B, because the values would fit both, voltage and current. The file naming, however, is unique. A filter prevents you from loading a WAVE_I file after you have selected "Arbitrary --> U" in the function generator menu. The file would not be listed at all.

▶ How to load a sequence point table from an USB stick:

- 1. Do not plug the USB drive yet or remove it.
- 2. Access the function selection menu of the function generator with MENU -> Function Generator -> Arbitrary -> U/I, to see the main screen of sequence point selector, as depicted to the right.

3. Tap touch area File Teport/Export, then TOAD From USB and follow the instructions on screen. If at least one valid files has been recognized (for file and path naming see above), the device will show a list of files to select from with

4. Tap touch area **LOAD ICODE** in the bottom right corner. The selected file is then checked and loaded, if valid. In case it is not valid, the device will show an error message. Then the file must be corrected and the steps repeated.

▶ How to save a sequence point table to an USB stick:

- 1. Don't yet plug the USB stick or remove it again.
- 2. Access the function selection menu of the function generator via MENU -> Function Generator -> Arbitrary
 - USB
- 3. Tap on FIIO Import/Export, then SAVE to USB. The device will request you to plug the USB stick now.
- 4. After plugging it, the device will try to access the USB stick and find the folder HMI_FILES and read the content. If there are already WAVE_U or WAVE_I files present, they will be listed and you can either select one for overwriting with , otherwise select -NEW FILE- for a new file.
- 5. Finally save the sequence point table with

3.10.11 Ramp function

The following parameters can be configured for a ramp function.

Value	Range	Description
Ustart / Istart	0Nominal value of U, I	Start value (U,I)
Uend / lend	0Nominal value of U, I	End value (U, I)
t1	0.01 ms36000 s	Time before ramp-up or ramp-down of the signal.
t2	0.01 ms36000 s	Ramp-up or ramp-down time

Schematic diagram:

Application and result:

This function generates a rising or falling ramp between start and end values over the time t2. Time t1 creates a delay before the ramp starts.

The function runs once and stops at the end value. To have a repeating ramp, function Trapezoid would have to be used instead (see 3.10.8).

Important to consider are the static values of U and I which define the start levels at the beginning of the ramp. It is recommended that these values are set equal to those in A.start, unless the power source shall not be loaded before the start of the ramp. In that case the static values should be set to zero.

10h after reaching the ramp end, the function will stop automatically (i.e. I = 0 A, in case the ramp was assigned to the current), unless it has been stopped manually before.

3.10.12 UI and IU table functions (XY table)

The UI and IU functions offer the user the possibility to set a DC input current dependant on the DC input voltage, or a DC input voltage dependant on the DC input current. The function is table driven with exactly 4096 values, which are distributed over the whole measured range of actual input voltage or input current in the range of 0...125% Unom or Inom. The table can either be uploaded from an USB stick through the front side USB port of the device or via remote control (ModBus RTU protocol or SCPI). The functions are:

- UI function: U = f(I)
- IU function: I = f(U)

In the **UI function**, the equipment measuring circuit determines the level from 0 to maximum of the input current. For each of the 4096 possible values for input current a voltage value is maintained by the user in the UI table which can be any value between 0 and nominal value. The values uploaded from an USB stick will always be interpreted as voltage values even if the user calculated them as current values and incorrectly loaded them as an UI table.

In the IU function the assignment of the values is the other way round, the behaviour, however, the same.

Thus the behaviour of the load or the current and power consumption can be controlled with dependance on input voltage and step changes can be created.

Uploading of a table from an USB stick must use text files in CSV format (.csv). Plausibility is checked on loading (values not too high, number of values correct), and possible errors reported in which case the table will not be loaded.

The 4096 values in the table are only checked for size and count. If all the values were to be graphically plotted a curve would be created which could include significant step changes in current or voltage. That could lead to complications in the loading of the source if, e.g., the internal voltage measurement in the electronic load swings slightly so that the load jumps backwards and forwards between two values in the table, which, in the worst case, could be 0 A and the maximum current. Thus it's recommended to let subsequent values only differ a little from each other.

3.10.12.1 Loading UI and IU tables from USB drive

The so-called UI / IU function generator requires to load tables from a common FAT32 formatted USB stick via the front side USB port. The files are required to have a certain format and to meet following specifications:

- The files names must always begin with IU or UI (not case-sensitive), depending on the target function you want to load the table for
- The file must be a text file of type Excel CSV and must only contain one column with exactly 4096 values without gaps
- Values with decimal places must use a decimal separator as selected with parameter "USB file separator format" in the MENU (see 3.4.3.1) where format "US" means separator = comma and decimal separator = dot
- None of values may exceed the related maximum value of the device. For example if you have a 80 V model you are going to load the table for the UI function, it is assumed that all the values in the table are for voltage and thus must not be bigger than 80 (the adjustment limits of the device are not in effect here)
- The files must be stored inside a folder called HMI_FILES with has to be in the root of the USB drive

If the file naming, path and file content specifications are not met, the file is either not recognized at all or rejected. So it is, for example, impossible to load an UI table (file name starts with UI) for the IU function and vice versa. The USB drive may contain multiple files of which up to 10 are listed as a selection before loading.

► How to load an UI or IU table from USB stick:

- 1. Do not plug the USB drive yet or pull it out if already plugged.
- 2. Open the function selection menu of the function manager with MENU -> Function Generator -> XY Table
- 3. In the next scree select the desired function with either "UI Table" or "IU Table".
- **4.** Configure the global parameters for U, I and P, if necessary.

- 5. Tap touch area LOAD Tron USE and plug the USB drive when requested, in order to select one out of X compatible files from the drive. In case the file is not accepted, the device will report an error in the display and also tell what's wrong with the file.
- 6. Once the file is accepted, you will be requested to remove the USB drive.

7. Submit and load the function with to start and control it as with other function (also see *"3.10.4.1. Function selection and control"*).

3.10.13 Battery test function

The purpose of the battery test function is to discharge various battery types in industrial product tests or laboratory applications. The function is usually applied on the DC input current and can either be selected and run in "**Static**" (**constant current**) or "**Dynamic**" (**pulsed current**) mode. In static mode, the settings for power or resistance can also let the device run the function in constant power (CP) or constant resistance (CR). Like in the normal operation of the load the set values determine what regulation mode (CC, CP, CR) is resulting on the DC input. If, for example, CP operation is projected, the set values of current should be set to maximum and resistance mode should be turned off, so that both don't interfere. For a projected CR operation it is similar. There current and power should be set to maximum.

For dynamic mode there is also a power setting, but it cannot be used to run the dynamic battery test function in pulsed power mode or at least the result would not be as expected. It is recommended to adjust the power values always according to the test parameters, so it doesn't interfere with the pulsed current, i. e. dynamic mode.

When discharging with high currents, compared to the nominal battery capacity and in dynamic mode, it may happen that the battery voltage shortly drops below the U-DV threshold and the test will unintentionally stop. Here it is recommended to adjust U-DV accordingly.

Graphical depiction of both battery test modes:

3.10.13.1 Parameters for static mode

The following parameters can be configured for the <u>static</u> battery test function.

Value	Range	Description
I	0Nominal value of I	Maximum discharge current in Ampere
Р	0Nominal value of P	Maximum discharge power in Watt
R	Minmax. nominal value of R	Maximum discharge resistance in Ω (can be deactivated> "OFF"

3.10.13.2 Parameters for dynamic mode

The following parameters can be configured for the <u>dynamic</u> battery test function.

Value	Range	Description
I ₁	0Nominal value of I	Upper resp. lower current setting for pulsed operation (the higher
l ₂	0Nominal value of I	value of both is automatically used as upper level)
Р	0Nominal value of P	Maximum discharge power in Watt
t ₁	1 s 36000 s	t1 = Time for the upper level of the pulsed current (pulse)
t ₂	1 s 36000 s	t2 = Time for the lower level of the pulsed current (pause)

3.10.13.3 Other parameters

These parameters are separately adjustable in each battery test mode.

Parameter	Range	Description
Discharge voltage	0Nominal value of U	Variable voltage threshold to make the test stop when reached (is connected to the battery voltage on the DC input of the load)
Discharge time	010 h	Maximum test time after which the test can stop automatically
Discharge capacity	099999.99 Ah	Maximum capacity to consume from the battery after which the test can stop automatically
Action	NONE, SIGNAL, End of test	Separately defines an action for parameters "Discharge time" and "Discharge capacity". It determines what shall happen with the test run once the adjusted values for those parameters are reached: NONE = No action, test will continue SIGNAL = Text "Time limit" will be displayed, test will continue End of test = The test will stop
Enable USB log- ging	on/off	By setting the check mark, USB logging is enabled and will record data on a properly formatted USB stick, if plugged in to the front USB port. The recorded data differs from the USB log data recorded during "normal" USB logging in all other operation modes of the device.
Logging interval	100 ms - 1 s, 5 s, 10 s	Writing interval for USB logging

3.10.13.4 Displayed values

During the test run, the display will show a set of values and status:

- · Actual battery voltage on the DC input in V
- Discharge voltage U_{DV} in V
- · Actual and preset discharge current in A
- · Actual and preset power in W
- · Consumed battery capacity in Ah
- Consumed energy in Wh
- Elapsed time in HH:MM:SS,MS
- Regulation mode (CC, CP, CR)

3.10.13.5 Data recording (USB logging)

At the end of the configuration of both, static and dynamic mode, there is the option to enable the USB logging feature. With an USB stick plugged and formatted as required (see 1.9.6.5), the device can record data during the test run directly to the stick and in the defined interval. Active USB logging is indicated in the display with symbol

After the test has stopped, the recorded data will be available as text file in CSV format.

Log file format:

1	А	В	С	D	E	F	G
1	Static:Uset	Iset	Pset	Rset	DV	DT	DC
2	0,00V	0,00A	1200W	OFF	0,00V	10:00:00	99999,00Ah
3							
4	Uactual	Iactual	Pactual	Ah	Wh	Time	
5	0,34V	0,00A	0W	0,00Ah	0,00Wh	00:00:00,800	
6	0,28V	0,00A	0W	0,00Ah	0,00Wh	00:00:01,800	
7	0,28V	0,00A	0W	0,00Ah	0,00Wh	00:00:02,800	
8	0,28V	0,00A	0W	0,00Ah	0,00Wh	00:00:03,800	

Regardless the setting for the recording interval, the values "Ah" and "Wh" are only calculated by the device once per second. When using an interval setting of < 1 s, several identical values of Ah and Wh are written into the CSV.

3.10.13.6 Possible reasons for battery test stop

The battery test function run can be stopped by different reasons:

- Manual stop on the HMI with touch area STOP
- After the max. test time has been reached and action "End of test" was set for it
- After the max. battery capacity to consume has been reached and action "End of test" was set for it
- · Any device alarm which would also switch off the DC input, like OT
- Reaching the threshold U_{DV} (discharge voltage), caused by whatever reason

After an automatic stop, caused by any of the listed reasons, the test cannot be continued or run again immediately. The full battery configuration has to be run through, accessible via touch area BACK.

3.10.14 MPP tracking function

MPP stands for the maximum power point (see principle view to the right) on the power curve of solar panels. Solar inverters, when connected to such panels, constantly track this MPP once it has been found.

The electronic load simulates this behaviour by a function. It can be used to test even huge solar panels without having to connect a usually big solar inverter device which also requires to have a load connected to its AC output. Furthermore, all MPP tracking related parameters of the load can be adjusted and it so is much more flexible than an inverter with its limited DC input range.

For evaluation and analysis purposes, the load can also record measured data, i. e. DC input values such as actual voltage, current or power, to USB stick or provide them for reading via digital interface.

The MPP tracking function offers four modes. Unlike with other functions or general use of the device, values for the MPP tracking are only entered by direct input via the touch screen.

3.10.14.1 Mode MPP1

This mode is also called "find MPP". It is the simplest option to have the electronic load find the MPP of a connected solar panel. It requires to set only three parameters. Value U_{oc} is necessary, because it helps to find the MPP quicker as if the load would start at 0 V or maximum voltage. Actually, it would start at a voltage level slightly above U_{oc} .

 I_{SC} is used as an upper limit for the current, so the load would not try to draw more current than the panel is specified for.

Value	Range	Description
U _{oc}	0Nominal value of U	Voltage of the solar panel when unloaded, taken from the panel specs
I _{sc}	0Nominal value of I	Short-circuit current, max. specified current of the solar panel
Δt	5 ms60000 ms	Interval for measuring U and I during the process of finding the MPP

Following parameters can be configured for tracking mode **MPP1**:

Application and result:

After the three parameters have been set, the function can be started. As soon as the MPP has been found, the function will stop and switch off the DC input. The acquired MPP values of voltage (U_{MPP}), current (I_{MPP}) and power (P_{MPP}) are then shown in the display.

3.10.14.2 Mode MPP2

This mode tracks the MPP, so it is closest to the operation of a solar inverter. Once the MPP is found, the function won't stop, but try to track the MPP permanently. Due to the nature of solar panels this can only be done below the level of the MPP. As soon as this point is reached, the voltage starts to sink further and so does the actual power. The additional parameter ΔP defines how much the power may sink before the direction is reversed and the voltage starts to rise again until the load reaches the MPP. The result are zigzag shaped curves of both, voltage and current.

A typical curve display is shown in the picture to the right. For the example, the ΔP was set to a quite small value, so the power curve looks almost linear. With a small ΔP the load would always track close to the MPP.

Following parameters can be configured for tracking mode MPP2:

Value	Range	Description
U _{oc}	0Nominal value of U	Voltage of the solar panel when unloaded, taken from the panel specs
I _{sc}	0Nominal value of I	Short-circuit current, max. specified current of the solar panel
∆t	5 ms60000 ms	Interval for measuring U and I during the process of finding the MPP
ΔP	0 WP _{Nom}	Tracking/regulation tolerance below the MPP

3.10.14.3 Mode MPP3

Also called "fast track", this mode is very similar to mode MPP2, but without the initial step which is used to find the actual MPP, because mode MPP3 would directly jump to the power point defined by user input (U_{MPP} , P_{MPP}). In case the MPP values of the equipment under test are known, this can save a lot of time in repetitive tests. The rest of the function run is the same as with MPP2 mode. During and after the function, the least acquired MPP values of voltage (U_{MPP}), current (I_{MPP}) and power (P_{MPP}) are shown in the display.

Following parameters can be configured for tracking mode MPP3:

Value	Range	Description
U_{MPP}	0Nominal value of U	Voltage in the MPP
I _{sc}	0Nominal value of I	Short-circuit current, max. specified current of the solar panel
P_{MPP}	0Nominal value of P	Power in the MPP
Δt	5 ms60000 ms	Interval for measuring U and I during the process of finding the MPP
ΔP	0 WP _{Nom}	Tracking/regulation tolerance below the MPP

3.10.14.4 Mode MPP4

This mode is different, because it does not track automatically. It rather offers the choice to define a user curve by setting up to 100 points of voltage values, then track this curve, measure current and power and return the results in up to 100 sets of acquired data. The curve points can be entered manually or loaded from USB stick. Start and end point can be adjusted arbitrarily, Δt defines the time between two points and the function run can be repeated up to 65535 times. Once the function stops at the end or by manual interrupt, the DC input is switched off and the measured data is made available. After the function, the acquired set of data with the highest actual power will be shown in the display as voltage (U_{MPP}), current (I_{MPP}) and power (P_{MPP}) of the MPP. Going back on the screen with RETURN then allows for data export to USB stick.

Value	Range	Description
$U_{1}U_{100}$	0Nominal value of U	Voltage for the up to 100 user definable curve points
Start	1-100	Start point for the run of x out of 100 subsequent points
End	1-100	End point for the run of x out of 100 subsequent points
Δt	5 ms60000 ms	Time before the next point
Rep.	0-65535	Number of repetitions for the run from Start to End

Following parameters can be configured for tracking mode MPP4:

3.10.15 Remote control of the function generator

The function generator can be remotely controlled, but configuration and control of the functions with individual commands is different from manual operation. The external documentation "Programming Guide ModBus & SCPI" explains the approach. In general the following apply:

- The function generator is not controllable via the analog interface
- The function generator is unavailable if R mode (resistance) is activated
- Some functions are based on the arbitrary generator and some on the XY generator, thus both have to be configured and used separately

3.11 Other applications

3.11.1 Parallel operation in master-slave (MS)

Multiple devices of same kind and model can be connected in parallel in order to create a system with higher total current and hence higher power. For true master-slave operation, the units have to be connected with their DC inputs, their master-slave bus and their Share bus.

The master-slave bus is a digital bus which makes the system work as one big unit regarding adjusted values, actual values and status.

The Share bus will dynamically balance the units in their internal current regulation, especially if the master unit runs a function like sine wave etc. In order for this bus to work correctly, at least the DC minus poles of all units have to be connected, because DC minus is the reference for the Share bus.

Principle view (without source):

3.11.1.1 Restrictions

Compared to normal operation of a single device, master-slave operation has some limitations:

- The MS system reacts differently to alarm situations (see below in 3.11.1.6)
- Using the Share bus makes the system reacts as dynamically as possible, but it is still not as dynamic as single unit operation

3.11.1.2 Wiring the DC inputs

The DC input of every unit in the parallel operation is simply connected to the next unit using cables or copper bars with a cross section according to the maximum current and with short as possible length.

3.11.1.3 Wiring the Share bus

The Share bus is wired from unit to unit with an ideally twisted pair of cables with non-critical cross section. We recommend to use 0.5 mm^2 to 1 mm^2 .

 The Share bus is poled. Take care for correct polarity of the wiring! In order for the Share bus to work correctly it requires at least to connect all DC minus inputs of the devices

A max. of 16 units can be connected via Share bus.

3.11.1.4 Wiring and set-up of the master-slave bus

The master-slave connectors are built-in and must first be connected via network cables (≥CAT3, patch cable) and then MS can be configured manually (recommended) or by remote control. The following applies:

- A maximum 16 units can be connected via the bus: 1 master and up to 15 slaves.
- Only connect devices of same kind, i.e. electronic load to electronic load, and same model, such as EL 9080-170 B to EL 9080-170 B.
- The units at both ends of the bus must be terminated (see below)

The master-slave bus must not be wired using crossover cables!

Later operation of the MS system implies:

- The master unit displays, or makes available to be read by the remote controller, the sum of the actual values of all the units
- The ranges for setting values on the master are adapted to the total number of units, thus, if e.g. 5 units each with a power of 4.8 kW are connected together to a 24 kW system, then the master can be set in the range 0...24 kW.
- Slave units will show the alarm "MSP" in the display as long as they not have been initialised by the master. The same alarm is signalled after a connection drop to the master unit occurred.
- In case the function generator of the master unit is going to be used, the Share bus must be connected as well

► How to connect the master-slave bus

- 1. Switch off all units that are to be connected and connect them together with a network cable (CAT3 or better, not included). It doesn't matter which of the two master-slave connection sockets (RJ45, backside) is connected to the next unit.
- **2.** Also connect all units at the DC side.
- **3.** The two units at the beginning and end of the chain should be terminated, if long connection cables are used. This is achieved using a 3-pole DIP switch which is positioned on the rear side of the unit next to the MS connectors.

Position: not terminated (default)

Position: terminated

Now the master-slave system must be configured on each unit. It is recommended to configure first all the slave units and then the master unit.

Step 1: Configuring all slave units (standard models with TFT display)

- 1. Enter MENU then GENERAL SETTINGS and press 🔍 until reaching Page 11.
- **2.** Activate the MS mode with touch area <u>SLAVE</u>. A warning requester will appear which has to be acknowledged with OK, otherwise the change will be reverted.
- **3.** Accept the settings with the touch area

and return to the main page.

Step 1: Configuring all slave units (EL 9000 B Slave series models without display)

- **1.** Connect the Slave series model via the <u>rear</u> USB port interface to a PC.
- 2. Start the software EA Power Control (included with the device on USB stick) and let the software find the device.
- **3.** Open app "Settings" for the particular unit, change to tab "Master-Slave" and there set the parameter "Master-slave mode" to "SLAVE".

The slave is then configured for master-slave. Repeat the procedure for all other slave units.
EL 9000 B Series

until reaching Page 11.

► Step 2: Configuring the master unit

- **1.** Enter **MENU** then GENERAL SETTINGS and press
- 2. Specify the unit as master with tough area MASTER. A warning requester will appear which has to be acknowledged with OK, otherwise the change will be reverted.
- **3.** Accept the settings with the touch area

and return to the main page.

► Step 3: Initialising the master

Master-slave mode

80.00V

340.0A

Initialize

4.80kW

Number of slaves: Detected slaves:

U-nom:

The master unit and the whole master-slave system still need to be initialised. In the main screen of the master unit, after quitting the setting menus, a pop-up will appear:

checked and setup process repeated.

3.11.1.5 Operating the master-slave system

After successful configuration and initialisation of the master and slave units, these will show their status in the displays. While the master merely shows "Master" in the status area, the slave(s) will continuously show like this, as long they are in remote control by the master:

anytime via the MENU in GENERAL SETTINGS, Page: 12.

It means, as long as a slave unit is in control by the master, it won't display any set values, but actual values, and it will show the DC input status and possible alarms.

Tapping INITIALIZE will cause the unit to search again for slaves and then

to configure itself for set and actual values accordingly. If more than one

correctly configured unit is found then this screen will show the number of

If no slaves are found, or the correct number is not displayed, then the

settings of all the slaves and the master together with the cabling must be

slaves and the combined total current and total power.

The initialising process of the master and the master-slave system will, as long as MS mode is still activated, be repeated each time the units are powered. The initialisation can be repeated

The slaves can no longer be controlled manually or remotely, neither via the analog nor via digital interfaces. They can, if needed, be monitored by reading actual values and status.

The display on the master unit changes after initialisation and all set values are reset. The master now displays the set and actual values of the total system. Depending on the number of units, the total current and power will multiply. The following applies:

- The master can be treated as a standalone unit
- The master shares the set values across the slaves and controls them
- The master is remotely controllable via the analog or digital interfaces
- All settings for the set values U,I and P (monitoring, settings limits etc.) will be adapted to the new total values
- All initialised slaves will reset any limits (U_{Min}, I_{Max} etc.), supervision thresholds (OVP, OPP etc.) and event settings (UCD, OVD etc.) to default values, so these don't interfere the control by the master. As soon as these values are modified on the master, they are transferred 1:1 to the slaves. Later, during operation, it might occur that a slave causes an alarm or event rather than the master, due to imbalanced current or slightly faster reaction.

In order to easily restore all these settings after leaving MS operation, it is recommended to make use of the user profiles (see "3.9. Loading and saving a user profile")

- If one or more slaves report an device alarm, this will be displayed on the master and must be acknowledged there so that the slave(s) can continue operation. If the alarm had caused the DC input to be switched off then this will be reinstated automatically by the master unit once the alarm has been acknowledged
- Loss of connection to any slave will result in shutdown of all DC inputs, as a safety measure, and the master will report this situation in the display with a pop-up "Master-slave safety mode". Then the MS system has to be re-initialised, either with or without re-establishing connection to the disconnected unit(s) before.

• All units, even the slaves, can be externally shut down on the DC inputs using the pin REM-SB of the analog interface. This can be used as some kind of emergency off, where usually a contact (maker or breaker) is wired to this pin on all units in parallel.

3.11.1.6 Alarms and other problem situations

Master-slave operation, due to the connection of multiple units and their interaction, can cause additional problem situations which do not occur when operating individual units. For such occurrences the following regulations have been defined:

- If any unit switches off its power stage(s) due to overheating, the other units will continue sinking power. In case the master is affected, it's still operable and can set values for the system which are then processed by all currently active units.
- If one or more slave units are switched off on the AC side (power switch, supply undervoltage) and come back later, they're not automatically initialised and included again in the MS system. Then the init has to be repeated.
- If the master unit is switched off on the AC side (power switch, supply undervoltage) and comes back later, it will automatically initialise the MS system again, finding and integrating all active slaves. In this case, MS can be restored automatically.
- If accidentally multiple or no units are defined as master the master-slave system cannot be initialised.

In situations where one or multiple units generate a device alarm like OV, PF or OT following applies:

- Any alarm of a slave is indicated on the slave's display and on the master's display
- If multiple alarms happen simultaneously, the master only indicates the most recent one. In this case, the particular alarms can be read from the slave units displays. This also applies to remote control or remote supervision, because the master can only report the most recent alarm.
- All units in the MS system supervise their own values regarding overvoltage, overcurrent and overpower and in case of alarm they report the alarm to the master. In situations where the current is probably not balanced between the units, it can occur that one unit generates an OC alarm though the global OC limit of the MS system was not reached. The same can occur with the OP alarm.

3.11.1.7 Important to know

In case one or several units of a parallel system are not going to be used and remain switched off, depending on the number of active units and the dynamics of the operation it may become necessary to disconnect the inactive units from the Share bus, because even when not powered the units can have a negative impact on the Share bus due to their impedance.

3.11.2 Series connection

 \wedge

Series connection is not a permissible operating method for electronic loads and must not be installed or operated under any circumstances!

3.11.3 Two quadrants operation (2QO)

3.11.3.1 Introduction

This kind of operation refers to the use of a source, in this case a power supply from a compatible series (see section *"1.9.10. "Share" connector"*) and a sink, in this case a series EL 9000 B electronic load. The source and the sink function alternately in order to test a device, such as a battery, by deliberate charging and discharging as part of a functional test, or a motor by clipping excess energy with the sink.

The user can decide either to operate the system manually or only the power supply device as the driving unit or to control both devices by PC. It is recommended to focus on the power supply, which is intended to control the load via the Share Bus connection. The two quadrant operation is only suitable for constant voltage operation (CV).

A combination of source and sink can only map the quadrants I + II. This means that only positive voltages are possible. The positive current is generated by the source or application and the negative current flows into the load.

The set values for current and power of the load need to be set to match the application's requirements. This can be done manually or via any interface. The power supply has to be operating in mode CV. Only then it will control the input voltage of the load using the Share Bus.

Typical applications:

- Fuel cells
- Capacitor tests
- Motor driven applications
- Electronic tests where a high dynamic discharge is required.

3.11.3.2 Connecting devices to a 2QO

Share-Bus

E.U.T

E-LOAD

There are several ways to connect source(s) and sink(s) to make a 2QO:

PSU

1x e-load and 1x power supply, plus 1x test object (E.U.T).

This is the most common configuration for 2QO. The nominal values for U,I and P of the two devices should match, such as EL 9080-170 B and PSI 9080-170 3U. The system is controlled by the power supply, which has to be set to "Master" in the setup menu, even if there is no master-slave operation running.

Multiple e-loads and multiple power supplies for increased total performance, plus 1 test object (E.U.T).

The combination of load units and power supply units each create a block, a system with certain power. Here it is also necessary to match the nominal values of the two systems, like the 80 V DC input of the loads to a max. 80 V DC output of the power supplies. The max. number of 16 units cannot be exceeded. Regarding the Share bus connection, all e-load units have to be slaves, while one of the PSUs has to be set as master.

3.11.3.3 Settings on the devices

The master-slave settings in the MENU also affect the Share bus. For correct 2QO operation, all involved load units must be slaves on the Share bus. This is achieved by setting the master-slave mode to OFF or SLAVE, depending on if there is digital master-slave in use or not. For the one load that is master (setting: MASTER) in the master-slave system the additional parameter "PSI/ELR system" has to be activated.

On any of the power supplies, you need activate master-slave mode and set it to MASTER, unless it is already the master unit of a master-slave system over digital MS bus. Refer to the documentation of the power supply for further information. Also see *3.4.3.1*.

For safety of the connected E.U.T / D.U.T and to prevent damage, we recommend to adjust supervision thresholds like OVP, OCP or OPP on all units to the desired levels, which will then switch off the DC output resp. the DC input in case of excess.

3.11.3.4 Restrictions

After all electronic loads have been connected to the Sharebus with one power supply as master, they cannot limit their input voltage anymore to what you adjust as "U set" on the device. The correct voltage level comes from the master unit and has to be adjusted there.

3.11.3.5 Application example

Charging and discharging a battery with 24 V/400 Ah, using the wiring example in configuration A.

- Power supply PSI 9080-170 3U with: I_{Set} = 40 A (charging current, 1/10 of capacity), P_{Set} = 5000 W
- Electronic load EL 9080-340 B set to: I_{Set} = max. discharging current of the battery (eg. 100 A), P_{Set} = 4800 W, plus probably UVD = 20 V with event type "Alarm" to stop discharging at a certain low voltage threshold
- Assumption: the battery has a voltage of 26 V at test start
- DC inputs resp. DC outputs on all units switched off

In this combination of devices it is recommended to always switch on the DC output of the source first and then the DC input of the sink.

1. Discharging the battery to 24 V

Setup: Voltage on the power supply set to 24 V, DC output of power supply and DC input of load activated

Reaction: the e-load will load the battery with a max. current of 100 A in order to discharge it to 24 V. The power supply delivers no current at this moment, because the battery voltage is still higher than what is adjusted on the power supply. The load will gradually reduce the input current in order to maintain the battery voltage at 24 V. Once the battery voltage has reached 24 V with a discharge current of approx. 0 A, the voltage will be maintained at this level by charging from the power supply.

The power supply determines the voltage setting of the load via the Share bus. In order to avoid deep discharge of the battery due to accidentally setting the voltage on the power supply to a very low value, it is recommended to configure the undervoltage detection feature (UVD) of the load, so it will switch off the DC input when reaching minimum allowed discharge voltage. The settings of the load, as given via the Share bus, can't be read from the load's display.

2. Charging the battery to 27 V

Setup: Voltage on the power supply set to 27 V

Reaction: the power supply will charge the battery with a maximum current of 40 A, which will gradually reduce with increasing voltage as a reaction to the changing internal resistance of the battery. The load absorbs no current at this charging phase, because it is controlled via the Share bus and set to a certain voltage, which is still higher than the actual battery voltage. When reaching 27 V, the power supply will deliver only the current needed to maintain the battery voltage.

4. Service and maintenance

4.1 Maintenance / cleaning

The device needs no maintenance. Cleaning may be needed for the internal fans, the frequency of cleanse is depending on the ambient conditions. The fans serve to cool the components which are heated by the inherent high dissipation of energy. Heavily dirt filled fans can lead to insufficient airflow and therefore the DC input would switch off too early due to overheating or possibly lead to defects.

Cleaning the internal fans can be performed with a vacuum cleaner or similar. For this the device needs to be opened.

4.2 Fault finding / diagnosis / repair

If the equipment suddenly performs in an unexpected way, which indicates a fault, or it has an obvious defect, this can not and must not be repaired by the user. Contact the supplier in case of suspicion and elicit the steps to be taken.

It will then usually be necessary to return the device to Elektro-Automatik (with or without warranty). If a return for checking or repair is to be carried out, ensure that:

- the supplier has been contacted and it is clarified how and where the equipment should be sent.
- the device is in fully assembled state and in suitable transport packaging, ideally the original packaging.
- optional extras such as an interface module is included if this is in any way connected to the problem.
- a fault description in as much detail as possible is attached.
- if shipping destination is abroad, the necessary customs papers are attached.

4.2.1 Replacing a defect mains fuse

The device is protected by a fusible which is inside a fuse holder on the rear of the device. The fuse rating is printed next to the fuse holder. Replace the fuse only with one of same size and rating.

4.2.2 Firmware update

Firmware updates should only be installed when they can eliminate existing bugs in the firmware in the device or contain new features.

The firmware of the control panel (HMI), of the communication unit (KE) and the digital controller (DR), if necessary, is updated via the rear side USB port. For this the software EA Power Control is needed which is included with the device or available as download from our website together with the firmware update, or upon request.

However, be advised not to install updates promptly. Every update includes the risk of an inoperable device or system. We recommend to install updates only if...

- an imminent problem with your device can directly be solved, especially if we suggested to install an update during a support case
- a new feature has been added which you definitely want to use. In this case, the full responsibility is transferred to you.

Following also applies in connection with firmware updates:

- Simple changes in firmwares can have crucial effects on the application the devices ared use in. We thus recommend to study the list of changes in the firmware history very thoroughly.
- Newly implemented features may require an updated documentation (user manual and/or programming guide, as well as LabView VIs), which is often delivered only later, sometimes significantly later

4.3 Calibration

4.3.1 Preface

The devices of series EL 9000 B feature a function to re-adjust the most important input related values in case these values have moved out of tolerance. The re-adjustment is limited to compensate small differences of up to 1% or 2% of the max. value. There are several reasons which could make it necessary to re-adjust a unit: component aging, component deterioration, extreme ambient conditions, high frequent use.

In order to determine if a value is out of tolerance, the parameter must be verified first with measurement tools of high accuracy and with at least half the error of the EL device. Only then a comparison between values displayed on the EL device and true DC input values is possible.

For example, if you want to verify and possibly re-adjust the input current of model EL 9080-510 B which has 510 A maximum current, stated with a max. error of 0.2%, you can only do that by using a high current shunt with max. 0.05% error or less. Also, when measuring such high currents, it is recommended to keep the process short, in order to avoid the shunt heating up too much. It is furthermore recommended to use a shunt with at least 25% reserve.

When measuring the current with a shunt, the measurement error of the multimeter on the shunt adds to the error of the shunt and the sum of both must not exceed the max. error of the device under calibration.

4.3.2 Preparation

For a successful calibration and re-adjustment, a few tools and certain ambient conditions are required:

- A measurement device (multimeter) for voltage, with a max. error of half the EL's voltage error. That measurement device can also be used to measure the shunt voltage when re-adjusting the current
- If the current is also going to be calibrated: a suitable DC current shunt, ideally specified for at least 1.25 times the max. input current of the EL and with a max. error that is half or less than the max. current error of the EL device
- Normal ambient temperature of approx. 20-25 °C (68-77 °F)
- An adjustable voltage & current source which is capable of providing at least 102% of the max. voltage and current of the EL device, or separate voltage source and current source units

Before starting the calibration procedure, a few measures have to be taken:

- Let the EL device warm up for at least 10 minutes under 50% power, in connection with the voltage / current source
- In case the remote sensing input is going to be calibrated, prepare a cable for the remote sensing connector to DC input, but leave it yet unconnected
- Abort any form of remote control, deactivate master-slave mode, deactivate resistance mode
- Install the shunt between source and EL device and make sure the shunt is cooled somehow. For example , you might want to place it in the warm air stream coming out of the rear of the EL device. This helps the shunt to warm up as well to operation temperature
- Connect suitable measurement devices to the DC input and to the shunt, depending on whether the voltage is going to be calibrated first or the current

4.3.3 Calibration procedure

After the preparation, the device is ready to be calibrated. From now on, a certain sequence of parameter calibration is important. Generally, you don't need to calibrate all three parameters, but it is recommended to do so. Important:

The input current calibration should be done before any voltage calibration, because the calibrated input current is used for voltage calibration.

When calibrating the input voltage, the remote input sense on the rear of the device has to be disconnected.

The calibration procedure, as explained below, is an example with model EL 9080-170 B. Other models are treated the same way, with values according to the particular EL model and the required power source.

EL 9000 B Series

4.3.3.1 Calibrating the set values

► How to calibrate the voltage

 Adjust the connected voltage source to approx. 102% of the maximum voltage specified for the EL device. For the example with an 80 V EL this would be 81.6 V for the source. Set the current limitation of the voltage source to 5% of the nominal current specified for EL device, for this example it is 8.5 A. Check again, that for voltage calibration, the sensing connector on the rear of the device is <u>not</u> connected.

- 2. In the display, tap MENU, then **"General Settings**", then go to Page 7 and then tap START.
- **3.** In the next screen select: **Voltage calibration**, then **Calibrate input value** and **NEXT**. The load will switch the DC input on and start to measure the input voltage (**U-mon**).
- 4. The next screen requests you to enter the measured input voltage at Measured value= from the multimeter. Enter it using the keypad, that appears when tapping the value. Assure yourself the value is correct and submit with ENTER.
- 5. Repeat point 4. for the next three steps (total of four steps).

► How to calibrate the current

- 1. Adjust the current source to approx. 102% nominal current of the EL device, for the sample model with 170 A this would be 173.4 A, rounded to 174 A. Make sure the source can provide more current than the EL can draw, else the source's voltage will collapse. Set the output voltage of the current source to 10% of the nominal voltage specified for EL, in the example 8 V, and switch the DC output of the source on.
- 2. In the display, tap MENU, then "General Settings", then go to Page 7 and then tap START.
- **3.** In the next screen select: **Current calibration**, then **Calibrate input value** and **NEXT**. The load will switch on the DC input and start to measure (**I-mon**).
- **4.** The next screen requests you to enter the input current **Measured value=** measured with the shunt. Enter it using the keypad, assure yourself the value is correct and submit with **ENTER**.
- 5. Repeat point 4. for the next three steps (total of four steps).

4.3.3.2 Calibrating the remote sensing

In case you are generally using the remote sensing feature (Sense), it is recommended to readjust this parameter too, for best results. The procedure is identical to the calibration of voltage, except for it requires to have the sensing connector on the rear to be plugged and connected with correct polarity to the DC input of the EL.

► How to calibrate the remote sensing voltage

- Adjust the connected voltage source to approx. 102% of the maximum voltage specified for the EL device. For example with an 80 V EL this would be 81.6 V for the source. Set the current limitation of the voltage source to 5% of the nominal current specified for EL device, for this example it is 8.5 A. Check again, that for voltage calibration, the sensing connector on the rear of the device is connected.
- 2. In the display, tap MENU, then "General Settings", then go to Page 7 and then tap START.
- 3. In the next screen select: Sense volt. calibration, then Calibrate input value and NEXT.
- **4.** The next screen requests you to enter the measured sensing voltage **Measured value=** from the multimeter. Enter it using the keypad, that appears when tapping the value. Assure yourself the value is correct and submit with **ENTER**.
- 5. Repeat point 4. for the next three steps (total of four steps).

4.3.3.3 Calibrating the actual values

Actual values of the input voltage (with and without remote sensing) and the input current are calibrated almost the same way as the set values, but here you don't need to enter anything, but just confirm the displayed values. Please proceed the above steps and instead of "**Calibrate input value**" select "**Calibrate actual val.**" in the submenus. After the device shows the measured values on display, wait at least 2s for the measured value to settle and then tap NEXT until you are through all steps.

EL 9000 B Series

4.3.3.4 Save and exit

After calibration you may furthermore enter the current date as "calibration date" by tapping selection screen and enter the date in format YYYY / MM / DD.

Last but not least save the calibration data permanently by tapping

Leaving the calibration selection menu without "Save and exit" will discard calibration data and the procedure would have to be repeated!

5. Contact and support

5.1 Repairs

Repairs, if not otherwise arranged between supplier and customer, will be carried out by EA Elektro-Automatik. For this the equipment must generally be returned to the manufacturer. No RMA number is needed. It is sufficient to package the equipment adequately and send it, together with a detailed description of the fault and, if still under guarantee, a copy of the invoice, to the following address.

5.2 Contact options

Questions or problems with operation of the device, use of optional components, with the documentation or software, can be addressed to technical support either by telephone or e-Mail.

Address	e-Mail	Telephone
EA Elektro-Automatik	Technical support:	Switchboard: +49 2162 / 37850
Helmholtzstr. 31-37	support@elektroautomatik.de	Support: +49 2162 / 378566
41747 Viersen	All other topics:	
Germany	ea1974@elektroautomatik.de	

EA Elektro-Automatik GmbH & Co. KG

Development - Production - Sales

Helmholtzstraße 31-37 41747 Viersen Germany

Fon: 02162 / 37 85-0 Mail: ea1974@elektroautomatik.de Web: www.elektroautomatik.com