

PSEN sl-1.0p 1.1/1.1 VA

THE SPIRIT OF SAFETY

- PSEN sensor technology

This document is a translation of the original document.
All rights to this documentation are reserved by Pilz GmbH \& Co. KG. Copies may be made for internal purposes. Suggestions and comments for improving this documentation will be gratefully received.
Source code from third-party manufacturers or open source software has been used for some components. The relevant licence information is available on the Internet on the Pilz homepage.

SafetyEYE®, SafetyNET $p \circledR$, the spirit of safety $®$ are registered and protected trademarks of Pilz GmbH \& Co. KG in some countries.

Introduction	5
Validity of documentation	5
Using the documentation	5
Definition of symbols	5
Safety	6
Intended use	6
Safety regulations	7
Safety assessment	7
Use of qualified personnel	7
Warranty and liability	8
Disposal	8
For your safety	8
Unit features	9
Function description	10
Lateral and vertical offset	11
Wiring	12
Guidelines for cable length	12
Recommended cable cross sections	13
$\underline{\text { Pin assignment }}$	13
Connection to evaluation devices	14
Connection example PNOZ s3	17
Connection example PNOZmulti	17
Teaching in the actuator	17
Installation	18
Note regarding the free-moving actuator PSEN sl-1.0fm	20
Installing on a swing gate	21
Installing on a sliding gate	21
Adjustment	23
Operation	23
Error display through flashing codes	24

Dimensions in mm 26
Technical Details Order No. 570600 27
Technical Details Order No. 570660 30
Technical Details Order No. 570630 34
Supplementary data 37
Radio approval 37
Safety characteristic data 37
Order reference 38
Safety gate system 38
Accessories 38
EC declaration of conformity 38

Introduction

Validity of documentation

This documentation is valid for the product PSEN sl-1.0p 1.1/1.1 VA. It is valid until new documentation is published.

This operating manual explains the function and operation, describes the installation and provides guidelines on how to connect the product.

Using the documentation

This document is intended for instruction. Only install and commission the product if you have read and understood this document. The document should be retained for future reference.

Definition of symbols

Information that is particularly important is identified as follows:
DANGER!
This warning must be heeded! It warns of a hazardous situation that poses
an immediate threat of serious injury and death and indicates preventive
measures that can be taken.

WARNING!

This warning must be heeded! It warns of a hazardous situation that could lead to serious injury and death and indicates preventive measures that can be taken.

CAUTION!

This refers to a hazard that can lead to a less serious or minor injury plus material damage, and also provides information on preventive measures that can be taken.

NOTICE

This describes a situation in which the product or devices could be damaged and also provides information on preventive measures that can be taken. It also highlights areas within the text that are of particular importance.

INFORMATION

This gives advice on applications and provides information on special features.

Safety

Intended use

Safety function of safety switch:
> 2 safety outputs supply a high signal each when the corresponding input is high and the actuator is in the switch's response range.

The safety gate system meets the requirements in accordance with
> EN 60947-5-3: PDDB with the corresponding actuator PSEN sl0.5 or PSEN sI0.5fm (see Technical details: System with normal actuator [D] 27], System with free-moving actuator [D] 30], System with normal actuator and stainless steel base plate [■D 34])
> EN 62061: SIL CL 3
) EN ISO 13849-1: PL e and Cat. 4

- EN ISO 14119: Coding level Low, Type 4
- The safety switch may only be used with the corresponding actuator (see Technical Details: System with normal actuator [\square 27] , System with free-moving actuator [[D] 30], System with normal actuator and stainless steel base plate [메 34]).

The safety level PL e (Cat. 4)/SIL CL 3 is only achieved if
> the safety outputs use 2-channel processing.

Because of the low operating distance (see Technical details [D] 27]) the repetition accuracy of 40 \% deviates from the requirement in accordance with EN 60947-5-2 (max. 10\%).

The following is deemed improper use in particular:
) Any component, technical or electrical modification to the product
> Use of the product outside the areas described in this manual
> Use of the product outside the technical details (see Technical details [D2 27]).

Safety regulations

Safety assessment

Before using a unit it is necessary to perform a safety assessment in accordance with the Machinery Directive.
Functional safety is guaranteed for the product as a single component. However, this does not guarantee the functional safety of the overall plant/machine. In order to achieve the required safety level for the overall plant/machine, define the safety requirements for the plant/machine and then define how these must be implemented from a technical and organisational standpoint.

Use of qualified personnel

The products may only be assembled, installed, programmed, commissioned, operated, maintained and decommissioned by competent persons.

A competent person is a qualified and knowledgeable person who, because of their training, experience and current professional activity, has the specialist knowledge required. To be able to inspect, assess and operate devices, systems and machines, the person has to be informed of the state of the art and the applicable national, European and international laws, directives and standards.

It is the company's responsibility only to employ personnel who
> Are familiar with the basic regulations concerning health and safety / accident prevention,
> Have read and understood the information provided in this description under "Safety"
b Have a good knowledge of the generic and specialist standards applicable to the specific application.

Warranty and liability

All claims to warranty and liability will be rendered invalid if
) The product was used contrary to the purpose for which it is intended
) Damage can be attributed to not having followed the guidelines in the manual
> Operating personnel are not suitably qualified

- Any type of modification has been made (e.g. exchanging components on the PCB boards, soldering work etc.).

Disposal

> In safety-related applications, please comply with the mission time T_{M} in the safety-related characteristic data.

- When decommissioning, please comply with local regulations regarding the disposal of electronic devices (e.g. Electrical and Electronic Equipment Act).

For your safety

DANGER!

Risk to life due to manipulation/defeat of the safeguard
If replacement actuators are obtained, these must be installed as described in the chapter entitled Installation.
If replacement actuators are used manipulatively or the function of the safeguard is defeated, there is a risk to life when operating the plant or machine! This must be considered in the operator's hazard assessment and the operator must define appropriate measures to exclude manipulation.

[^0]
Unit features

〉 Transponder technology for presence detection
> Pilz type of coding: coded
b different actuators available (see Order reference [Ⓓ 38])

- Standard actuator PSEN sl-1.0
- free-moving actuator PSEN sl-1.0fm for special applications with higher tolerance compensation
D Device type: PSEN sl-1.0p 1.1 VA: Base plate of switch and actuator, and connector and screws of the device made of stainless steel

〉 Dual-channel operation
> 2 safety outputs
> 2 safety inputs for series connection of multiple safety switches
> 1 signal output
> Magnetic guard locking for process protection
> 1 input to switch the locking magnet on/off

- LEDs for
- Supply voltage/fault
- Gate closed
- State of the inputs
- State of the magnetic guard locking device
> M12, 8-pin male connector

Function description

There is a high signal at safety outputs 12 and 22 if the following occur simultaneously:
> The actuator is within the response range (safety gate closed) and

- There is a high signal at the inputs S11 and S21 and
) There is a high signal at the input S31 (control command for magnetic guard locking) and
> The holding force of the locking magnet has been tested successfully.
There is a low signal at safety outputs 12 and 22 if at least one of the following conditions are met:
> The actuator is outside the response range or
) There is a low signal at the inputs S11 or S21 or
- There is a low signal at the input S31 (control command for magnetic guard locking) or
> The holding force of the locking magnet has not been tested successfully.

Signal output Y32

There is a high signal at the signal output Y 32 if the actuator is within the response range (safety gate closed).

Feasibility monitoring for safety inputs S11 and S21

- If the signal at a safety input switches from high to low, while the other safety input remains high, an unequal status is displayed:
- If the signal at this input switches back from low to high, while a high signal remains at the other input, a feasibility error is displayed and a partial operation lock is triggered: The OSSDs are switched off during the partial operation lock.

A switch to a high signal will only lead to normal safety switch operation if both inputs had a low signal simultaneously. From this moment on, the switch to high signal may occur (partial operation lock see Error display [[D] 24]).

Magnetic guard locking device and magnet monitoring

) The locking magnet is switched on if there is a high signal at input S31 (control command for magnetic guard locking) and the actuator is detected (safety gate closed).
> The holding force of the locking magnet is tested on power-up.

- After a signal change at the input S 31 to low, wait for at least 500 ms , before supplying a high signal again at the input S31. Also note the max. switching frequency (see Technical details: System with normal actuator [Ⓓ2 27], System with free-moving actuator [D] 30], System with normal actuator and stainless steel base plate [D] 34], under electrical data).

If an open winding or a winding short circuit is detected on a locking magnet that is switched on, safety outputs 12 and 22 switch to a low state.
) For physical reasons, a remanence (residual magnetism) remains after the locking magnet is switched off; this is dissipated the first time the sensor and actuator are separated. Therefore a higher effort is required when opening for the first time.

- If the safety gate is in a locked condition and is opened by force, the safety outputs will shut down.

Lateral and vertical offset

> Max. vertical offset 5 mm

b Max. lateral offset: 3 mm

Wiring

Please note:

- You must comply with the specifications stated in the technical details (see Technical details: System with normal acutator [Bd 27], System with free-moving actuator [D] 30], System with normal actuator and stainless steel base plate [[1] 34]).
- The power supply must meet the regulations for extra low voltages with protective separation (SELV, PELV).
- The inputs and outputs of the safety switch must have a protective separation to voltages over 60 VDC.

INFORMATION

Only use safety relays with a 24 VDC supply voltage. Safety relays with a wide-range power supply or in AC device versions have internal potential isolation and are not suitable as evaluation devices.
) Ensure the wiring and EMC requirements of EN 60204-1 are met.
> When connecting in series, make sure you comply with the wiring technology requirements (DIN EN 60204-1) and manipulation protection requirements (EN ISO 14119).

Guidelines for cable length

The max. cable length depends on the voltage drop at the safety switches. The level of voltage drop is determined by the:
b Cable resistance

- Current of the device and the current load of the outputs

If the level of the supply voltage at the device connector falls below the minimum permitted value (see Technical details: System with normal actuator [■D] 27], System with free-moving actuator [D] 30], System with normal actuator and stainless steel base plate [14 34]), the electromagnet is no longer activated reliably. The "Lock" LED registers an error when guard locking.

Possible remedies:
> Set the supply voltage constantly to the upper tolerance range (see Technical details: System with normal actuator [DD 27]. System with free-moving actuator [DD 30], System with normal actuator and stainless steel base plate [6] 34]).
〉 Select a higher conductor cross section

- Reduce load at the outputs, e.g. with evaluation device PNOZ e1.1p

Recommended cable cross sections

Prerequisite:
> Supply voltage: 24 V
〉 Cable type: LiYY $8 x 0.25 \mathrm{~mm}^{2}$ (79 Ohm/km) from Pilz

Max. load per safety output	100 mA	500 mA
Cable length	45 m	24 m

If cable lengths greater than those stated in the table are required, please contact Pilz.

Pin assignment

PIN	Function	Terminal designation	Cable colour (Pilz cable)
1	Input, channel 2	S21	White
2	+24 V UB	A1	Brown
3	Safety output channel 1	12	Green
4	Safety output channel 2	22	Yellow
5	Signal output	Y32	Grey
6	Input, channel 1	S11	Pink
7	0 V UB	A2	Blue
8	"Lock_Unlock"	S31	Red

The wire colour also applies for the cable available from Pilz as an accessory.

Connection to evaluation devices

Make sure that the selected evaluation device has the following properties:
〉 2-channel with feasibility monitoring

- OSSD signals are evaluated

Connection diagram, single connection

Connection diagram, series connection

The safety switch PSEN sl-1.0p 1.1/1.1 VA can be connected to Pilz evaluation devices, for example.

Suitable Pilz evaluation devices are, for example:
> PNOZelog for safety gate monitoring
> PNOZpower for safety gate monitoring
> PNOZsigma for safety gate monitoring
> PNOZ X for safety gate monitoring
> PNOZmulti for safety gate monitoring Configure the switch in the PNOZmulti Configurator with switch type 3.

- PSS for safety gate monitoring with standard function block SB064, SB066 or FS_Safety Gate

The correct connection to the respective evaluation device is described in the operating manual for the evaluation device. Make sure that the connection is made in accordance with the specifications in the operating manual for the selected evaluation device.

The connections to two evaluation devices are shown on the following pages, by way of example:

- PNOZ s3 and
> PNOZmulti

Connection example PNOZ s3

Connection example PNOZmulti

Legend:

IO	Input OSSD
I1	Input OSSD
I2	Signal input
O1	Lock/Unlock

Teaching in the actuator

Any corresponding Pilz actuator (see Technical details: System with normal actuator [■D 27], System with free-moving actuator [■D 30], System with normal actuator and stainless steel base plate [【d 34]), is detected as soon as it is brought into the response range.

Installation

ا The safety gate system can be installed on left or right-hinged swing gates or on sliding gates.
WARNING!
Potential loss of safety function due to gross manipulation
Depending on the application, serious injury or death may result.
Use appropriate installation measures to prevent
$\quad-$ The wiring being modified.
$\quad-$ A short circuit being generated on the connector.

- The possibility of using a second actuator to open the safety gate.

CAUTION!

The unit's properties may be affected if installed in an environment containing electrically or magnetically conductive material. Please check the operating distances and the assured release distance.

- Safety switches and actuators must be positioned so that they are secured against a change of position.
- Also note the max. angular offset (see Technical details: System with normal actuator [Dd 27], System with free-moving actuator [Ⓓ 30], System with normal actuator and stainless steel base plate [$\square \searrow$ 34]).
) The access to the safety switch and actuator has to be possible for maintenance and checking the correct operation.
> Use reliable fastening elements. A tool is to be required to loosen the fastening elements.
> Prevent self-loosening of the fastening elements of safety switch and actuator.
> The fastening of safety switch and actuator has to be sufficiently stable to ensure the proper operation of the safety switch and the actuator.
> Prevent the safety switch and actuator being exposed to heavy shock or vibration
) Circumvention of the safety switch in a reasonably foreseeable manner must be prevented.
| Installation measures in accordance with EN ISO 14119
- Use permanently secured safety screws with a flat head to attach the safety switch and the actuator (e.g. cheese-head or pan head screws) or rivets.
- Installation of the safety switch and actuator must be concealed.
* Alignment errors of the guard must not adversely affect the safety function of the guard.

Note regarding the free-moving actuator PSEN sl-1.0fm

The actuators PSEN sl-1.Ofm are fitted with a movable metal plate. For this reason, a recess must be provided in the mounting surface for the screw connection.

WARNING!

Risk of death and serious injury by reaching into the danger zone!
The actuators enable a warped gate to be closed. A gap may occur on the gate as a result. Make sure that the gap remains small enough to exclude the possibility of reaching into the danger zone.

Installing on a swing gate

Align the actuator flush with the edge of the gate at the height required and tighten the screws

Align the mounting bracket flush with the safety switch and tighten the screws.

Align the safety switch and mounting bracket with the actuator and tighten the screws.

Installing on a sliding gate

Align the actuator mounting bracket flush with the sliding gate and tighten the screws.

Install the actuator at the height required.	

Align the safety switch mounting bracket flush with the frame and
fasten with screws.
(Important: do not tighten the screws)

Fix safety switch upright with a screw (a), close gate.

Remove the safety switch and tighten screw (c).

Align the safety switch to the actuator and tighten the screws.

Adjustment

> The stated operating distances (see Technical details: System with normal actuator [WD 27], System with free-moving [WD 30]actuator, System with normal actuator and stainless steel base plate and actuator [BD 34]) only apply when the safety switch and actuator are installed facing each other in parallel. Operating distances may deviate if other arrangements are used.
> Note the maximum permitted lateral and vertical offset (see Lateral and vertical offset [DD] 11]).

Operation

CAUTION!

Contaminated surfaces can reduce the holding force of the locking magnet.
Make sure that the contact surfaces are clean.

Status indicators:

> "Power / Fault" LED illuminates green: The unit is ready for operation
> "Safety Gate" LED lights up yellow: Actuator is within the response range
> "Lock" LED lights up green: Magnetic guard locking device active
> "Input" LED lights up yellow: There is a high signal at the inputs.

Error display through periodic flashing:

> "Input" LED lights up yellow: the signal switches from high to low at one input, while a high signal remains on the other input (partial operation).
Remedy: Open both channels of the input circuit.
〉 "Power/Fault" LED lights up red: Error message Flashing codes for fault diagnostics are output to the "Safety Gate" or "Input" LED (see Error display through flashing codes).
Remedy: Rectify fault and interrupt power supply.
> "Lock" LED lights up red: Guard locking request is present, but guard locking has not taken place.
This behaviour occurs, for example, when the safety gate is open or the actuator is not within the response range or the holding force is too low.
Remedy: Rectify the cause (e.g. close safety gate), supply a low signal at input S31 and then supply a high signal again after at least 500 ms .

Please note the different times for
> The switch-on delay after UB is applied.

Error display through flashing codes

The "Safety Gate" and "Input" LEDs send flash signals; an error code can be established from the number and sequence. The "Power/Fault" LED illuminates red.

Each error code is indicated by three short flashes of the "Input" or "Safety Gate" LED. After a longer pause, the LED will then flash at one second intervals. The number of LED flashes corresponds to a digit in the error code. The error code can consist of up to 3 digits. The digits are separated by a longer period without flashing. The entire sequence is constantly repeated.

Number of flashes	12345678910111213141516
Decimal error code	1234567891011121314150

Example:

Error code 1,4,1:
Flash frequency of the "Safety Gate" or "Input" LED

Meaning of flash frequency:

	Flash frequency	Meaning
I	3 times, short	Code for error message
II	Once, for one second each	Code for 1st digit
III	4 times, for one second each	Code for 2nd digit
IV	Once, for one second each	Code for 3rd digit
V	3 times, short	Code for error message repeated

Table of error codes

Error code Decimal	Number of flashes	Description	Remedy
1,4,1	$3 x$ short $-1 x$ long $-4 x$ long $-1 x$ long $-3 x$ short	Wiring errors at the inputs or outputs	Check the wiring of the inputs and outputs and rectify wiring errors
1,12	$3 x$ short $-1 x$ long $-12 x$ long $-3 x$ short	Wiring error output 12	Check wiring output 12 and rectify wiring error
1,6,3	$3 x$ short $-1 x$ long $6 x$ long $-3 x$ long $3 x$ short	Wiring error output 12	Check wiring output 12 and rectify wiring error
1,13	$3 x$ short $-1 x$ long $-12 x$ long $-3 x$ short	Wiring error output 22	Check wiring output 22 and rectify wiring error
1,6,4	$3 x$ short $-1 x$ long $6 x$ long $-4 x$ long $3 x$ short	Wiring error output 22	Check wiring output 22 and rectify wiring error
14	$\begin{aligned} & 3 x \text { short }-14 x \text { long }-3 x \\ & \text { short } \end{aligned}$	Wiring error output terminal 12 or capacitive load is too high (cable is too long)	Check wiring output 12 and rectify wiring error Check cable length and shorten it, if necessary (see max. cable length)
15	$3 x$ short $-15 x$ long $-3 x$ short	Wiring error output terminal 22 or capacitive load is too high (cable is too long)	Check wiring output 22 and rectify wiring error Check cable length and shorten it, if necessary (see max. cable length)

Other flashing codes signal an internal error. Remedy: Change device.

Dimensions in mm

Fig.: Safety switch and locking magnet

Fig.: Actuator

Fig.: Mounting bracket for sliding gate (see Accessories [Dd 38])

Fig.: Mounting bracket for swing gate (see Accessories [[D] 38])

Technical Details Order No. 570600

General	
Approvals	CE, EAC (Eurasian), FCC, IC, TÜV, cULus Listed
Sensor's mode of operation	Transponder
Coding level in accordance with EN ISO 14119	Low
Design in accordance with EN ISO 14119	$\mathbf{4}$
Classification in accordance with EN 60947-5-3	PDDB
Pilz coding type	Coded
Transponder	
Frequency band	$\mathbf{1 2 2 ~ k H z ~ - 1 2 8 ~ k H z}$
Max. transmitter output	$\mathbf{1 5 ~ \mathbf { ~ m W }}$

Electrical data	
Supply voltage	
Voltage	24 V
Kind	DC
Voltage tolerance	-15 \%/+10 \%
Output of external power supply (DC)	7,2 W
Max. inrush current at UB	0,6 A
Max. switching frequency	1 Hz
Max. cable capacitance at the safety outputs	
No-load, PNOZ with relay contacts	40 nF
PNOZmulti, PNOZelog, PSS	70 nF
No-load current	40 mA
Inputs	
Number	2
Voltage at inputs	24 V DC
Input current range	5 mA
Semiconductor outputs	
OSSD safety outputs	2
Signal outputs	1
Switching current per output	500 mA
Breaking capacity per output	12 W
Short circuit-proof	yes
Residual current at outputs	$250 \mu \mathrm{~A}$
Voltage drop at OSSDs	1,5 V
Conditional rated short circuit current	100 A
Lowest operating current	0 mA
Utilisation category in accordance with EN 60947-1	DC-12
Times	
Test pulse duration, safety outputs	450 ¢s
Switch-on delay	
after UB is applied	1,6 s
Inputs typ.	20 ms
Inputs max.	35 ms
Actuator typ.	500 ms
Delay-on de-energisation	
Inputs typ.	20 ms
Inputs max.	35 ms
Actuator typ.	25 ms
Actuator max.	260 ms
Risk time in accordance with EN 60947-5-3	260 ms
Supply interruption before de-energisation	15 ms
Simultaneity, channel 1 and 2 max.	∞
Environmental data	
Temperature of metal surface at ambient temperature: $25^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$

Environmental data	
Ambient temperature	
In accordance with the standard	EN 60068-2-14
Temperature range	-25-55 ${ }^{\circ} \mathrm{C}$
Storage temperature	
In accordance with the standard	EN 60068-2-1/-2
Temperature range	$-25-70^{\circ} \mathrm{C}$
Climatic suitability	
In accordance with the standard	EN 60068-2-78
Humidity	$93 \% \mathrm{r} . \mathrm{h}$. at $40{ }^{\circ} \mathrm{C}$
EMC	EN 55011: class A, EN 60947-5-3, EN 62061
Vibration	
In accordance with the standard	EN 60947-5-2
Frequency	$10-55 \mathrm{~Hz}$
Amplitude	1 mm
Shock stress	
In accordance with the standard	EN 60068-2-27
Number of shocks	3
Acceleration	30 g
Duration	11 ms
In accordance with the standard	EN 60068-2-27
Number of shocks	500
Acceleration	10 g
Duration	16 ms
Airgap creepage	
Overvoltage category	III
Pollution degree	3
Rated insulation voltage	75 V
Rated impulse withstand voltage	1 kV
Protection type	
Housing	IP67
Mechanical data	
Holding force FZh in accordance with ISO 14119	1000 N
Magnetic holding force on	1.000 N
Magnetic holding force off	30 N
Max. vertical offset	5 mm
Max. lateral offset	3 mm
Max. angular offset	2,5 deg
Actuator 1	PSEN sl-1.0 1.1
Operating distances	
Assured operating distance Sao	1 mm
Typical operating distance So	2 mm
Assured release distance Sar	8 mm
Repetition accuracy switching distances	40 \%
Typ. Hysteresis	0,7 mm
Min. distance between safety switches	30 mm

Mechanical data	
Sensor flush installation in accordance with EN	Yes, follow installation guidelines
60947-5-2	M12, 8-pin male connector
Connection type	LiYY 8 x 0.25 mm2
Cable	
Material	PBT
Top	Nickel-plated steel
Anchor plate	Anticorodal, hard anodised
Base plate	Anticorodal, hard anodised
Actuator	3 Nm
Max. torque setting for fixing screws	
Dimensions	172 mm
Height	45 mm
Width	44 mm
Depth	
Actuator dimensions	188 mm
Height	52 mm
Width	22 mm
Depth	1.120 g
Weight of safety switch	$\mathbf{6 0 0 \mathrm { g }}$
Weight of actuator	1.720 g
Weight	

Where standards are undated, the 2015-04 latest editions shall apply.

Technical Details Order No. 570660

General	
Approvals	CE, EAC (Eurasian), FCC, IC, TÜV, cULus Listed
Sensor's mode of operation	Transponder
Coding level in accordance with EN ISO 14119	Low
Design in accordance with EN ISO 14119	$\mathbf{4}$
Classification in accordance with EN 60947-5-3	PDDB
Pilz coding type	Coded
Transponder	
Frequency band	$\mathbf{1 2 2 ~ k H z ~ - 1 2 8 ~ k H z ~}$
Max. transmitter output	$\mathbf{1 5 ~ m W}$
Electrical data	
Supply voltage	$\mathbf{2 4 ~ V}$
Voltage	DC
Kind	$\mathbf{- 1 5} \% /+10 \%$
Voltage tolerance	$\mathbf{7 , 2 ~ W}$
Output of external power supply (DC)	$\mathbf{0 , 6 ~ A}$
Max. inrush current at UB	$\mathbf{1 ~ H z}$
Max. switching frequency	

Electrical data	
Max. cable capacitance at the safety outputs	
No-load, PNOZ with relay contacts	40 nF
PNOZmulti, PNOZelog, PSS	70 nF
No-load current	40 mA
Inputs	
Number	2
Voltage at inputs	24 V DC
Input current range	5 mA
Semiconductor outputs	
OSSD safety outputs	2
Signal outputs	1
Switching current per output	500 mA
Breaking capacity per output	12 W
Short circuit-proof	yes
Residual current at outputs	$250 \mu \mathrm{~A}$
Voltage drop at OSSDs	1,5 V
Conditional rated short circuit current	100 A
Lowest operating current	0 mA
Utilisation category in accordance with EN 60947-1	DC-12
Times	
Test pulse duration, safety outputs	$450 \mu \mathrm{~s}$
Switch-on delay	
after UB is applied	1,6 s
Inputs typ.	20 ms
Inputs max.	35 ms
Actuator typ.	500 ms
Delay-on de-energisation	
Inputs typ.	20 ms
Inputs max.	35 ms
Actuator typ.	25 ms
Actuator max.	260 ms
Risk time in accordance with EN 60947-5-3	260 ms
Supply interruption before de-energisation	15 ms
Simultaneity, channel 1 and 2 max.	∞
Environmental data	
Temperature of metal surface at ambient temperature: $25^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
Ambient temperature	
In accordance with the standard	EN 60068-2-14
Temperature range	-25-55 ${ }^{\circ} \mathrm{C}$
Storage temperature	
In accordance with the standard	EN 60068-2-1/-2
Temperature range	-25-70 ${ }^{\circ} \mathrm{C}$

Environmental data	
Climatic suitability	
In accordance with the standard	EN 60068-2-78
Humidity	$93 \% \mathrm{r} . \mathrm{h}$. at $40^{\circ} \mathrm{C}$
EMC	EN 55011: class A, EN 60947-5-3, EN 62061
Vibration	
In accordance with the standard	EN 60947-5-2
Frequency	$10-55 \mathrm{~Hz}$
Amplitude	1 mm
Shock stress	
In accordance with the standard	EN 60068-2-27
Number of shocks	3
Acceleration	30 g
Duration	11 ms
In accordance with the standard	EN 60068-2-29
Number of shocks	500
Acceleration	10 g
Duration	16 ms
Airgap creepage	
Overvoltage category	III
Rated insulation voltage	75 V
Rated impulse withstand voltage	1 kV
Protection type	
Housing	IP67
Mechanical data	
Holding force FZh in accordance with ISO 14119	1000 N
Magnetic holding force on	1.000 N
Magnetic holding force off	30 N
Max. vertical offset	5 mm
Max. lateral offset	3 mm
Max. angular offset	2,5 deg
Actuator 1	PSEN sl-1.0fm 1.1
Operating distances	
Assured operating distance Sao	1 mm
Typical operating distance So	2 mm
Assured release distance Sar	8 mm
Repetition accuracy switching distances	40 \%
Typ. Hysteresis	0,7 mm
Min. distance between safety switches	30 mm
Sensor flush installation in accordance with EN 60947-5-2	Yes, follow installation guidelines
Connection type	M12, 8-pin male connector
Cable	LiYY $8 \times 0.25 \mathrm{~mm} 2$

Mechanical data	
Material	PBT
Top	Nickel-plated steel
Anchor plate	Anticorodal, hard anodised
Base plate	Anticorodal, hard anodised
Actuator	3 Nm
Max. torque setting for fixing screws	
Dimensions	172 mm
Height	45 mm
Width	44 mm
Depth	
Actuator dimensions	188 mm
Height	52 mm
Width	22 mm
Depth	1.120 g
Weight of safety switch	590 g
Weight of actuator	1.710 g
Weight	

Where standards are undated, the 2015-04 latest editions shall apply.

Technical Details Order No. 570630

General	
Approvals	CE, EAC (Eurasian), FCC, IC, TÜV, cULus Listed
Sensor's mode of operation	Transponder
Coding level in accordance with EN ISO 14119	Low
Design in accordance with EN ISO 14119	4
Classification in accordance with EN 60947-5-3	PDDB
Pilz coding type	Coded
Transponder	
Frequency band	122 kHz - 128 kHz
Max. transmitter output	15 mW
Electrical data	
Supply voltage	
Voltage	24 V
Kind	DC
Voltage tolerance	-15 \%/+10 \%
Output of external power supply (DC)	7,2 W
Max. inrush current at UB	0,6 A
Max. switching frequency	1 Hz
Max. cable capacitance at the safety outputs	
No-load, PNOZ with relay contacts	40 nF
PNOZmulti, PNOZelog, PSS	70 nF
No-load current	40 mA
Inputs	
Number	2
Voltage at inputs	24 V DC
Input current range	5 mA
Semiconductor outputs	
OSSD safety outputs	2
Signal outputs	1
Switching current per output	500 mA
Breaking capacity per output	12 W
Short circuit-proof	yes
Residual current at outputs	$250 \mu \mathrm{~A}$
Voltage drop at OSSDs	1,5 V
Conditional rated short circuit current	100 A
Lowest operating current	0 mA
Utilisation category in accordance with EN 60947-1	DC-12
Times	
Test pulse duration, safety outputs	450 ¢s

Times	
Switch-on delay	
after UB is applied	1,6 s
Inputs typ.	20 ms
Inputs max.	35 ms
Actuator typ.	500 ms
Delay-on de-energisation	
Inputs typ.	20 ms
Inputs max.	35 ms
Actuator typ.	25 ms
Actuator max.	260 ms
Risk time in accordance with EN 60947-5-3	260 ms
Supply interruption before de-energisation	15 ms
Simultaneity, channel 1 and 2 max.	∞
Environmental data	
Temperature of metal surface at ambient temperature: $25{ }^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
Ambient temperature	
In accordance with the standard	EN 60068-2-14
Temperature range	-25-55 ${ }^{\circ} \mathrm{C}$
Storage temperature	
In accordance with the standard	EN 60068-2-1/-2
Temperature range	-25-70 ${ }^{\circ} \mathrm{C}$
Climatic suitability	
In accordance with the standard	EN 60068-2-78
Humidity	93 \% r. h. at $40{ }^{\circ} \mathrm{C}$
EMC	EN 55011: class A, EN 60947-5-3, EN 62061
Vibration	
In accordance with the standard	EN 60947-5-2
Frequency	10-55 Hz
Amplitude	1 mm
Shock stress	
In accordance with the standard	EN 60068-2-27
Number of shocks	3
Acceleration	30 g
Duration	11 ms
In accordance with the standard	EN 60068-2-29
Number of shocks	500
Acceleration	10 g
Duration	16 ms
Airgap creepage	
Overvoltage category	III
Pollution degree	3
Rated insulation voltage	75 V
Rated impulse withstand voltage	1 kV

Environmental data	
Protection type	
Housing	IP67
Mechanical data	
Holding force FZh in accordance with ISO 14119	1000 N
Magnetic holding force on	1.000 N
Magnetic holding force off	30 N
Max. vertical offset	5 mm
Max. lateral offset	3 mm
Max. angular offset	2,5 deg
Actuator 1	PSEN sl-1.0 VA
Operating distances	
Assured operating distance Sao	1 mm
Typical operating distance So	2 mm
Assured release distance Sar	8 mm
Repetition accuracy switching distances	40 \%
Typ. Hysteresis	0,7 mm
Min. distance between safety switches	30 mm
Sensor flush installation in accordance with EN 60947-5-2	Yes, follow installation guidelines
Connection type	M12, 8-pin male connector
Cable	LiYY $8 \times 0.25 \mathrm{~mm} 2$
Material	
Top	PBT
Anchor plate	Nickel-plated steel
Base plate	Stainless steel 1.4301
Actuator	Stainless steel 1.4301
Max. torque setting for fixing screws	3 Nm
Dimensions	
Height	172 mm
Width	45 mm
Depth	44 mm
Actuator dimensions	
Height	188 mm
Width	52 mm
Depth	22 mm
Weight of safety switch	1.470 g
Weight of actuator	1.080 g
Weight	2.550 g

Where standards are undated, the 2015-04 latest editions shall apply.

Supplementary data

Radio approval

USA/Canada

E FCC ID: VT8-PSENSLP IC: 7482A-PSENSLP

FCC/IC-Requirements:
This product complies with Part 15 of the FCC Rules and with Industry Canada licence-exempt RSS standards.
Operation is subject to the following two conditions:

1) this product may not cause harmful interference, and
2) this product must accept any interference received, including interference that may cause undesired operation.

Changes or modifications made to this product not expressly approved by Pilz may void the FCC authorization to operate this equipment.
NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Le présent produit est conforme aux CNR d'Industrie Canada applicables aux appareils radio
exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:
(1) le produit ne doit pas produire de brouillage, et
(2) I'utilisateur de le produit doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Safety characteristic data

Operating	EN ISO	EN ISO	EN 62061	EN 62061	IEC 61511	IEC 61511	EN ISO
Mode	$13849-1:$	$13849-1:$	SIL CL	PFH $_{\text {D }}[1 / \mathrm{h}]$	SIL	PFD	13849-1:
	2015	2015					2015
	PL	Category					T $_{\text {M }}$ [year]
2-ch. OSSD	PL e	Cat. 4	SIL CL 3	$3,29 E-09$	SIL 3	1,72E-04	20

All the units used within a safety function must be considered when calculating the safety characteristic data.

INFORMATION

A safety function's SIL/PL values are not identical to the SIL/PL values of the units that are used and may be different. We recommend that you use the PAScal software tool to calculate the safety function's SIL/PL values.

Order reference

Safety gate system

Product type	Features	Connection type	Order No.
PSEN sl-1.0p 1.1	Safety gate system, coded	M12, 8-pin connector	570600
PSEN sl-1.0p 1.1 / PSEN sl-1.0fm 1 unit	Safety gate system, coded, with free-moving actuator	M12, 8-pin connector	570660
PSEN sl-1.0p 1.1 VA / PSEN sl-1.0 1 unit	Safety gate system, coded, stainless steel base plate and actuator	M12, 8-pin connector	570630

Accessories

Product type	Features	Order no.
PSEN sl bracket swing door	Mounting bracket for swing gates and folding gates	570550
PSEN sl bracket sliding door	Mounting bracket for sliding gates	570551

EC declaration of conformity

This product/these products meet the requirements of the directive 2006/42/EC for machinery of the European Parliament and of the Council. The complete EC Declaration of Conformity is available on the Internet at www.pilz.com/downloads.
Representative: Norbert Fröhlich, Pilz GmbH \& Co. KG, Felix-Wankel-Str. 2, 73760 Ostfildern, Germany

Support

Technical support is available from Pilz round the clock.

Americas

Brazil
+55 11 97569-2804
Canada
+1 888-315-PILZ (315-7459)
Mexico
+52 5555721300
USA (toll-free)
+1 877-PILZUSA (745-9872)

Asia

China
+86 21 60880878-216
Japan
+81 45 471-2281
South Korea
+82 314500680

Australia	Scandinavia
+61 3 95600621	+4574436332
	Spain
Europe	+34938497433
Austria	Switzerland
+43 1 7986263-0	$+416288979-30$
Belgium, Luxembourg	The Netherlands
+32 9 3217575	+31347 320477
France	Turkey
+33 3 88104000	+902165775552
Germany	United Kingdom
+49 711 3409-444	+441536462203
Ireland	
+353 21 4804983	You can reach our
Italy, Malta	international hotline on:
+39 0362 1826711	+49711 3409-444
	support@pilz.com

Pilz develops environmentally-friendly products using ecological materials and energy-saving technologies. Offices and production facilities are ecologically designed, environmentally-aware and energy-saving. So Pilz offers sustainability, plus the security of using energy-efficient products and environmentally-friendly solutions.

Pilz GmbH \& Co. KG
Felix-Wankel-Straße 2
73760 Ostfildern, Germany
Tel.: +49 711 3409-0
Fax: +49 711 3409-133
info@pilz.com
PILZ
www.pilz.com

[^0]: - Do not remove the connector's protective cap until you are just about to connect the unit. This will prevent potential contamination.

