
Rev. 0.5 3/13 Copyright © 2013 by Silicon Laboratories AN223

AN223

RUNTIME GPIO CONTROL FOR CP210X

1. Introduction

Some CP210x devices include GPIO pins that can be controlled by the PC using a Dynamic Link Library (DLL).
The default configuration of these pins is controlled by the software included in AN721, “CP210x/CP211x Device
Customization Guide,” available on the interface application note web page (http://www.silabs.com/products/
Interface/Pages/interface-application-notes.aspx). This document discusses reading and writing the state of these
pins with software.

The CP210x Port Read/Write Example illustrates how the GPIO latch can be read from and written to using the
CP210xRuntime.DLL. The functions in this API (CP210xRT_ReadLatch() and CP210xRT_WriteLatch()) give host-
based software access to the CP210x device’s GPIO latch using the USB connection as shown in Figure 1.

Figure 1. Main Window

The main window of the CP210x Port Read/Write Example contains one section to write the GPIO latch and
another to read the GPIO latch. Below that is a list to select a COM port and display boxes for the device part
number, product string, and serial number.

To write new values to the latch, select which GPIO pins to update, and set the pin state for each. Any GPIO pins
not selected to change will remain static when the “Write Latch” button is pressed. The “Write Latch” button calls
the CP210xRT_WriteLatch() function followed by the CP210xRT_ReadLatch() function, which updates the values
displayed in the Read Latch portion of the dialog. At any time, the “Read Latch” button can be pressed to read in
the current GPIO pin state of the device.

http://www.silabs.com/products/Interface/Pages/interface-application-notes.aspx
http://www.silabs.com/products/Interface/Pages/interface-application-notes.aspx

AN223

2 Rev. 0.5

2. Creating Custom Applications using CP210xRuntime.DLL

Custom applications can use the CP210x Runtime API implemented in CP210xRuntime.DLL. To use functions
implemented in CP210xRuntime.DLL, link CP210xRuntime.LIB with your Visual C++ 6.0 application. Include
CP210xRuntimeDLL.h in any file that calls functions implemented in CP210xRuntime.DLL.

3. CP210x Runtime API Functions

The CP210x Runtime API provides access to the GPIO port latch, and is meant for distribution with the product
containing a CP210x device.

CP210xRT_ReadLatch()—Returns the GPIO port latch of a CP210x device.

CP210xRT_WriteLatch()—Sets the GPIO port latch of a CP210x device.

CP210xRT_GetPartNumber()—Returns the 1-byte Part Number of a CP210x device.

CP210xRT_GetProductString ()—Returns the product string programmed to the device.

CP210xRT_GetDeviceSerialNumber ()—Returns the serial number programmed to the device.

CP210xRT_GetDeviceInterfaceString ()—Returns the interface string programmed to the device.

Typically, the user initiates communication with the target CP210x device by opening a handle to a COM port using
CreateFile() (See AN197: “Serial Communication Guide for CP210x”). The handle returned allows the user to call
the API functions listed above. Each of these functions is described in the following sections. Type definitions and
constants are defined in the file CP210xRuntimeDLL.h.

Note: Functions calls into this API are blocked until completed. This can take several milliseconds depending on USB traffic.

3.1. CP210xRT_ReadLatch

Description: Gets the current port latch value from the device.

Supported Devices: CP2103, CP2104, CP2105, CP2108

Location: CP210x Runtime DLL

Prototype: CP210x_STATUS CP210xRT_ReadLatch(HANDLE Handle, LPWORD Latch)

Parameters: 1. Handle—Handle to the Com port returned by CreateFile().

2. Latch—Pointer for 4-byte return GPIO latch value [Logic High = 1, Logic Low = 0].

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE,
CP210x_DEVICE_IO_FAILED
CP210x_FUNCTION_NOT_SUPPORTED

AN223

Rev. 0.5 3

3.2. CP210xRT_WriteLatch

Description: Sets the current port latch value for the device.

Supported Devices: CP2103, CP2104, CP2105, CP2108

Location: CP210x Runtime DLL

Prototype: CP210x_STATUS CP210xRT_WriteLatch(HANDLE Handle, WORD Mask, WORD Latch)

Parameters: 1. Handle—Handle to the Com port returned by CreateFile().

2. Mask—Determines which pins to change [Change = 1, Leave = 0].

3. Latch—4-byte value to write to GPIO latch [Logic High = 1, Logic Low = 0]

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE,
CP210x_DEVICE_IO_FAILED
CP210x_FUNCTION_NOT_SUPPORTED

3.3. CP210xRT_GetPartNumber

Description: Gets the part number of the current device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Runtime DLL

Prototype: CP210x_STATUS CP210xRT_GetPartNumber(HANDLE Handle, LPBYTE PartNum)

Parameters: 1. Handle—Handle to the Com port returned by CreateFile().

2. PartNum—Pointer to a byte containing the return code for the part number.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE,
CP210x_DEVICE_IO_FAILED

AN223

4 Rev. 0.5

3.4. CP210xRT_GetDeviceProductString

Description: Gets the product string in the current device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Runtime DLL

Prototype: CP210x_STATUS CP210xRT_GetDeviceProductString(HANDLE cyHandle,
LPVOID lpProduct, LPBYTE lpbLength, BOOL bConvertToASCII = TRUE)

Parameters: 1. Handle—Handle to the Com port returned by CreateFile().

2. lpProduct—Variable of type CP210x_PRODUCT_STRING returning the NULL terminated
product string.

3. lpbLength—Length in characters (not bytes) not including a NULL terminator.

4. ConvertToASCII—Boolean that determines whether the string should be left in Unicode, or
converted to ASCII. This parameter is true by default, and will convert to ASCII.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE,
CP210x_DEVICE_IO_FAILED
CP210x_INVALID_PARAMETER

3.5. CP210xRT_GetDeviceSerialNumber

Description: Gets the serial number in the current device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Runtime DLL

Prototype: CP210x_STATUS CP210xRT_GetDeviceSerialNumber(HANDLE cyHandle,
LPVOID lpProduct, LPBYTE lpbLength, BOOL bConvertToASCII = TRUE)

Parameters: 1. Handle—Handle to the Com port returned by CreateFile().

2. lpProduct—Variable of type CP210x_SERIAL_STRING returning the NULL terminated serial
string.

3. lpbLength—Length in characters (not bytes) not including a NULL terminator.

4. ConvertToASCII—Boolean that determines whether the string should be left in Unicode, or
converted to ASCII. This parameter is true by default, and will convert to ASCII.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE,
CP210x_DEVICE_IO_FAILED
CP210x_INVALID_PARAMETER

AN223

Rev. 0.5 5

3.6. CP210xRT_GetDeviceInterfaceString

Description: Gets the interface string of the current device.

Supported Devices: CP2105, CP2108

Location: CP210x Runtime DLL

Prototype: CP210x_STATUS CP210xRT_GetDeviceInterfaceString(HANDLE cyHandle,
LPVOID lpInterfaceString, LPBYTE lpbLength, BOOL bConvertToASCII = TRUE)

Parameters: 1. Handle—Handle to the Com port returned by CreateFile().

2. lpInterfaceString—Variable of type CP210x_SERIAL_STRING returning the NULL terminated
interface string.

3. lpbLength—Length in characters (not bytes) not including a NULL terminator.

4. ConvertToASCII—Boolean that determines whether the string should be left in Unicode, or
converted to ASCII. This parameter is true by default, and will convert to ASCII.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE,
CP210x_DEVICE_IO_FAILED
CP210x_INVALID_PARAMETER

AN223

6 Rev. 0.5

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.2
 Reworded Open Drain Output description for clarity

Revision 0.2 to Revision 0.3
 Added CP210xRT_GetProductString

 Added CP210xRT_GetDeviceSerialNumber

 Added CP210xRT_GetDeviceProductString

Revision 0.3 to Revision 0.4
 Added support for CP2104 and CP2105

 Added CP210xRT_GetDeviceInterfaceString

 Added Table 3 and Table 4

 Added Section 5.6. CP2105 GPIO Mode and
Modem Mode

 Removed the Appendix

Revision 0.4 to Revision 0.5
 Removed sections regarding port configuration.

 Updated interfaces to ReadLatch and WriteLatch
from BYTE/LPBYTE to WORD/LPWORD.

 Added CP2108 as a supported device to all
functions.

AN223

Rev. 0.5 7

CONTACT INFORMATION
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.

Patent Notice
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team

Silicon Laboratories, Silicon Labs, and USBXpress are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

https://www.silabs.com/support/pages/contacttechnicalsupport.aspx

	1. Introduction
	Figure 1. Main Window

	2. Creating Custom Applications using CP210xRuntime.DLL
	3. CP210x Runtime API Functions
	3.1. CP210xRT_ReadLatch
	3.2. CP210xRT_WriteLatch
	3.3. CP210xRT_GetPartNumber
	3.4. CP210xRT_GetDeviceProductString
	3.5. CP210xRT_GetDeviceSerialNumber
	3.6. CP210xRT_GetDeviceInterfaceString

