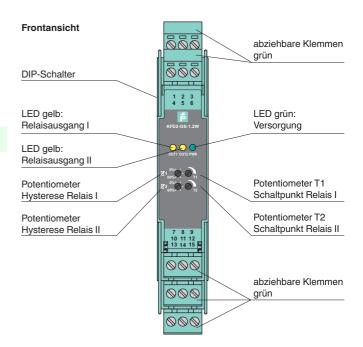
Merkmale

- 1-kanaliger Signaltrenner
- 24 V DC-Versorgung (Power Rail)
- Strom- und Spannungseingang
- · 2 Relaiskontaktausgänge
- Programmierbarer Hoch- oder Tiefalarm
- · Konfigurierbar über DIP-Schalter und Potentiometer
- · Klemmenblöcke mit Prüfbuchsen

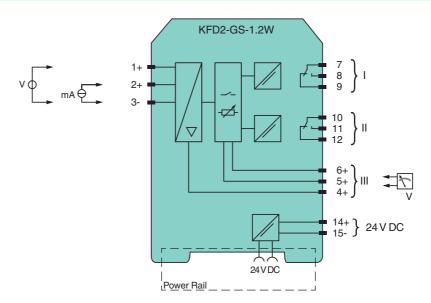
Funktion

Dieser Signaltrenner ermöglicht die galvanische Trennung von Feldstromkreisen und Steuerstromkreisen.


Das Gerät ist ein Grenzwertschalter mit zwei Schaltpunkten. Schaltpunkte, Hysterese und Wirkungsrichtung können unabhängig voneinander für beide Relaisausgänge eingestellt werden.

Am Eingang werden 0/4 mA ... 20 mA-, 0/1 V ... 5 V- oder 0/2 V ... 10 V-Signale angeschlossen.

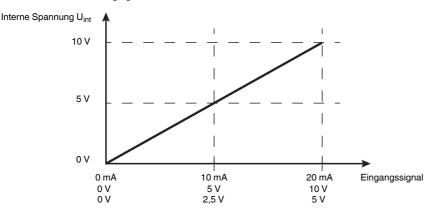
Das Gerät schaltet den Relaisausgang, wenn die eingestellten Schaltpunkte erreicht sind.


Das Gerät wird über DIP-Schalter und Potentiometer konfiguriert.

Aufbau

 ϵ

Anschluss

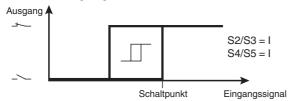

Allgemeine Daten				
		Analogeingang		
Signaltyp Versorgung		Analogelingang		
Anschluss		Power Rail oder Klemmen 14+, 15-		
	U _r	20 30 V DC		
Bemessungsspannung Bemessungsstrom	•	< 50 mA		
Leistungsaufnahme	I _r	< 1,5 W		
· · · · · · · · · · · · · · · · · · ·		< 1,5 W		
Eingang Anschlussseite		Feldseite		
Messbereich				
INICOSUCICIOII		Klemmen 1+, 3-: Spannung 0/1 5 V, Bürde \geq 50 k Ω bzw. Spannung 0/2 10 V, Bürde \geq 100 k Ω Klemmen 2+, 3-: Strom 0/4 20 mA ; Bürde \leq 50 Ω		
Ausgang				
Anschlussseite		Steuerungsseite		
Ausgang I, II		Klemmen 7, 8, 9; 10, 11, 12		
Kontaktbelastung		250 V AC / 4 A / cos φ > 0,7; 40 V DC / 2 A ohmsche Last		
Ausgang III		Gerätekonfiguration : Klemmen 4, 5, 6		
Übertragungseigenschaften				
Abweichung		≤1%		
Einfluss der Umgebungstemperatur		0,01 %/K bezogen auf den eingestellten Grenzwert		
Eingangsverzögerung		200 ms		
Galvanische Trennung				
Eingang/Versorgung		verstärkte Isolierung nach IEC/EN 61010-1, Bemessungsisolationsspannung 300 V _{eff}		
Eingang/Ausgang I, II		verstärkte Isolierung nach IEC/EN 61010-1, Bemessungsisolationsspannung 300 V _{eff}		
Ausgang I, II/Versorgung		verstärkte Isolierung nach IEC/EN 61010-1, Bemessungsisolationsspannung 300 V _{eff}		
Anzeigen/Einstellungen				
Anzeigeelemente		LEDs		
Bedienelemente		DIP-Schalter Potenziometer		
Konfiguration		über DIP-Schalter über Potenziometer		
Beschriftung		Platz für Beschriftung auf der Frontseite		
Richtlinienkonformität				
Elektromagnetische Verträglichkeit				
Richtlinie 2014/30/EU		EN 61326-1:2013 (Industriebereiche)		
Niederspannung		Enteriozo inzono (inidadinosonolono)		
Richtlinie 2014/35/EU		EN 61010-1:2010		
Konformität				
Schutzart		IEC 60529		
Schutz gegen elektrischen Schlag		EN 61010-1:2010		
Umgebungsbedingungen	~ 9			
Umgebungstemperatur		-20 60 °C (-4 140 °F)		
Mechanische Daten				
Schutzart		IP20		
		Schraubklemmen		
Anschluss		ca. 120 g		
Masse Abmessungen		20 x 124 x 115 mm , Gehäusetyp B2		
•		auf 35-mm-Hutschiene nach EN 60715:2001		
Befestigung Allgemeine Informationen		aui 33-iiiiii-Fiuisciilette tiacii Eiv 007 13.200 i		
Allgemeine Informationen		Resolution Cia couvoit zutroffend, dia Zartifikata Kanfarmitätaarklärungan Batriahaanlaitungan und		
Ergänzende Informationen		Beachten Sie, soweit zutreffend, die Zertifikate, Konformitätserklärungen, Betriebsanleitungen und Handbücher. Diese Informationen finden Sie unter www.pepperl-fuchs.com.		
Zubehör				
Optionales Zubehör		- Einspeisebaustein KFD2-EB2(.R4A.B)(.SP) - Universelles Power Rail UPR-03(-M)(-S)		

- Profilschiene K-DUCT-GY(-UPR-03)

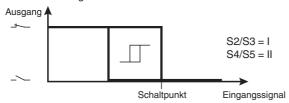
Interne Signalspannung

Das Gerät wandelt die Eingangssignale an den Klemmen 1, 2, 3 in eine proportionale interne Spannung U_{int} von 0 V 10 V um. Diese Umwandlung ermöglicht die rückwirkungsfreie Überprüfung des Eingangssignales. Die Spannung wird an den Klemmen 4+ und 3- ausgegeben.

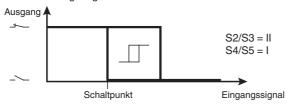
Schaltpunkte

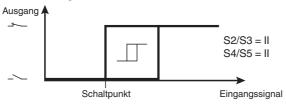

Mit Hilfe der Potentiometer T1 und T2 werden die eingestellten Schaltpunkte in eine proportionale Schaltspannung U_{pot} von 0 V 10 V umgewandelt. Der Spannungsbereich entspricht einer Spanne von 0 % ... 100 %. Diese Spannung kann an den Klemmen 3, 5, 6 gemessen werden:

- Relaisausgang I: Klemmen 5+, 3-
- Relaisausgang II: Klemmen 6+, 3-

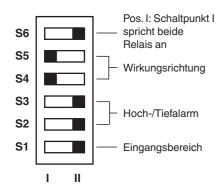

Schaltpunkt, Hysterese, Wirkungsrichtung und die Art des Alarms (Hoch- oder Tiefalarm) ist für jedes Relais wählbar.

Hochalarm bedeutet, dass sich der Schaltzustand des Relais ändert, wenn der eingestellte Schaltpunkt überschritten wird. Dieser Zustand wird verlassen, wenn ein niedrigerer Wert unterschritten wird. Die Differenz aus beiden Werten entspricht der Hysterese, die sich an der Frontleiste einstellen lässt. Bei Tiefalarm erfolgt die Alarmmeldung bei Unterschreiten des Schaltpunktes.


Hochalarm/Relais angezogen


Hochalarm/Relais abgefallen

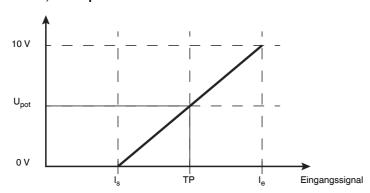
Tiefalarm/Relais angezogen



Tiefalarm/Relais abgefallen

Funktion der DIP-Schalter

Stellen Sie die DIP-Schalter entsprechend Ihrer gewünschten Funktion ein.



Schalter	Position	Funktion
S6	I	Schaltpunkt I spricht beide Relais an
	II	Relais I unabhängig von Relais II
S5	I	Relais II im Alarmfall angezogen
	=	Relais II im Alarmfall abgefallen
S4	1	Relais I im Alarmfall angezogen
	II	Relais I im Alarmfall abgefallen
S3	I	Hochalarm Relais II
	II	Tiefalarm Relais II
S2	1	Hochalarm Relais I
	II	Tiefalarm Relais I
S1	I	Eingangsbereiche
		0/1 V 5 V oder 0/4 mA 20 mA
	II	Eingangsbereiche
		0/2 V 10 V oder 0/4 mA 20 mA

Einstellung der Schaltpunkte ohne Eingangssignal

Die Schaltpunkte können mit Hilfe der Potentiometer T1 und T2 und der proportionalen Schaltspannung U_{pot} an den Klemmen 5+, 3- (Relais I) und den Klemmen 6+, 3- (Relais II) eingestellt werden. Benutzen Sie dazu ein Voltmeter (Messbereich 10 V). Das Eingangssignal muss dabei nicht anliegen. Wählen Sie die Schaltpunkte in der Einheit des Eingangssignals oder in %.

Eingangsignal in mA, Schaltpunkt TP in mA

 $\begin{array}{ll} {\rm I_S} = & {\rm Startpunkt} \\ {\rm TP} = & {\rm Schaltpunkt} \\ {\rm I_e} = & {\rm Endpunkt} \\ {\rm U_{pot}} = & {\rm proportionale \, Schaltspannung} \end{array}$

Die proportionale Schaltspannung U_{pot} berechnet sich nach der Formel:

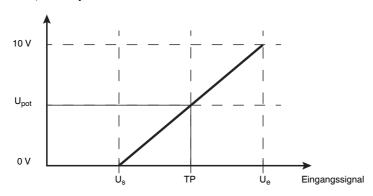
$$U_{pot} = 10 \text{ V x (TP - I_s)/(I_e - I_s)}$$

Beispiel:

Schaltpunkt TP: 13 mA I_s : 4 mA I_e : 20 mA

 $U_{pot} = 10 \text{ V} \text{ x} (13 \text{ mA} - 4 \text{ mA})/(20 \text{ mA} - 4 \text{ mA}) = 5.6 \text{ V}$

Eingangsignal in mA, Schaltpunkt TP in %


Die proportionale Schaltspannung Upot berechnet sich nach der Formel:

$$U_{pot} = 1 \text{ V/2 mA x } (TP/100 \text{ x } (I_e - I_s) + I_s)$$

Beispiel:

 $\begin{array}{lll} \text{Schaltpunkt TP: 75 \%} \\ \text{I}_{\text{s}} : & \text{4 mA} \\ \text{I}_{\text{e}} : & \text{20 mA} \end{array}$

 $U_{pot} = 1 \text{ V/2 mA x } (75 \%/100 \% \text{ x } (20 \text{ mA} - 4 \text{ mA}) + 4 \text{ mA}) = 8 \text{ V}$

 $\begin{array}{ll} \textbf{U}_{\text{S}} = & \text{Startpunkt} \\ \textbf{TP} = & \text{Schaltpunkt} \\ \textbf{U}_{\text{e}} = & \text{Endpunkt} \\ \textbf{U}_{\text{pot}} = & \text{proportionale Schaltspannung} \end{array}$

Die proportionale Schaltspannung Upot berechnet sich nach der Formel:

$$U_{pot} = 10 \text{ V x (TP - } U_s)/(U_e - U_s)$$

Beispiel:

 $\begin{array}{lll} \text{Schaltpunkt TP: 7 V} \\ \text{U}_s: & 2 \text{ V} \\ \text{U}_e: & 10 \text{ V} \end{array}$

 $U_{pot} = 10 \text{ V x } (7 \text{ V} - 2 \text{ V})/(10 \text{ V} - 2 \text{ V}) = 6,25 \text{ V}$

Eingangsignal in V, Schaltpunkt TP in %

Die proportionale Schaltspannung U_{pot} berechnet sich nach der Formel:

$$U_{pot} = TP/100 x (U_e - U_s) + U_s$$

Beispiel:

 $\begin{array}{lll} \text{Schaltpunkt TP: } 45 \% \\ \text{U}_{\text{s}} : & 2 \text{ V} \\ \text{U}_{\text{e}} : & 10 \text{ V} \end{array}$

 $U_{pot} = 45 \%/100 \% x (10 V - 2 V) + 2 V = 5.6 V$

Einstellung der Schaltpunkte mit Eingangssignal

Die Schaltpunkte können mit Hilfe der Potentiometer T1 und T2 auf das Eingangssignal eingestellt werden. Ein Messgerät ist nicht notwendig.

Bei Tiefalarm:

- 1. Drehen Sie das Potentiometer gegen den Uhrzeigersinn bis an den Linksanschlag (15 Umdrehungen).
- Drehen Sie das Potentiometer so lange im Uhrzeigersinn, bis der Ausgang schaltet. Mit jeder Umdrehung ändert sich der Schaltpunkt etwa um 7 %.
- 3. Stellen Sie die Hysterese ein. Der Schaltpunkt wird dadurch nicht verändert.

Bei Hochalarm:

- 1. Drehen Sie das Potentiometer im Uhrzeigersinn bis an den Rechtsanschlag (15 Umdrehungen)
- 2. Drehen Sie das Potentiometer gegen den Uhrzeigersinn, bis der Ausgang schaltet. Mit jeder Umdrehung ändert sich der Schaltpunkt etwa um 7 %.
- 3. Stellen Sie die Hysterese ein. Der Schaltpunkt wird dadurch nicht verändert.

www.pepperl-fuchs.com