## MachXO2 Breakout Board Evaluation Kit

User's Guide

## Introduction

Thank you for choosing the Lattice Semiconductor MachXO2 ${ }^{\text {™ }}$ Breakout Board Evaluation Kit!
This user's guide describes how to start using the MachXO2 Breakout Board, an easy-to-use platform for evaluating and designing with the MachXO2 ultra-low density FPGA. Along with the board and accessories, this kit includes a pre-loaded demonstration design. You may also reprogram the on-board MachXO2 device to review your own custom designs.

The MachXO2 Breakout Board currently features the MachXO2-7000HE device. A previous version of this board featured the MachXO2-1200ZE. The board design and features have not changed, and consequently, this document can be used as a guide for either version of the board. If you require a board featuring the MachXO2-1200ZE, Lattice recommends the MachXO2 Pico Development Kit.

See "Ordering Information" on page 16 for more information.
Note: Static electricity can severely shorten the lifespan of electronic components. See the Storage and Handling section of this document for handling and storage tips.

## Features

The MachXO2 Breakout Board Evaluation Kit includes:

- MachXO2 Breakout Board - The board is a 3 " $\times 3$ " form factor that features the following on-board components and circuits:
- MachXO2 FPGA - Current board version: LCMXO2-7000HE-4TG144C
(Previous board version no longer available: LCMXO2-1200ZE-1TG144C)
- USB mini-B connector for power and programming
- Eight LEDs
- 60-hole prototype area
- Four 2x20 expansion header landings for general I/O, JTAG, and external power
- $1 \times 8$ expansion header landing for JTAG
-3.3 V and 1.2 V supply rails
- Pre-loaded Demo - The kit includes a pre-loaded counter design that highlights use of the embedded MachXO2 oscillator and programmable I/Os configured for LED drive.
- USB Connector Cable - The board is powered from the USB mini-B socket when connected to a host PC. The USB channel also provides a programming interface to the MachXO2 JTAG port.
- Lattice Breakout Board Evaluation Kits Web Page - Visit www.latticesemi.com/breakoutboards for the latest documentation (including this guide) and drivers for the kit.

The content of this user's guide includes demo operation, programming instructions, top-level functional descriptions of the Breakout Board, descriptions of the on-board connectors, and a complete set of schematics.

MachXO2 Breakout Board Evaluation Kit User's Guide

Figure 1. MachXO2 Breakout Board, Top Side


## Storage and Handling

Static electricity can shorten the lifespan of electronic components. Please observe these tips to prevent damage that could occur from electro-static discharge:

- Use anti-static precautions such as operating on an anti-static mat and wearing an anti-static wrist-band.
- Store the evaluation board in the packaging provided.
- Touch a metal USB housing to equalize voltage potential between you and the board.


## Software Requirements

You should install the following software before you begin developing new designs for the Breakout board:

- Lattice Diamond ${ }^{\circledR}$ design software
- FTDI Chip USB hardware drivers (installed as an option within the Diamond installation program)


## MachXO2 Device

This board currently features the MachXO2-7000HE FPGA which offers embedded Flash technology for instanton, non-volatile operation in a single chip. Numerous system functions are included, such as two PLLs and 256 Kbits of embedded RAM plus hardened implementations of $I^{2} \mathrm{C}$, SPI, timer/counter, and user Flash memory. Flexible, high performance I/Os support numerous single-ended and differential standards including LVDS, and also source synchronous interfaces to DDR/DDR2/LPDDR DRAM memory. The 144-pin TQFP package provides up to

MachXO2 Breakout Board Evaluation Kit User's Guide

114 user I/Os in a $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ form factor. Previous versions of this board featured the MachXO2-1200ZE PLD in the same package. This version of the board is no longer available. A complete description of this device can be found in the MachXO2 Family Data Sheet.

## Demonstration Design

Lattice provides a simple, pre-programmed demo to illustrate basic operation of the MachXO2 device. The design integrates an up-counter with the on-chip oscillator.

Note: You may obtain your Breakout Board after it has been reprogrammed. To restore the factory default demo and program it with other Lattice-supplied examples see the Download Demo Designs section of this document.

## Run the Demonstration Design

Upon power-up, the preprogrammed demonstration design automatically loads and drives the LED array in an alternating pattern. The program shows a clock generator based on the MachXO2 on-chip oscillator. The counter module is clocked at the oscillator default frequency of 2.08 MHz to illustrate how low speed timer functions can be implemented with a FPGA. The 22-bit up-counter further divides the clock to advance the LED display approximately every 500 ms . The resulting light pattern will appear as an alternating pair of lit LEDs per row.

Figure 2. Demonstration Design Block Diagram


WARNING: Do not connect the Breakout Board to your PC before you follow the driver installation procedure of this section.

Communication with the Breakout Board with a PC via the USB connection cable requires installation of the FTDI chip USB hardware drivers. Loading these drivers enables the computer to recognize and program the Breakout Board. Drivers can be loaded as part of the installation of Lattice Diamond design software or Diamond Programmer, or as a stand-alone package.

To load the FTDI Chip USB hardware drivers as part of the Lattice Diamond installation:

1. Select Programmer Drivers in the Product Options of Lattice Diamond Setup.
2. Select FTDI Windows USB Driver or All Drivers in the LSC Drivers Install/Uninstall dialog box.
3. Click Finish to install the USB driver.
4. After the driver installation is complete, connect the USB cable from a USB port on your PC to the board's USB mini-B socket (J2). After the connection is made, a green Power LED (D9) will light indicating the board is powered on.
5. The demonstration design will automatically load and drive the LED array in an alternating pattern.

To load the FTDI chip USB hardware drivers via the stand-alone package on a Windows system:

1. Browse to www.latticesemi.com/breakoutboards and download the FTDI Chip USB Hardware Drivers package.
2. Extract the FTDI chip USB Hardware driver package to your PC hard drive.
3. Connect the USB cable from a USB port on your PC to the board's USB mini-B socket (J7). After the connection is made, a green Power LED (D9) will light indicating the board is powered on.
4. If you are prompted, "Windows may connect to Windows Update" select No, not this time from available options and click Next to proceed with the installation. Choose the Install from specific location (Advanced) option and click Next.
5. Search for the best driver in these locations and click the Browse button to browse to the Windows driver folder created in the Download Windows USB Hardware Drivers section. Select the CDM 2.04.06 WHQL Certified folder and click OK.
6. Click Next. A screen will display as Windows copies the required driver files. Windows will display a message indicating that the installation was successful.
7. Click Finish to install the USB driver.
8. The demonstration design will automatically load and drive the LED array in an alternating pattern.

See the Troubleshooting section of this guide if the board does not function as expected.

## Download Demo Designs

The counter demo is preprogrammed into the Breakout Board, however over time it is likely your board will be modified. Lattice distributes source and programming files for demonstration designs compatible with the Breakout Board. The demo design for the 1200ZE version of the board is available on the web. Use the same design files for MachXO2-7000HE. Change the device in the Diamond Software tool and re-run the process flow to generate the JEDEC for MachXO2-7000HE. The description below references the 7000HE version.

To download demo designs:

1. Browse to the Lattice Breakout Board Evaluation Kits web page (www.latticesemi.com/breakoutboards) of the Lattice web site. Select MachXO2 Breakout Board Demo Source and save the file.
2. Extract the contents of MachXO21200ZEBreakoutBoardDemoDesignSource.zip to an accessible location on your hard drive.
3. Open the Project in the Diamond Design Software and change the device to MachXO2-7000HE-4TG144C.
4. Run the Process Flow and regenerate the JEDEC file.

Continue to Programming a Demo Design with Lattice Diamond Design Software.

## Programming a Demo Design with the Lattice Diamond Programmer

The demonstration design is pre-programmed into the MachXO2 Breakout Board by Lattice. If you have changed the design but now want to restore the Breakout Board to factory settings, use the procedure described below.

To program the MachXO2 device:

1. Install, license and run Lattice Diamond software. See www.latticesemi.com/latticediamond for download and licensing information.
2. Connect the USB cable to the host PC and the MachXO2 Breakout Board.
3. From Diamond, open the Default_pattern_w_standby.Idf project file.
4. Click the Programmer icon.
5. Click Detect Cable. The Programmer will detect the cable (Cable: USB2, Port: FTUSB-0). If the cable is not detected, see the Troubleshooting section.
6. Click the Program icon. When complete, PASS is displayed in the Status column.

## MachXO2 Breakout Board

This section describes the features of the MachXO2 Breakout Board in detail.

## Overview

The Breakout Board is a complete development platform for the MachXO2 FPGA. The board includes a prototyping area, a USB program/power port, an LED array, and header landings with electrical connections to most of the FPGA's programmable I/O, power, and JTAG pins. The board is powered by the PC's USB port or optionally with external power. You may create or modify the program files and reprogram the board using Lattice Diamond software.

Figure 3. MachXO2 Breakout Board Block Diagram


Table 1 describes the components on the board and the interfaces it supports.

## Table 1. Breakout Board Components and Interfaces

| Component/Interface | Type | Schematic <br> Reference | Description |
| :--- | :---: | :--- | :--- |
| Circuits |  |  |  |
| USB Controller | Circuit | U2: FT2232H | USB-to-JTAG interface and dual USB UART/FIFO IC |
| USB Mini-B Socket | I/O | J7:USB_MINI_B | Programming and debug interface |
| Components | FPGA | U3: LCMXO2- <br> 7000HE-4TG144C | 7000-LUT device packaged in a $20 \times 20 \mathrm{~mm}$, 144-pin TQFP |
| LCMXO2 | Output | D8-D1 |  |
| Interfaces |  |  |  |
| LED Array | I/O | J2: header_2x20 <br> J3: header_2x20 <br> J4: heade_2x20 <br> J5: header_2x20 | User-definable I/O |
| Four 2x20 Header <br> Landings | I/O | J1: header_1x8 | Optional JTAG interface |
| 1x8 Header Landing | Power | TP1: +3.3V <br> TP2: +1.2V <br> TP3: GND | Power and ground reference points |
| 4x15 60-Hole Prototype <br> Area |  |  |  |

## Subsystems

This section describes the principle sub systems for the Breakout Board in alphabetical order.

## Clock Sources

All clocks for the counter demonstration designs originate from the MachXO2 on-chip oscillator. You may use an expansion header landing to drive a FPGA input with an external clock source.

## Expansion Header Landings

The expansion header landings provide access to user GPIOs, primary inputs, clocks, and VCCO pins of the MachXO2. The remaining pins serve as power supplies for external connections. Each landing is configured as one $2 \times 20100 \mathrm{mil}$.

Table 2. Expansion Connector Reference

| Item | Description |
| :--- | :--- |
| Reference Designators | $\mathrm{J} 2, \mathrm{~J} 3, \mathrm{~J} 4, \mathrm{~J} 5$ |
| Part Number | header_2x20 |

Table 3. Expansion Header Pin Information (J2)

| Header Pin Number | -1200ZE Function | -7000HE Function | MachXO2 Pin |
| :---: | :---: | :---: | :---: |
| 1 | NC | NC | - |
| 2 | VCCIO0 | VCCIO0 | 118, 123, 135 |
| 3 | PT17D / DONE | PT36D / DONE | 109 |
| 4 | PT17C / INITn | PT36C / INITn | 110 |
| 5 | PT17B | PT36B | 111 |
| 6 | PT17A | PT36A | 112 |
| 7 | GND | GND | - |
| 8 | GND | GND | - |
| 9 | PT16D | PT33B | 113 |
| 10 | PT16C | PT33A | 114 |
| 11 | PT16B | PT28B | 115 |
| 12 | PT16A | PT28A | 117 |
| 13 | PT15D / PROGn | PT27D / PROGn | 119 |
| 14 | PT15C / JTAGen | PT27C / JTAGen | 120 |
| 15 | GND | GND | - |
| 16 | GND | GND | - |
| 17 | PT15B | PT25B | 121 |
| 18 | PT15A | PT25A | 122 |
| 19 | PT12D / SDA / PCLKC0_0 | PT22D / SDA / PCLKC0_0 | 125 |
| 20 | PT12C / SCL / PCLKT0_0 | PT22C / SCL / PCLKT0_0 | 126 |
| 21 | PT12B / PCLKC0_1 | PT18B / PCLKC0_1 | 127 |
| 22 | PT12A / PCLKT0_1 | PT18A / PCLKT0_1 | 128 |
| 23 | GND | GND | - |
| 24 | GND | GND | - |
| 25 | PT11D / TMS | PT17D / TMS | 130 |
| 26 | PT11C / TCK | PT17C / TCK | 131 |
| 27 | PT11B | PT15B | 132 |
| 28 | PT11A | PT15A | 133 |
| 29 | PT10D / TDI | PT14D / TDI | 136 |
| 30 | PT10C / TDO | PT14C / TDO | 137 |
| 31 | GND | GND | - |
| 32 | GND | GND | - |
| 33 | PT10B | PT11B | 138 |
| 34 | PT10A | PT11A | 139 |
| 35 | PT9D | PT10B | 140 |
| 36 | PT9C | PT10A | 141 |
| 37 | PT9B | PT9B | 142 |
| 38 | PT9A | PT9A | 143 |
| 39 | GND | GND | - |
| 40 | GND | GND | - |

Table 4. Expansion Header Pin Information (J3)

| Header Pin Number | -1200ZE Function | -7000HE Function | MachXO2 Pin |
| :---: | :---: | :---: | :---: |
| 1 | VCC_1.2V | VCC_1.2V | 36, 72, 108, 144 |
| 2 | VCCIO 1 | VCCIO 1 | 79, 88, 102 |
| 3 | VCC_1.2V | VCC_1.2V | 36, 72, 108, 144 |
| 4 | NC | NC | - |
| 5 | PR10C | PR24A | 74 |
| 6 | PR10D | PR24B | 73 |
| 7 | PR10A | PR23A | 76 |
| 8 | PR10B | PR23B | 75 |
| 9 | GND | GND | - |
| 10 | GND | GND | - |
| 11 | PR9C | PR21A | 78 |
| 12 | PR9D | PR21B | 77 |
| 13 | PR9A | PR18A | 82 |
| 14 | PR9B | PR18B | 81 |
| 15 | GND | GND | - |
| 16 | GND | GND | - |
| 17 | PR8C | PR17A | 84 |
| 18 | PR8D | PR17B | 83 |
| 19 | PR8A | PR16A | 86 |
| 20 | PR8B | PR16B | 85 |
| 21 | GND | GND | - |
| 22 | GND | GND | - |
| 23 | PR5C / PCLKT1_0 | PR12A / PCLKT1_0 | 92 |
| 24 | PR5D / PCLKC1_0 | PR12B / PCLKC1_0 | 91 |
| 25 | PR5A | PR11A | 94 |
| 26 | PR5B | PR11B | 93 |
| 27 | GND | GND | - |
| 28 | GND | GND | - |
| 29 | PR4C | PR9A | 96 |
| 30 | PR4D | PR9B | 95 |
| 31 | PR4A | PR7A | 98 |
| 32 | PR4B | PR7B | 97 |
| 33 | GND | GND | - |
| 34 | GND | GND | - |
| 35 | PR3A | PR5A | 100 |
| 36 | PR3B | PR5B | 99 |
| 37 | PR2C | PR3A | 105 |
| 38 | PR2D | PR3B | 104 |
| 39 | PR2A | PR2A | 107 |
| 40 | PR2B | PR2B | 106 |

Table 5. Expansion Header Pin Information (J4)

| Header Pin Number | -1200ZE Function | -7000HE Function | MachXO2 Pin |
| :---: | :---: | :---: | :---: |
| 1 | VCC_3.3V | VCC_3.3V | - |
| 2 | VCCIO3 | VCCIO3/4/5 | 30, 16, 7 |
| 3 | VCC_3.3V | VCC_3.3V | - |
| 4 | NC | NC | - |
| 5 | PL2A / L_GPLLT_FB | PL3A / L_GPLLT_FB | 1 |
| 6 | PL2B / L_GPPLC_FB | PL3B / L_GPPLC_FB | 2 |
| 7 | PL2C / L_GPLLT_IN | PL4A / L_GPLLT_IN | 3 |
| 8 | PL2D / L_GPLLC_IN | PL4B / L_GPLLC_IN | 4 |
| 9 | PL3A / PCLKT3_2 | PL6A / PCLKT5_0 | 5 |
| 10 | PL3B / PCLKC3_2 | PL6B / PCLKC5_0 | 6 |
| 11 | PL3C | PL8A | 9 |
| 12 | PL3D | PL8B | 10 |
| 13 | GND | GND | - |
| 14 | GND | GND | - |
| 15 | PL4A | PL9A | 11 |
| 16 | PL4B | PL9B | 12 |
| 17 | PL4C | PL10A | 13 |
| 18 | PL4D | PL10B | 14 |
| 19 | GND | GND | - |
| 20 | GND | GND | - |
| 21 | PL5A / PCLKT3_1 | PL12A / PCLKT4_0 | 19 |
| 22 | PL5B / PCLKC3_1 | PL12B / PCLKC4_0 | 20 |
| 23 | PL5C | PL15A | 21 |
| 24 | PL5D | PL15B | 22 |
| 25 | GND | GND | - |
| 26 | GND | GND | - |
| 27 | PL8A | PL17A | 23 |
| 28 | PL8B | PL17B | 24 |
| 29 | PL8C | PL19A | 25 |
| 30 | PL8D | PL19B | 26 |
| 31 | GND | GND | - |
| 32 | GND | GND | - |
| 33 | PL9A / PCLKT3_0 | PL22A / PCLKT3_0 | 27 |
| 34 | PL9B / PCLKC3_0 | PL22B / PCLKC3_0 | 28 |
| 35 | GND | GND | - |
| 36 | GND | GND | - |
| 37 | PL10A | PL24A | 32 |
| 38 | PL10B | PL24B | 33 |
| 39 | PL10C | PL25A | 34 |
| 40 | PL10D | PL25B | 35 |

Table 6. Expansion Header Pin Information (J5)

| Header Pin Number | -1200ZE Function | -7000HE Function | MachXO2 Pin |
| :---: | :---: | :---: | :---: |
| 1 | NC | NC | - |
| 2 | VCCIO2 | VCCIO 2 | 37, 51, 66 |
| 3 | PB20D / SI / SISPI | PB38B / SI / SISPI | 71 |
| 4 | PB20B | PB37B | 69 |
| 5 | PB20C / SN | PB38A / SN | 70 |
| 6 | PB20A | PB37A | 68 |
| 7 | PB18D | PB35B | 67 |
| 8 | PB18B | PB31B | 62 |
| 9 | PB18C | PB35A | 65 |
| 10 | PB18A | PB31A | 61 |
| 11 | GND | GND | - |
| 12 | GND | GND | - |
| 13 | PB15D | PB29B | 60 |
| 14 | PB15B | PB26B | 58 |
| 15 | PB15C | PB29A | 59 |
| 16 | PB15A | PB26A | 57 |
| 17 | GND | GND | - |
| 18 | GND | GND | - |
| 19 | PB11B / PCLKC2_1 | PB23B / PCLKC2_1 | 56 |
| 20 | PB11D | PB18B | 54 |
| 21 | PB11A / PCLKT2_1 | PB23A / PCLKT2_1 | 55 |
| 22 | PB11C | PB18A | 52 |
| 23 | GND | GND | - |
| 24 | GND | GND | - |
| 25 | PB9B / PCLKC2_0 | PB16B / PCLKC2_0 | 50 |
| 26 | PB9D | PB13B | 48 |
| 27 | PB9A / PCLKT2_0 | PB16A / PCLKT2_0 | 49 |
| 28 | PB9C | PB13A | 47 |
| 29 | GND | GND | - |
| 30 | GND | GND | - |
| 31 | PB6D / S0 / SPISO | PB12B / S0 / SPISO | 45 |
| 32 | PB6B | PB9B | 43 |
| 33 | PB6C / MCLK / CCLK | PB12A / MCLK / CCLK | 44 |
| 34 | PB6A | PB9A | 42 |
| 35 | GND | GND | - |
| 36 | GND | GND | - |
| 37 | PB4D | PB6B | 41 |
| 38 | PB4B | PB4B | 39 |
| 39 | PB4C / CSSPIN | PB6A / CSSPIN | 40 |
| 40 | PB4A | PB4A | 38 |

MachXO2 Breakout Board Evaluation Kit User's Guide

Figure 4. J2/J4 Header Landing Callout


Figure 5. J3/J5 Header Landing Callout


MachXO2 Breakout Board Evaluation Kit User's Guide

Figure 6. J1 Header Landing and LED Array Callout


## MachXO2 FPGA

The MachXO2-7000HE-4TG144C is a 144-pin TQFP package FPGA device which provides up to 114 usable I/Os in a $20 \times 20 \mathrm{~mm}$ package. $108 \mathrm{l} / \mathrm{Os}$ are accessible from the breakout board headers.

Table 7. MachXO FPGA Interface Reference

| Item | Description |
| :--- | :--- |
| Reference Designators | U3 |
| Part Number | LCMXO2-7000HE-4TG144C |
| Manufacturer | Lattice Semiconductor |
| Web Site | www.latticesemi.com |

## JTAG Interface Circuits

For power and programming an FTDI USB UART/FIFO IC converter provides a communication interface between a PC host and the JTAG programming chain of the Breakout Board. The USB 5V supply is also used as a source for the 3.3 V supply rail. A USB mini-B socket is provided for the USB connector cable.

Table 8. JTAG Interface Reference

| Item | Description |
| :--- | :--- |
| Reference Designators | U1 |
| Part Number | FT2232HL |
| Manufacturer | Future Technology Devices International (FTDI) |
| Web Site | www.ftdichip.com |

MachXO2 Breakout Board Evaluation Kit User's Guide

Table 9. JTAG Programming Pin Information

| Description | MachXO2 Pin |
| :--- | :--- |
| Test Data Output | $137:$ TDO |
| Test Data Input | $136:$ TDI |
| Test Mode Select | $130:$ TMS |
| Test Clock | $131:$ TCK |

## LEDs

A green LED (D9) is used to indicate USB 5V power. Eight red LEDs are driven by I/O pins of the MachXO2 device.
Table 10. Power and User LEDs Reference

| Item | Description |
| :--- | :--- |
| Reference Designators | Red LEDs (D1, D2, D3, D4, D5, D6, D7, D8) <br> Green LEDs (D9) |
| Part Number | LTST-C190KRKT (D1-D8) <br> LTST-C190KGKT (D9) |
| Manufacturer | Lite-On It Corporation |
| Web Site | www.liteonit.com |

## Power Supply

3.3 V and 1.2 V power supply rails are converted from the USB 5 V interface when the board is connected to a host PC.

## Test Points

In order to check the various voltage levels used, test points are provided:

- TP1: +3.3V
- TP2: +1.2V
- TP3: GND


## USB Programming and Debug Interface

The USB mini-B socket of the Breakout Board serves as the programming and debug interface.
JTAG Programming: For JTAG programming, a preprogrammed USB PHY peripheral controller is provided on the Breakout Board to serve as the programming interface to the MachXO2 FPGA.

Programming requires the Lattice Diamond or ispVM System software.
Table 11. USB Interface Reference

| Item | Description |
| :--- | :--- |
| Reference Designators | U1 |
| Part Number | FT2232HL |
| Manufacturer | Future Technology Devices International (FTDI) |
| Web Site | www.ftdichip.com |

MachXO2 Breakout Board Evaluation Kit User's Guide

## Board Modifications

This section describes modifications to the board to change or add functionality.

## Bypassing the USB Programming Interface

The USB programming interface circuit (USB Programming and Debug Interface section) may be optionally bypassed by removing the 0 ohm resistors: R5, R6, R7, R8 (See Appendix A. Schematics, Sheet 2 of 5). Header landing J1 provides JTAG signal access for jumper wires or a $1 \times 8$ pin header.

## Applying External Power

The Breakout Board is powered by the circuit of Schematic Sheet 5 of 5 based on the 5V USB power source. You may disconnect this power source by removing the 0 ohm resistors: R42 (VCC_1.2V) and R44 (VCC_3.3V). Power connections are available from the expansion header landings, J3 (+1.2V, pins 1 and 3 , schematic sheet 3 of 5 ) and $\mathrm{J} 4(+3.3 \mathrm{~V}$, pins 1 and 3 , schematic sheet 4 of 5 ).

## Measuring Bank and Core Power

In addition to the expansion headers, test points (TP1, TP2) provide access to power supplies of the MachXO2 FPGA. Inline 1 ohm resistors: R24 (VCCIO0, +3.3V, Bank 0), R25 (VCCIO1, +3.3V, Bank 1), R26 (VCCIO2, +3.3V, Bank 2), R27 (VCCIO3, +3.3V, Bank 3), R56 (VCC core, +1.2 V ) can be used to measure current for the power supplies.

## Mechanical Specifications

Dimensions: 3 in. [L] x 3 in. [W] x 1/2 in. [H]

## Environmental Requirements

The evaluation board must be stored between $-40^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. The recommended operating temperature is between $0^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$.

The board can be damaged without proper anti-static handling.

## Glossary

FPGA: Field Programmable Gate Array
DIP: Dual in-line package
LED: Light Emitting Diode.
LUT: Look Up Table
PCB: Printed Circuit Board
RoHS: Restriction of Hazardous Substances Directive
USB: Universal Serial Bus
WDT: Watchdog Timer

## Troubleshooting

Use the tips in this section to diagnose problems with the Breakout Board.

## LEDs Do Not Flash

If power is applied but the board does not flash according to the preprogrammed counter demonstration then it is likely the board has been reprogrammed with a new design. Follow the directions in the Demonstration Design section to restore the factory default.

MachXO2 Breakout Board Evaluation Kit User's Guide

## USB Cable Not Detected

If Lattice Diamond Programmer or ispVM System does not recognize the USB cable after installing the Lattice USB port drivers and rebooting, the incorrect USB driver may have been installed. This usually occurs if you attach the board to your PC prior to installing the Lattice-supplied USB driver.

To access the Troubleshooting the USB Driver Installation Guide:
For Diamond software and standalone Diamond Programmer:

1. Start Diamond or Diamond Programmer and choose Help.
2. Search for USB driver or Troubleshooting, then select the Troubleshooting the USB Driver topic.
3. Follow the directions to install the Lattice USB driver.

For ispVM:

1. Start ispVM System and choose Options > Cable and I/O Port Setup.

The Cable and I/O Port Setup Dialog appears.
2. Click the Troubleshooting the USB Driver Installation Guide link.

The Troubleshooting the USB Driver Installation Guide document appears in your system's PDF file reader.
3. Follow the directions to install the Lattice USB driver.

## Determine the Source of a Pre-Programmed Device

If the Breakout Board has been reprogrammed, the original demo design can be restored. To restore the board to the factory default, see the Download Demo Designs section for details on downloading and reprogramming the device.

## Ordering Information

| Description | Ordering Part Number | China RoHS Environment-Friendly <br> Use Period (EFUP) |
| :--- | :--- | :--- |
| MachXO2-7000HE Breakout Board Evaluation Kit | LCMXO2-7000HE-B-EVN |  |
| MachXO2 Breakout Board Evaluation Kit | LCMXO2-1200ZE-B-EVN ${ }^{1}$ |  |

1.For reference only. This version of the board is no longer available for sale.

## Technical Support Assistance

Hotline: 1-800-LATTICE (North America)
+1-503-268-8001 (Outside North America)
e-mail: techsupport@latticesemi.com
Internet: www.latticesemi.com

MachXO2 Breakout Board Evaluation Kit User's Guide

Revision History

| Date | Version |  |
| :---: | :---: | :--- |
| December 2011 | 01.0 | Initial release. |
| January 2012 | 01.1 | Figure "MachXO2-1200ZE Breakout Board, Top Side" updated with revi- <br> sion B board photo. |
| December 2012 | 01.2 | Updated document to describe new version of the board featuring the <br> MachXO2-7000HE. Indicated that the MachXO2-120ZZE version of the <br> board is no longer available. |
| February 2013 | 02.0 | Updated Tables 3-6 to include -700HE information. Added -7000HE <br> notes to Figure 3 and Appendix A. |
| September 2013 | 02.1 | Updated procedure in Programming a Demo Design with the Lattice <br> Diamond Programmer section. |
| January 2014 | Added information to the procedure on loading the FTDI chip USB hard- <br> ware drivers via the standalone package: |  |
|  | Updated description of Reference Designators in the Power and User <br> LEDs Reference table. |  |
|  | Updated description and procedure for downloading demo designs in <br> Download Demo Designs section. |  |
| Updated project file name in Programming a Demo Design with the Lat- <br> tice Diamond Programmer section. |  |  |

© 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

## Appendix A. Schematics

Note: The schematics are drawn using the MachXO2-1200ZE device. Please consult Tables 3 through 6 for -1200 and -7000 HE pin name and bank synonyms. Pin numbers are correct for either device.

Figure 7. Block Diagram


Figure 8. USB Interface to JTAG


## Figure 9. FPGA



MachXO2 Breakout Board Evaluation Kit User's Guide

## Figure 10. FPGA



## Figure 11. Power LEDs



MachXO2 Breakout Board Evaluation Kit User's Guide

## Appendix B. Bill of Materials

Table 12. MachXO2 Breakout Board Bill of Materials

| Item | Quantity | Reference | Manufacturer | Part Number |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | C1, C3 | Panasonic | ECJ-1VB0J475K |
| 2 | 34 | C2, C4, C5, C6, C7, C8, C9, C11, C12, C15, C16, C18, C19, C20, C22, C23, C24, C25, C26, C28, C29, C30, C32, C33, C34, C37, C38, C39, C40, C44, C50, C51, C52, C53 | Kemet | C0402C104K4RACTU |
| 3 | 5 | C10, C35, C42, C46, C48 | Taiyo Yuden | LMK107BJ106MALTD |
| 4 | 2 | C13, C14 | Kemet | C0402C180K3GACTU |
| 5 | 6 | C17, C21, C27, C31, C41, C45 | Kemet | C0402C103J4RACTU |
| 6 | 2 | C36, C43 | Kemet | C0402C105K9PACTU |
| 7 | 2 | C47, C49 | Taiyo Yuden | LMK212BJ226MG-T |
| 8 | 8 | D1, D2, D3, D4, D5, D6, D7, D8 | LITE-On, Inc. | LTST-C190KRKT |
| 9 | 1 | D9 | LITE-On, Inc. | LTST-C190KGKT |
| 10 | 1 | J1 | Molex | 22-28-4081 |
| 11 | 4 | J2, J3, J4, J5 | Samtec |  |
| 12 | 1 | J6 |  |  |
| 13 | 1 | J7 | Neltron | 5075BMR-05-SM-CR |
| 14 | 5 | L1, L2, L3, L4, L5 | Murata | BLM18AG601SN1D |
| 15 | 3 | R1, R2, R3 | Yageo | RC0402FR-075K1L |
| 16 | 5 | R4, R9, R19, R22, R23 | Yageo | RC0402FR-072K2L |
| 17 | 8 | R5, R6, R7, R8, R42, R44, R53, R54 | Yageo | RC0603JR-070RL |
| 18 | 1 | R10 | Yageo | RC0402FR-0712KL |
| 19 | 3 | R11, R12, R13 | Yageo | RC0402FR-0710KL |
| 20 | 7 | R14, R15, R16, R17, R18, R20, R21 | Yageo | RC0603JR-070RL |
| 21 | 5 | R24, R25, R26, R27, R56 | Vishay/Dale | CRCW06031R00JNEAHP |
| 22 | 14 | $\begin{aligned} & \text { R28, R29, R30, R31, R32, R33, R34, R35, R36, R37, R38, } \\ & \text { R39, R40, R41 } \end{aligned}$ | Yageo | RC0603FR-07100RL |
| 23 | 9 | R43, R45, R46, R47, R48, R49, R50, R51, R52 | Yageo | RC0402FR-071KL |
| 24 | 1 | R55 | Yageo | RC0603FR-07100RL |
| 25 | 3 | TP1, TP2, TP3 |  |  |
| 26 | 1 | U1 | FTDI | FT2232HL |
| 27 | 1 | U2 | Microchip | 93LC56C-I/SN |
| 28 | 1 | U3 | Lattice | LCMXO2-7000HE-4TG144C or LCMXO2-1200ZE-1TG144C |
| 29 | 1 | U4 | Fairchild Semi | FAN1112SX |
| 30 | 1 | U5 | On Semi | NCP1117ST33T3G |
| 31 | 1 | X1 | TXC | 7M-12.000MAAJ-T |
| 32 | 1 | X2 | CTS | CB3LV-3C-50M0000 |

