XPSMC

Handbuch zur Hardware Übersetzte Version

01/2012

Die Informationen in der vorliegenden Dokumentation enthalten allgemeine Beschreibungen und/oder technische Leistungsmerkmale der hier erwähnten Produkte. Diese Dokumentation dient keinesfalls als Ersatz für die Ermittlung der Eignung oder Verlässlichkeit dieser Produkte für bestimmte Verwendungsbereiche des Benutzers und darf nicht zu diesem Zweck verwendet werden. Jeder Benutzer oder Integrator ist verpflichtet, angemessene und vollständige Risikoanalysen, Bewertungen und Tests der Produkte im Hinblick auf deren jeweils spezifischen Verwendungszweck vorzunehmen. Weder Schneider Electric noch deren Tochtergesellschaften oder verbundene Unternehmen sind für einen Missbrauch der Informationen in der vorliegenden Dokumentation verantwortlich oder können diesbezüglich haftbar gemacht werden. Verbesserungs- und Änderungsvorschlage sowie Hinweise auf angetroffene Fehler werden jederzeit gern entgegengenommen.

Dieses Dokument darf ohne entsprechende vorhergehende, ausdrückliche und schriftliche Genehmigung durch Schneider Electric weder in Teilen noch als Ganzes in keiner Form und auf keine Weise, weder anhand elektronischer noch mechanischer Hilfsmittel, reproduziert oder fotokopiert werden.

Bei der Montage und Verwendung dieses Produkts sind alle zutreffenden staatlichen, landesspezifischen, regionalen und lokalen Sicherheitsbestimmungen zu beachten. Aus Sicherheitsgründen und um die Übereinstimmung mit dokumentierten Systemdaten besser zu gewährleisten, sollten Reparaturen an Komponenten nur vom Hersteller vorgenommen werden.

Beim Einsatz von Geräten für Anwendungen mit technischen Sicherheitsanforderungen sind die relevanten Anweisungen zu beachten.

Die Verwendung anderer Software als der Schneider Electric-eigenen bzw. einer von Schneider Electric genehmigten Software in Verbindung mit den Hardwareprodukten von Schneider Electric kann Körperverletzung, Schäden oder einen fehlerhaften Betrieb zur Folge haben.

Die Nichtbeachtung dieser Informationen kann Verletzungen oder Materialschäden zur Folge haben!

© 2012 Schneider Electric. Alle Rechte vorbehalten.

Inhaltsverzeichnis

	SicherheitshinweiseÜber dieses Buch	5 7
Kapitel 1	Funktionale Sicherheitsinformationen	15
•	IEC 61508 und Safety Integrity Level (SIL)	16
	Zertifizierung der funktionalen Sicherheit	17
	Schulung	20
Kapitel 2	Übersicht: XPSMC16Z/ZC/ZP, XPSMC32Z/ZC/ZP	21
-	Modelle XPSMC	22
	Abbildung	24
	Abmessungen	26
	Montage	27
Kapitel 3	Anwendung und Funktion	31
•	Anwendung	32
	Funktion	33
	Anfangsbetrieb	37
Kapitel 4	Beschreibung des XPSMC	41
• 4.1	Allgemeine Beschreibung des XPS-MC16/32	42
	Vorderansicht des XPSMC	43
	TER-Kommunikationsanschlüsse	47
	Anzeigeelemente und Systemdiagnose	52
	Anschlussschema	54
	Technische Kenndaten	56
	Fehlercodes	63
4.2	Modbus RTU-Kommunikation	65
	Kabel zum Anschluss der XPSMC-Hardware	66
	Anschluss XPSMC an Premium SPS Modbus-Kommunikationskarten	68
	Konfigurieren einer Premium SPS mit Unity für die Modbus RTU-	
	Kommunikation	71
	Importieren eines Abschnitts, der einen DFB enthält	76
	Beobachten der Modbus-Kommunikationen	84
	Funktionscodes und Parameter	87

4.3	Beschreibung der Profibus DP-Parameter und -Einstellungen
	Profibus DP-Kommunikationsanschluss
	Profibus DP-LEDs
4.4	Datenaustausch
4.4	Beschreibung der CANopen-Parameter und -Einstellungen
	CANopen-Kommunikationsanschluss
	CANopen-Netzwerklänge und Stichleitungslänge
	CANopen-Datenaustausch
Anhang	OANOpen-Datenaustausch
•	
Anhang A	
	Funktionen und Bausteine
	Uberwachungsbausteine
	EDM-Baustein
	Zustimm-Bausteine
	Sonstige Bausteine
	Ausgabe-Bausteine
Anhang B	Anwendungsbeispiele
Allially D	Anwendungsbeispiel - Lichtgitter mit Muting
	Anwendungsbeispiel - Schutztür mit Zustimmschalter
	Anwendungsbeispiel - Schutztur mit Zustimmschalter
	steuerung, Schaltmatte
Anhang C	Elektrische Lebensdauer der Ausgangskontakte
Ailliang 0	Diagramm der elektrischen Lebensdauer
Anhang D	Buskonfigurationsbeispiele
Allilalig D	Anschluss des XPSMC mit CANopen und Sycon 2.8
	Anschluss des XPSMC mit CANopen und Sycon 2.9
	Konfiguration von Unity Pro für CANopen
	Anschluss des XPSMC mit Profibus und Sycon 2.9
Anhang E	Konformitätserklärung
Aillially E	
Classer	EG-Konformitätserklärung
Glossar	
Index	

Sicherheitshinweise

Wichtige Informationen

HINWEISE

Lesen Sie diese Anweisungen sorgfältig durch und machen Sie sich vor Installation, Betrieb und Wartung mit dem Gerät vertraut. Die nachstehend aufgeführten Warnhinweise sind in der gesamten Dokumentation sowie auf dem Gerät selbst zu finden und weisen auf potenzielle Risiken und Gefahren oder bestimmte Informationen hin, die eine Vorgehensweise verdeutlichen oder vereinfachen.

Erscheint dieses Symbol zusätzlich zu einer Gefahrwarnung, bedeutet dies, dass die Gefahr eines elektrischen Schlags besteht und die Nichtbeachtung des Hinweises Verletzungen zur Folge haben kann.

Dies ist ein allgemeines Warnsymbol. Es macht Sie auf mögliche Verletzungsgefahren aufmerksam. Beachten Sie alle unter diesem Symbol aufgeführten Hinweise, um Verletzungen oder Unfälle mit Todesfälle zu vermeiden.

▲ GEFAHR

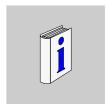
GEFAHR macht auf eine unmittelbar gefährliche Situation aufmerksam, die bei Nichtbeachtung **unweigerlich** einen schweren oder tödlichen Unfall zur Folge hat.

WARNUNG verweist auf eine mögliche Gefahr, die – wenn sie nicht vermieden wird – Tod oder schwere Verletzungen **zur Folge haben** kann.

▲ VORSICHT

VORSICHT verweist auf eine mögliche Gefahr, die – wenn sie nicht vermieden wird – leichte Verletzungen **zur Folge haben** kann.

HINWEIS


HINWEIS gibt Auskunft über Vorgehensweisen, bei denen keine Körperverletzung droht.

BITTE BEACHTEN

Elektrische Geräte dürfen nur von Fachpersonal installiert, betrieben, bedient und gewartet werden. Schneider Electric haftet nicht für Schäden, die durch die Verwendung dieses Materials entstehen.

Als qualifiziertes Personal gelten Mitarbeiter, die über Fähigkeiten und Kenntnisse hinsichtlich der Konstruktion und des Betriebs dieser elektrischen Geräte und der Installationen verfügen und eine Schulung zur Erkennung und Vermeidung möglicher Gefahren absolviert haben.

Über dieses Buch

Auf einen Blick

Ziel dieses Dokuments

Dieses Handbuch enthält eine detaillierte Beschreibung der Sicherheitscontroller der Baureihe XPSMC•••.

Die Details zu den einzelnen Referenzen sind nachstehend dargelegt.

Alle Hardware-Aspekte der Sicherheitscontroller sind in diesem Handbuch umrissen.

Das Handbuch enthält folgende Beschreibungen:

- Abmessungen und Montage der Modelle XPSMC
- Anwendung und Funktion
- Beschreibung der Modelle XPSMC
- Kurzbeschreibung der Funktionsbausteine
- Anwendungsbeispiele
- die technischen Kenndaten der Sicherheitscontroller

Es gibt 6 Versionen des Sicherheitscontrollers:

Тур	Merkmale
XPSMC16Z	8 Kontrollausgänge und 16 Sicherheitseingänge 6 Sicherheits-Transistorausgänge 2 x 2 Sicherheits-Relaisausgänge
XPSMC16ZP	8 Kontrollausgänge und 16 Sicherheitseingänge 6 Sicherheits-Transistorausgänge 2 x 2 Sicherheits-Relaisausgänge Profibus DP Slave-Schnittstelle
XPSMC16ZC	8 Kontrollausgänge und 16 Sicherheitseingänge 6 Sicherheits-Transistorausgänge 2 x 2 Sicherheits-Relaisausgänge CANopen Interface
XPSMC32Z	8 Kontrollausgänge und 32 Sicherheitseingänge 6 Sicherheits-Transistorausgänge 2 x 2 Sicherheits-Relaisausgänge

Тур	Merkmale
XPSMC32ZP	8 Kontrollausgänge und 32 Sicherheitseingänge 6 Sicherheits-Transistorausgänge 2 x 2 Sicherheits-Relaisausgänge Profibus DP Slave-Schnittstelle
XPS-MC32ZC	8 Kontrollausgänge und 32 Sicherheitseingänge 6 Sicherheits-Transistorausgänge 2 x 2 Sicherheits-Relaisausgänge CANopen-Schnittstelle

Gültigkeitsbereich

Als Konfigurationssoftware wird XPS-MCWIN unter Microsoft Windows 2000/XP/Vista/7 verwendet.

Die Sicherheitscontroller der Baureihe XPSMC wurden unter Beachtung geltender europäischer Normen und Richtlinien entwickelt und gefertigt.

HINWEIS: Die entsprechende Konformitätserklärung finden Sie in Anhang E dieses Dokuments (siehe Seite 161).

Der Hersteller der Produkte besitzt ein zertifiziertes Qualitätssicherungssystem gemäß EN ISO 9001.

Die technischen Merkmale der hier beschriebenen Geräte sind auch online abrufbar. So greifen Sie auf diese Informationen online zu:

Schritt	Aktion
1	Gehen Sie zur Homepage von Schneider Electric: www.schneider-electric.com.
2	Geben Sie im Feld Search die Modellnummer eines Produkts oder den Namen einer Produktreihe ein. Die Modellnummer bzw. der Name der Produktreihe darf keine Leerstellen enthalten. Wenn Sie nach Informationen zu verschiedenen vergleichbaren Modulen suchen, können Sie Asterisks (*) verwenden.
3	Wenn Sie eine Modellnummer eingegeben haben, gehen Sie zu den Suchergebnissen Product datasheets und klicken Sie auf die Modellnummer, über die Sie mehr erfahren möchten. Wenn Sie den Namen einer Produktreihe eingegeben haben, gehen Sie zu den Suchergebnissen Product Ranges und klicken Sie auf die Reihe, über die Sie mehr erfahren möchten.

Schritt	Aktion
4	Wenn mehrere Modellnummern in den Suchergebnissen Products angezeigt werden, klicken Sie auf die gewünschte Modellnummer.
5	Je nach der Größe der Anzeige müssen Sie die technischen Daten ggf. abrollen, um sie vollständig einzusehen.
6	Um ein Datenblatt als PDF-Datei zu speichern oder zu drucken, klicken Sie auf Download <i>XXX</i> product datasheet .

Die in diesem Handbuch vorgestellten Merkmale sollten denen entsprechen, die online angezeigt werden. Im Rahmen unserer Bemühungen um eine ständige Verbesserung werden Inhalte im Laufe der Zeit möglicherweise überarbeitet, um deren Verständlichkeit und Genauigkeit zu verbessern. Sollten Sie einen Unterschied zwischen den Informationen im Handbuch und denen online feststellen, verwenden Sie die Online-Informationen als Referenz.

Weiterführende Dokumentation

Titel der Dokumentation	Referenz-Nummer
Konfigurationssoftware für XPSMC	33003281

Diese technischen Veröffentlichungen sowie andere technische Informationen stehen auf unserer Website www.schneider-electric.com zum Download bereit.

Produktbezogene Informationen

Die englische Version dieses Hardware-Handbuches ist das Originaldokument. Publikationen in anderen Sprachen sind Übersetzungen dieses englischen Originaldokuments.

A WARNUNG

STEUERUNGSAUSFALL

- Bei der Konzeption von Steuerungsstrategien müssen mögliche Störungen auf den Steuerungspfaden berücksichtigt werden, und bei bestimmten kritischen Steuerungsfunktionen ist dafür zu sorgen, dass während und nach einem Pfadfehler ein sicherer Zustand erreicht wird. Beispiele kritischer Steuerfunktionen sind die Notabschaltung (Not-Aus) und der Nachlauf-Stopp, Stromausfall und Neustart.
- Für kritische Steuerfunktionen müssen separate oder redundante Steuerpfade bereitgestellt werden.
- Systemsteuerpfade können Kommunikationsverbindungen umfassen. Dabei müssen die Auswirkungen unerwarteter Sendeverzögerungen und Verbindungsstörungen berücksichtigt werden.
- Sämtliche Unfallverhütungsvorschriften und lokalen Sicherheitsrichtlinien sind zu beachten.¹
- Jede Implementierung des Geräts muss individuell und sorgfältig auf einwandfreien Betrieb geprüft werden, bevor das Gerät an Ort und Stelle in Betrieb gesetzt wird.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Körperverletzungen oder Sachschäden zur Folge haben.

¹ Weitere Informationen finden Sie in den aktuellen Versionen von NEMA ICS 1.1 "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" sowie von NEMA ICS 7.1, "Safety Standards for Construction and Guide for Selection, Installation, and Operation of Adjustable-Speed Drive Systems" oder den entsprechenden, vor Ort geltenden Vorschriften.

A GEFAHR

GEFÄHRLICHE SPANNUNG

Nur geschultes Fachpersonal ist zur Installation, Inbetriebnahme, Änderung und Nachrüstung dieser Geräte berechtigt!

Trennen Sie das Gerät / das System von allen Leistungsquellen, bevor Sie Arbeiten am Gerät vornehmen.

Im Falle von Montage- oder Systemfehlern, kann Netzspannung am Steuerschaltkreis in Geräten ohne galvanische Trennung vorhanden sein.

Beachten Sie bitte alle von den zuständigen Behörden oder vom Fachverband ausgegebenen elektrischen Sicherheitsvorschriften. Die Sicherheitsfunktion kann verloren gehen, wenn das Gerät nicht für den gedachten Verwendungszweck eingesetzt wird.

Die Öffnung des Gehäuses oder andere Manipulationen führen zum Erlöschen der Gewährleistung

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schwerer Körperverletzung.

▲ VORSICHT

UNBEABSICHTIGTE VERWENDUNG

Wurde das Gerät einer unsachgemäßen oder ungeeigneten Verwendung ausgesetzt, darf es nicht länger benutzt werden und die Gewährleistung verliert ihre Gültigkeit.

Unzulässige Betriebsbedingungen beinhalten:

Starke mechanische Beanspruchung, z. B. durch Fall oder Spannungen, Ströme, Temperaturen oder Feuchtigkeit außerhalb dieser Spezifikationen.

Stellen Sie vor der ersten Inbetriebnahme Ihrer Maschine/Anlage sicher, dass alle Sicherheitsfunktionen entsprechend den geltenden Vorschriften überprüft werden, und beachten Sie die festgelegten Testzyklen für Schutzeinrichtungen.

Die Nichtbeachtung dieser Anweisungen kann Körperverletzungen oder Sachschäden zur Folge haben.

A VORSICHT

RISIKEN BEI DER INSTALLATION

Beachten Sie die folgenden Sicherheitsregeln, bevor Sie mit der Installation, Montage oder Demontage beginnen:

- 1. Freischalten.
- 2. Gegen Wiedereinschalten sperren.
- 3. Spannungsfreiheit feststellen.
- 4. Erden und kurzschließen.
- **5.** Benachbarte, unter Spannung stehende Teile abdecken oder abschranken.

Die Nichtbeachtung dieser Anweisungen kann Körperverletzungen oder Sachschäden zur Folge haben.

A GEFAHR

GEFAHR VON ELEKTRISCHEM SCHLAG, EXPLOSION ODER LICHTBOGEN

- Trennen Sie alle Geräte vom Netz einschließlich die angeschlossenen Geräte, bevor Sie Abdeckungen oder Türen entfernen oder Zubehör, Hardware, Kabel oder Leiter ein- oder ausbauen. Eine Ausnahme sind die im Hardware-Handbuch für dieses Gerät beschriebenen besonderen Bedingungen.
- Verwenden Sie stets ein genormtes Spannungsprüfgerät, um festzustellen, ob die Spannungsversorgung abgeschaltet ist, wo und wann immer dies notwendig ist.
- Bringen Sie alle Abdeckungen, Zubehörteile, Hardware, Kabel und Drähte wieder an, sichern Sie diese und vergewissern Sie sich, dass eine ordnungsgemäße Erdung vorhanden ist, bevor Sie das Gerät an das Netz schließen und einschalten.
- Betreiben Sie das Gerät und die zugehörigen Produkte nur mit der angegebenen Spannung.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schwerer Körperverletzung.

A VORSICHT

SCHUTZARTEN GEGEN VERSEHENTLICHEN KONTAKT

- Schutzart gemäß EN/IEC 60529.
- Gehäuse / Klemmen: IP 20 / IP 20.
- Berührungsschutz gemäß EN 50274.

Die Nichtbeachtung dieser Anweisungen kann Körperverletzungen oder Sachschäden zur Folge haben.

Benutzerkommentar

Ihre Anmerkungen und Hinweise sind uns jederzeit willkommen. Senden Sie sie einfach an unsere E-mail-Adresse: techcomm@schneider-electric.com.

Funktionale Sicherheitsinformationen

1

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
IEC 61508 und Safety Integrity Level (SIL)	16
Zertifizierung der funktionalen Sicherheit	17
Schulung	20

IEC 61508 und Safety Integrity Level (SIL)

Einführung

XPSMC-Sicherheitscontroller sind sicherheitsbezogene Systeme gemäß IEC 61508 und akkreditiert durch die TÜV NORD CERT GmbH.

IEC 61508 Beschreibung

Die Norm IEC 61508 ist eine technische Norm für die funktionale Sicherheit sicherheitsbezogener elektrischer / elektronischer / programmierbarer elektronischer Teile.

Ein sicherheitsbezogenes System ist ein System, das für die Ausführung von 1 oder mehr Funktionen bei niedrigem oder akzeptablem Risikolevel erforderlich ist. Solche Funktionen werden als Sicherheitsfunktionen bezeichnet.

Ein System wird als funktional sicher definiert, wenn zufällige, systematische Ausfälle und Common Cause Failures nicht zu einer Fehlfunktion des Systems führen und keine Folgen wie Verletzung oder Tod, Umweltverschmutzung, Geräteund Produktionsverlust zur Folge haben.

Beschreibung des Safety Integrity Level (SIL)

Safety Funktionen werden für das Erreichen und die Aufrechterhaltung des sicheren Zustand eines Systems ausgeführt. Die Norm IEC 61508 spezifiziert 4 Ebenen von Sicherheitsniveaus für eine Safety Funktion. Diese werden als Safety Integrity Levels (SIL) bezeichnet und gehen von 1 (niedrigste Ebene) bis 4 (höchste Ebene). XPSMC-Controller sind für die Verwendung in SIL 3 - Applikationen zertifiziert, in denen der spannungslose Zustand der sichere Zustand ist, zum Beispiel in einem Emergency Shutdown System (ESD).

Zertifizierung der funktionalen Sicherheit

Einführung

XPSMC-Controller sind durch die

- TÜV NORD CERT GmbH zertifiziert.
- für den Einsatz in Anwendungen bis einschließlich SIL 3 nach IEC 61508 und IEC 62061.

Diese Zertifizierung ist der Nachweis dafür, dass XPSMC den folgenden Normen und Richtlinien entspricht:

- 2006/42/EC
- EN 60204-1:2006
- EN ISO 13849-1:2008, PL e
- EN / IEC 61508:2001, SIL 3
- EN 62061:2005, SILCL 3
- EN 60947-5-1:2004 Kapitel 4.4 Kategorien für Schaltelemente
- EN 61496-1:2004+A1:2008 Anhang A.7 Dämpfung
- EN 574:1996+A1:2008, Typ IIIa, Typ IIIc
- EN 692:2005+A1:2009, Kapitel 5.4.1
- EN 693:2001+A1:2009, Kapitel 5.4.1

HINWEIS: Ein Exemplar des aktuellen Zertifikats finden Sie auf unsere Website unter www.schneider-electric.com. Siehe auch unsere Konformitätserklärung (siehe Seite 161).

HINWEIS: Die Verwendung eines XPSMC-Sicherheitscontrollers ist eine notwendige, jedoch nicht ausreichende Voraussetzung für die Zertifizierung einer SIL 3-Anwendung. Eine SIL 3-Anwendung muss darüber hinaus den Anforderungen der Norm IEC 61508 sowie anderen Anwendungsstandards entsprechen.

Parameter der funktionalen Sicherheit

Werte für Sicherheitsrelaisausgänge

- gemäß EN ISO / ISO 13849-1
 - PL e / Kategorie 4
 - MTTF_d = 71 Jahre
 - DC > 99%
- gemäß EN / IEC 62061
 - $PFH_d = 1.4 \times 10^{-8} 1/h$
 - SILCL 3

Werte für Sicherheitstransistorausgänge

- gemäß EN ISO / ISO 13849-1
 - PL e / Kategorie 4
 - MTTF_d = 76,6 Jahre
 - DC > 99%
- gemäß EN / IEC 62061
 - $PFH_d = 1,29 \times 10^{-8} 1/h$
 - SILCL 3

HINWEIS:

- Die Leistungsklasse und Sicherheitskategorie gemäß EN ISO / ISO 13849-1 hängt von der externen Verdrahtung, dem Anwendungsfall, der Wahl der Steuerstation und der physischen Anordnung auf der Maschine ab.
- Der Anwender muss eine Risikobewertung gemäß EN ISO / ISO 12100 durchführen.
- Das gesamte System/die Maschine muss sich einer Validierung entsprechend den anwendbaren Normen unterziehen.
- Das Modul enthält elektromechanische Relais. Aus diesem Grund variieren die jeweiligen MTTF_d-Werte je nach Last und dem Arbeitszyklus der Anwendung.
 Den oben genannten geschätzten MTTF_d-Werte in Jahren liegen die folgenden Annahmen zu Grunde:
 - B_{10d} Wert für maximale Last von 400.000
 - durchschnittliche Schaltmenge n_{op}=6.300 Zyklen/Jahr
 - B_{10d} Wert für niedrige Last von 20.000.000
 - durchschnittliche Schaltmenge n_{op}=361.800 Zyklen/Jahr (siehe EN ISO / ISO 13849-1, C.2.4 und Tab. K.1)
- Stellen Sie sicher, dass die Lasten und Schaltzyklen, denen das Sicherheitsrelais unterworfen ist, für die berechnete Leistungsklasse geeignet sind. Verwenden Sie das Diagramm Lebensdauer der Ausgangskontakte (siehe Seite 135), um die maximal zulässigen Werte zu berechnen. Beobachten Sie die Betriebsbedingungen häufiger und ersetzen Sie das Modul, bevor diese Grenzwerte überschritten werden. Die angegebene Leistungsklasse kann nur für die Anzahl der Schaltzyklen zugesichert werden, die mithilfe dieser Methode berechnet wurden. Auf keinen Fall sollte eine Lebensdauer von 20 Jahren überschritten werden.
- Wird das Gerät nicht im Rahmen der Spezifikationen betrieben, kann dies zu unvorhersehbarem Verhalten oder der Zerstörung des Geräts führen.
- Weitere Informationen finden Sie in den Installationshinweisen.

HINWEIS: Das Modul enthält keine Komponenten, die der Anwender austauschen kann.

A VORSICHT

RESTRISIKEN (EN ISO / ISO 12100-1)

Diese Controller sind für sicherheitsrelevante Funktionen in Verbindung mit angeschlossenen Geräte- und Schutzeinrichtungen zu verwenden, die die Anforderungen der einschlägigen Normen erfüllen.

Ein Restrisiko bleibt bestehen, wenn:

- eine Änderung der vorgeschlagenen Schaltung erforderlich ist, und die hinzugefügten/ geänderten Komponenten nicht ordnungsgemäß im Steuerschaltkreis integriert sind.
- der Anwender nicht die für den Betrieb der Maschine erforderlichen Normen erfüllt, oder wenn die Einstellung und die Wartung der Maschine nicht korrekt erfolgte. Der Maschinenwartungsplan ist genauestens einzuhalten.
- Mit den Sicherheitsausgängen verbundene Geräte haben keine mechanisch verbundenen Kontakte.

Die Nichtbeachtung dieser Anweisungen kann Körperverletzungen oder Sachschäden zur Folge haben.

Schulung

Einführung

Wie in IEC 61508, Teil 1, App. B definiert, sollten alle Personen, die in einem Safety Lebenszyklus involviert sind, eine angemessene Schulung absolviert haben, sowie Sachkenntnis, Erfahrung und Qualifikationen für ihre spezifischen auszuführenden Aufgaben haben. Dies sollte hinsichtlicher jeder einzelnen Applikation beurteilt werden.

HINWEIS: Sorgen Sie dafür, dass Sie über alle Informationen und Kenntnisse verfügen, die für die korrekte Installation, Betrieb und Wartung von sicherheitsbezogenen Systemen erforderlich sind

Qualifikation des Personals

Elektrische Geräte dürfen nur von Fachpersonal installiert, betrieben, bedient und gewartet werden. Schneider Electric haftet nicht für Schäden, die durch die Verwendung dieses Materials entstehen.

Als qualifiziertes Personal gelten Mitarbeiter, die über Fähigkeiten und Kenntnisse hinsichtlich der Konstruktion und des Betriebs dieser elektrischen Geräte und der Installationen verfügen und eine Schulung zur Erkennung und Vermeidung möglicher Gefahren absolviert haben.

Die Fachkräfte müssen mögliche Gefahrenquellen erkennen, die bei Parametrierung und Änderung der Parameter enstehen können, sowie allgemein von mechanischen, elektrischen oder elektronischen Geräten ausgehen können. Die Fachleute müssen die Normen, Bestimmungen und Unfallverhütungsvorschriften kennen und diese bei Tätigkeiten des Antriebssystems einhalten.

Schulungsinhalte

Neben den üblichen Schulungen für die Nutzung von Firmenprodukten, bietet Schneider Electric Ihnen Schulungen an, die die Themen des IEC 61508 konformen sicherheitsbezogenen Systems abdecken.

Übersicht: XPSMC16Z/ZC/ZP, XPSMC32Z/ZC/ZP

2

Übersicht

Dieses Kapitel enthält eine Übersicht der Sicherheitscontroller XPSMC16Z, XPSMC16ZC, XPSMC16ZP, XPSMC32Z, XPSMC32ZC und XPSMC32ZP.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Modelle XPSMC	22
Abbildung	24
Abmessungen	26
Montage	27

Modelle XPSMC

XPSMC

XPSMC ist die globale Bezeichnung für eine Produktfamilie bestehend aus acht verschiedenen Sicherheitscontrollern der Baureihe XPSMC. Derzeit sind folgende Modelle verfügbar: XPSMC16Z, XPSMC16ZC, XPSMC16ZP, XPSMC32Z, XPSMC32ZC, und XPSMC32ZP.

Unterschiede zwischen den Modellen XPSMC

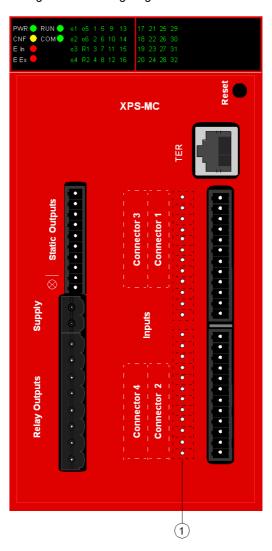
Sicherheitscontroller der Baureihe XPSMC

Modell	Modbus RTU seriell	CANopen	Profibus-DP	Anzahl an Ein- und Ausgängen
XPSMC16Z	x	_	_	8 Kontrollausgänge und 16 Sicherheitseingänge
XPSMC16ZC	x	x	_	8 Kontrollausgänge und 16 Sicherheitseingänge
XPSMC16ZP	x	_	х	8 Kontrollausgänge und 16 Sicherheitseingänge
XPSMC32Z	x	_	_	8 Kontrollausgänge und 32 Sicherheitseingänge
XPS-MC32ZC	х	х	_	8 Kontrollausgänge und 32 Sicherheitseingänge
XPSMC32ZP	x	-	х	8 Kontrollausgänge und 32 Sicherheitseingänge
Einzelheiten zur Funktionalität der Sicherheitscontroller finden Sie im Kapitel Funktionen und Bausteine (siehe Seite 118).				

XPSMC•• Paket-Inhalt

Das XPSMC•• Paket besteht aus folgenden Positionen:

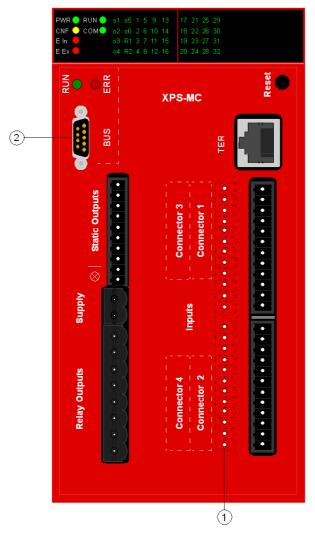
Hardware	XPSMC*Z* Sicherheitscontroller
Handbücher	Gedrucktes englisches Handbuch
Dokumentations-CD	Hardware-Handbücher (PDF) in: Englisch, Deutsch, Französisch, Spanisch, Portugiesisch


Für das Konfigurieren und die Inbetriebnahme des Sicherheitscontrollers benötigen Sie auch folgende Positionen (1 Referenz je Position):

Position	Referenzen	
Konfigurationssoftware	XPSMCWIN Konfigurationssoftware	XPSMCWIN
Konfigurationskabel	USB PC-Adapter und Ethernet- Verbindungskabel (2 Bestellreferenzen) oder	TSXCUSB485 + 490NTW00002
	Serieller PC-Adapter und Verbindungskabel (2 Referenzen)	TSXPCX1031 + XPSMCCPC
EA-Klemmen	Schraubklemmen-Pack verfügbar für Digitaleingangsversion 16 oder 32 des Sicherheitscontrollers (Klemmen vorgesehen für den vollständigen Sicherheitscontroller) Für Sicherheitscontroller: 1. Referenzen 16 Digitaleingänge: XPSMC16Z, XPSMC16ZC, XPSMC16ZP 2. Referenzen 32 Digitaleingänge: XPSMC32Z, XPSMC32ZC, XPSMC32ZC, XPSMC32ZP	Sie benötigen je eine von folgenden Referenzen: 1. XPSMCTS16 2. XPSMCTS32
	Käfigklemmen-Pack verfügbar für Digitaleingangsversion 16 oder 32 des Sicherheitscontrollers (Klemmen vorgesehen für den vollständigen Sicherheitscontroller) Für Sicherheitscontroller: 1. Referenzen 16 Digitaleingänge: XPSMC16Z, XPSMC16ZC, XPSMC16ZP 2. Referenzen 32 Digitaleingänge: XPSMC32Z, XPSMC32ZC, XPSMC32ZP	1. XPSMCTC16 2. XPSMCTC32
Stromversorgung	IEC EN 60950 Nennstromversorgung mit Schutztrennung (PELV oder SELV) 1. 3A, 24 VDC 2. 5A, 24 VDC 3. 10A, 24 VDC	 ABL8RPS24030 ABL8RPS24050 ABL8RPS24100

Abbildung

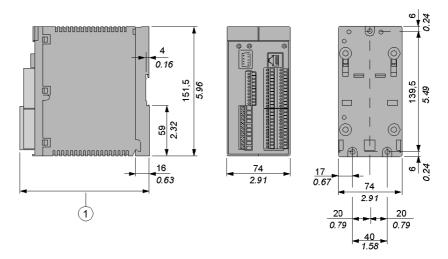
Frontansicht XPSMC16Z / 32Z


Die folgende Abbildung zeigt die Frontansicht von XPSMC16Z und XPSMC32Z:

1 16 zusätzliche Sicherheitseingänge von XPSMC32Z

Frontansicht XPSMC16ZP / 16ZC/ 32ZP / 32ZC

Die folgende Abbildung zeigt die Frontansicht von XPSMC16ZP, XPSMC16ZC, XPSMC32ZP und XPSMC32ZC:

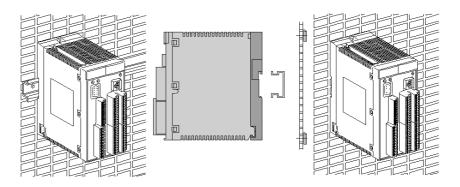


- 1 16 zusätzliche Sicherheitseingänge von XPSMC32ZP und XPSMC32ZC
- 2 Profibus DP-Steckdose (XPSMCZP) oder CANopen-Stecker (XPSMCZC)

Abmessungen

Abmessungen der Modelle XPSMC

Nachfolgend sind die Maßzeichnungen der Modelle XPSMC (mm/in) abgebildet:


1 Bei Verwendung von Steckverbindungen der Reihe XPSMCTS• beträgt dieses Maß 153 mm (6.02 in)

Bei Verwendung von Steckverbindungen der Reihe XPSMCTC• beträgt dieses Maß 151.5 mm (5.96 in)

Montage

Montage auf einer 35-mm-DIN-Schiene

Montage des XPSMC auf einer 35-mm-DIN-Schiene (1.37 in) und Wandmontage:

A WARNUNG

UNBEABSICHTIGTER BETRIEBSZUSTAND DES GERÄTS

- Platzieren Sie die Geräte, die am meisten Wärme abgeben, oben im Schrank, und sorgen Sie für ausreichende Belüftung.
- Montieren Sie dieses Gerät nicht neben oder über anderen Geräten, die Überhitzungen verursachen könnten.
- Installieren Sie das Gerät an einer Stelle, die den erforderlichen Mindestabstand zu sämtlichen umliegenden Aufbauten und Geräten gemäß den Angaben in diesem Dokument gewährleistet.
- Installieren Sie das Gerät gemäß den entsprechenden Zeichnungen in der zugehörigen Dokumentation.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Körperverletzungen oder Sachschäden zur Folge haben.

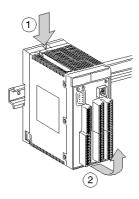
A WARNUNG

UNBEABSICHTIGTER BETRIEBSZUSTAND DES GERÄTS

Installieren und betreiben Sie dieses Gerät gemäß den Umgebungsbedingungen, die in den technischen Daten angegeben sind.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Körperverletzungen oder Sachschäden zur Folge haben.

Dieses Gerät wurde für einen Betrieb in gefahrenfreien Bereichen entwickelt. Installieren Sie die Geräte nur in Umgebungen, die keine gefährliche Atmosphäre aufweisen.


▲ GEFAHR

EXPLOSIONSGEFAHR

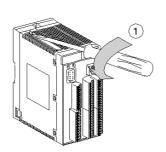
Dieses Gerät ist ausschließlich für eine Verwendung in gefahrenfreien Bereichen geeignet.

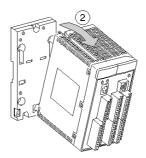
Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schwerer Körperverletzung.

Demontieren des XPSMC von der 35 mm-Normschiene (1,37 in)

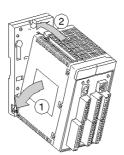
HINWEIS: Die Erdung des XPSMC erfolgt über die Befestigungsplatte oder die DIN-Schiene.

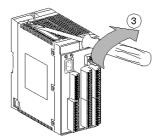
Anforderungen


Der Controller wird durch natürliche Konvektion gekühlt. Um die Lüftung zu erleichtern, ist das Gerät vertikal anzubringen, sodass sich die Lüftungsschlitze stets an der Ober- und Unterseite befinden.


Wenn mehrere Controller in einem Schrank eingebaut werden, empfiehlt sich die Einhaltung folgender Vorsichtsmaßnahmen:

- Über und unter dem Controller ist ein Freiraum von mindestens 150 mm (5.90 in) für Kabelführung und Luftzirkulation vorzusehen.
- Hitze erzeugende Geräte (Trafos, Versorgungsmodule, Leistungskontakte usw.) sind oberhalb der Controller einzubauen.


Demontage des Gehäuseoberteils


Demontage des Gehäuseoberteils von der Befestigungsplatte (Anzugsmoment 1,1 Nm (9.7 lb-in)):

Montage des Gehäuseoberteils von der Befestigungsplatte (Anzugsmoment 1,1 Nm (9.7 lb-in)):

Anwendung und Funktion

3

Übersicht

Dieses Kapitel beschreibt die Anwendung und Funktion der Sicherheitscontroller XPSMC16Z, XPSMC16ZC, XPSMC16ZP, XPSMC32Z, XPSMC32ZC und XPSMC32ZP.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Anwendung	32
Funktion	33
Anfangsbetrieb	37

Anwendung

Beschreibung

Das Gerät XPSMC ist ein elektronischer Sicherheitscontroller für die Überwachung von Sicherheitsfunktionen bis zur Sicherheitskategorie 4, PL e, gemäß EN ISO / ISO 13849-1 und bis SILCL 3 gemäß EN / IEC 62061 bzw. SIL 3 gemäß EN / IEC 61508 im Bereich Maschinensicherheit.

Die XPSMC Sicherheitssteuerung hat 6 Halbleiter-Transistorausgänge und zusätzlich 2 Sicherheits-Relaisausgänge, und je nach Version 16 oder 32 digitale Eingänge.

Der Sicherheitscontroller enthält ein Konfigurations-Interface (TER).

Das TER-Interface ist ein serieller Modbus-RTU-Kommunikationsport und kann auch für Diagnosezwecke verwendet werden, da es an eine Standard-SPS oder eine grafische Benutzerschnittstelle (z. B. HMI Magelis) angeschlossen werden kann.

Zusätzliche Referenzen des Sicherheitscontrollers stellen entweder CANopen- oder Profibus DP-Schnittstellen zur Verfügung.

HINWEIS: Die mit dem XPSMC verbundenen Sensoren oder Aktoren müssen zwischen jeder Maschinenwartung oder mindestens einmal pro Jahr ihren Status einmal ändern. Dies muss erfolgen, da die Berechnung der Sicherheitsintegritätsebene für jede Sicherheitsfunktion auf einem vollständigen Ein-/Ausgangstest einmal je Jahr basiert.

HINWEIS: Das Gerät enthält keine vom Anwender zu wartenden Bauteile. Zur Freigabe von Sicherheitsstromkreisen gemäß EN / IEC 60204, EN ISO / ISO 13850 sind ausschließlich die Ausgangskreise zwischen den Klemmen 13-14, 23-24, 33-34, 43-44 sowie die Halbleiter-Sicherheitsausgänge o1 bis o6 zu verwenden.

Funktion

Beschreibung

Das Gerät verfügt über 6 unabhängig voneinander schaltende Halbleiter-Sicherheitsausgänge sowie über 2 unabhängige Gruppen von positiv angetriebenen potentialfreien Doppelkanal-Kontakt-Sicherheitsrelaisausgängen. Jeder der vier Kanäle verfügt über zwei zwangsgeführte Kontakte.

HINWEIS

FUNKSTÖRUNGEN

Dies ist ein Produkt der Klasse A (FCC/VDE), vorgesehen für den Einsatz in industriellen Umgebungen. Für Anwendungen in einer Haushaltsumgebung (Klasse B) darf dieses Produkt nicht eingesetzt werden.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

Elektromagnetische Störungen können die Steuerungskommunikation und/oder Eingangs-/Ausgangssignale an das Steuerungssystem beeinträchtigen.

A WARNUNG

UNBEABSICHTIGTER BETRIEBSZUSTAND DES GERÄTS

- Verlegen Sie E/A- und Kommunikationsleitungen nicht in der Nähe von Stromkabeln, Funkgeräten oder anderen Geräten, die elektromagnetische Störungen verursachen können.
- Wenn sich das Verlegen von E/A- und Kommunikationsleitungen in der Nähe von Stromkabeln und Funkgeräten nicht vermeiden lässt, verwenden Sie geschirmte Kabel. Sorgen Sie für die ordnungsgemäße Erdung der Kabelschirme gemäß den Anweisungen in der zugehörigen Dokumentation.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Körperverletzungen oder Sachschäden zur Folge haben.

Funktionen des XPSMC

Der XPSMC verfügt über 8 Kontrollausgänge, c1 bis c8, und 16 (32) Sicherheitseingänge, i1 bis i16 (i1 bis i32).

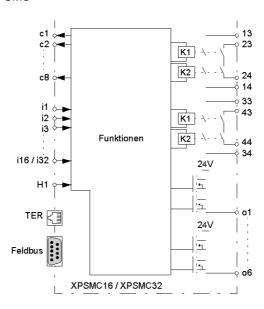
Um die Schaltelemente an den Sicherheitseingängen untereinander auf Querschluss zu einem anderen Eingang, Einspeisung von Fremdspannung oder Masseschluss zu überwachen, werden diese von jeweils verschiedenen Kontrollausgängen, c1 bis c8, gespeist.

Der Sicherheitscontroller verwendet die Steuerausgänge für die kontinuierliche Prüfung der angeschlossenen Eingänge einschließlich der Leistungsanschlüsse.

Wird dabei ein Fehler festgestellt, so schaltet die Steuerlogik sofort die zur entsprechenden Sicherheitsfunktion gehörigen Sicherheitsausgänge ab. Die zu anderen Sicherheitsfunktionen gehörenden Sicherheitsausgänge arbeiten unbeeinflusst weiter.

Alle XPSMC-Sicherheitscontroller sind mit einer seriellen Modbus-RTU-Schnittstelle (TER) ausgerüstet.

Darüber hinaus ist eine CANopen-Schnittstelle verfügbar an


- XPSMC16ZC
- XPS-MC32ZC

und eine Profibus DP-Schnittstelle ist verfügbar an

- XPSMC16ZP
- XPSMC32ZP

Die Kommunikationsports liefern Diagnose-Informationen zum Status des Controllers. Die Kommunikation ist nicht sicherheitsbezogen. Der Sicherheitscontroller ist ein Slave für alle Kommunikationsmöglichkeiten.

XPSMC

A WARNUNG

VERLUST DER ERKENNUNG VON QUERSCHLÜSSEN

Prüfen Sie sorgfältig und verdeutlichen Sie sich wie die Schaltkreise, die gemeinsam Steuerausgänge nutzen, in Ihrer Anwendung aufeinander wirken. Kurzschlüsse zwischen Eingängen, die vom selben Steuerausgang angetrieben werden, werden nicht erkannt. Stellen Sie sicher, dass keine gefährlichen Zustände auftreten können.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Körperverletzungen oder Sachschäden zur Folge haben.

A GEFAHR

UNBEABSICHTIGTER BETRIEBSZUSTAND DES GERÄTS ODER ELEKTRISCHER SCHLAG

Stellen Sie sicher, dass die Klemmenleisten an der angegebenen Stelle angeschlossen werden.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schwerer Körperverletzung.

A GEFAHR

GEFAHR BEI UNGEEIGNETEM SCHALTUNGSKONZEPT, TEST- ODER WARTUNGSVERFAHREN!

- Bei Abweichungen vom vorgeschlagenen Schaltungskonzept ist sicherzustellen, dass die angeschlossenen sicherheitsrelevanten Geräte oder Schutzeinrichtungen ausreichend in die Sicherheitsschaltung einbezogen werden.
- Hier sollte auf strenge Einhaltung der Intervalle zur Prüfung und Wartung der Maschine geachtet werden.
- Die einschlägigen Sicherheitsvorschriften für Betrieb, Einstellung und Wartung der Maschine sind strikt einzuhalten.
- Siehe EN ISO / ISO 12100.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schwerer Körperverletzung.

HINWEIS: Geräteschäden oder Verletzungen, die aufgrund von fehlerhaften Stromkreisen entstehen, führen zum Verlust der Gewährleistungsansprüche. Das Unternehmen Schneider Electric übernimmt dafür keine Haftung.

Die nachstehenden Schaltungsvorschläge wurden mit größter Sorgfalt unter Betriebsbedingungen geprüft und getestet. Sie erfüllen mit der angeschlossenen Peripherie sicherheitsgerichteter Einrichtungen und Schaltgeräte insgesamt die einschlägigen Normen.

Konfiguration des XPSMC

Der XPSMC ist konfiguriert für Verwendung eines PC und der XPSMCWIN-Konfigurationssoftware.

Der Anschluss zwischen dem Sicherheitscontroller und dem PC kann auf 2 Weisen (siehe Seite 47) erfolgen:

- mit einem seriellen Kommunikationsport vom PC
- mit einem USB-Kommunikationsport vom PC

Anfangsbetrieb

Selbsttest (Werkseinstellungen)

Der XPSMC wird in nicht konfiguriertem Zustand geliefert. Beim ersten Hochfahren führt er einen etwa 2 Sekunden dauernden internen Test aus. Für die Stromversorgung des Sicherheitscontrollers +24 VDC auf Klemme A1 und 0 VDC auf Klemme A2 schalten.

Phase	Beschreibung
1	Die LEDs auf dem Gehäusedeckel leuchten.
2	Nach 2 Sekunden: Die LED "PWR" leuchtet. Die LED "CNF" blinkt. Die verbleibenden LEDs sind aus.

Selbsttest (Hardwaretest)

Sie können die Konfiguration eines XPSMC wie folgt rückstellen: Trennen Sie XPSMC vom Netz, drücken und halten Sie den **Reset**-Taster während Sie XPSMC wieder an das Netz anschließen. Die Konfiguration ist nicht länger gültig, aber es ist möglich, die Konfiguration von der Steuerung am Computer abzulesen und die Konfiguration wieder gültig zu schalten.

Phase	Beschreibung	
1	Die LEDs auf dem Gehäusedeckel leuchten.	
2	Nach 2 Sekunden gehen die LEDs kurz aus und leuchten dann wieder, da der Reset -Taster gedrückt wird.	
3	Lassen Sie den Reset-Taster wieder los. Die LED "PWR" leuchtet. Die LED "CNF" blinkt. Die verbleibenden LEDs sind aus.	

Selbsttest (mit gültiger Konfiguration)

Mit einer gültigen Konfiguration die Versorgungsspannung zum XPSMC unterbrechen und wiederherstellen.

Phase	Beschreibung
1	Die LEDs auf dem Gehäusedeckel leuchten.
2	Nach 2 Sekunden: ■ Die LED "PWR" leuchtet. ■ Die LED "RUN" leuchtet, wenn sich der Controller vor dem Stromzyklus in RUN befand. ■ Die LED "RUN" ist aus, wenn sich der Controller vor dem Stromzyklus im Stopp-Modus befand.
	Wenn der Controller über Feldbus-Schnittstellen verfügt, dann: ■ CANopen/Profibus-DP-LEDs (RUN und ERR): Das Verhalten hängt von der Verbindung ab (siehe Anzeigeelemente und Systemdiagnose, Seite 52).

Downloaden einer neuen Konfiguration

Der XPSMC wird ohne Konfiguration geliefert und muss zur Inbetriebnahme deshalb zunächst konfiguriert werden. Die Konfiguration erfolgt mit der XPSMCWIN-Software.

HINWEIS: Das Handbuch der XPSMCWIN-Software enthält eine detaillierte Beschreibung der Sicherheitsfunktionen, die durch den XPSMC-Sicherheitscontroller verfügbar sind.

A GEFAHR

GEFÄHRLICHE BEWEGUNG

Der Betriebszustand aller Ausgänge muss bewertet werden, bevor der XPSMC-Sicherheitscontroller mit der XPSMCWIN-Software in den RUN-Modus gestellt wird.

Es muss sichergestellt werden, dass kein unbeabsichtigter Betrieb der Ausrüstung erfolgen kann.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schwerer Körperverletzung.

Nach erfolgreicher Konfiguration und Validation kann der XPSMC-Sicherheitscontroller mit der Software XPSMCWIN in den RUN-Modus versetzt werden.

Phase	Beschreibung
1	Nach dem Laden einer gültigen Konfiguration: ■ Die LED "CNF" ist aus.
2	 Nach der Einstellung des XPSMC-Sicherheitscontrollers in den RUN-Modus: Die LED "RUN" leuchtet. Die LEDs der Ein- und Ausgänge leuchten entsprechend ihres Schaltzustands.
	 Verfügt der Controller über Feldbus-Schnittstellen, dann: CANopen/Profibus LEDs - das Verhalten hängt von der Verbindung ab (siehe Anzeigeelemente und Systemdiagnose, Seite 52) XPSMC ist jetzt betriebsbereit.

33003277 01/2012

Beschreibung des XPSMC

4

Übersicht

Dieses Kapitel enthält die Beschreibung der Sicherheitscontroller XPSMC16Z, XPSMC16ZC, XPSMC16ZP, XPSMC32Z, XPSMC32ZC und XPSMC32ZP.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Abschnitte:

Abschnitt	Thema	Seite
4.1	Allgemeine Beschreibung des XPS-MC16/32	42
4.2	Modbus RTU-Kommunikation	65
4.3	Beschreibung der Profibus DP-Parameter und -Einstellungen	91
4.4	Beschreibung der CANopen-Parameter und -Einstellungen	98

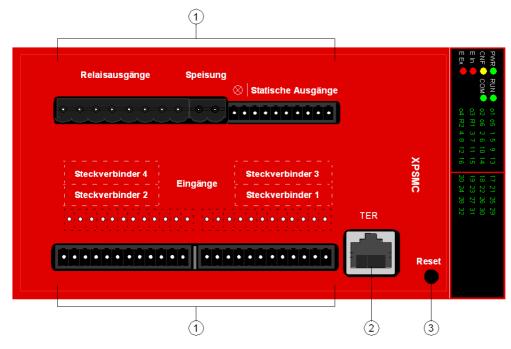
4.1 Allgemeine Beschreibung des XPS-MC16/32

Einführung

Dieses Kapitel enthält eine Übersicht über die allgemeinen Funktionen und Eigenschaften des XPS-MC16/32 Sicherheitscontrollers.

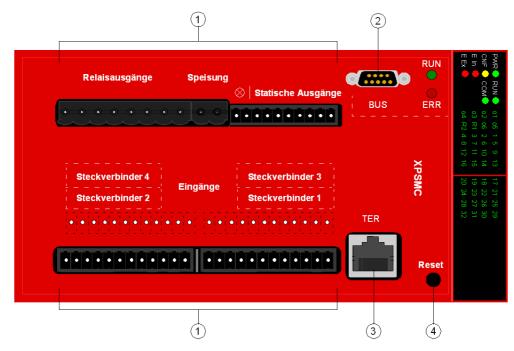
Inhalt dieses Abschnitts

Dieser Abschnitt enthält die folgenden Themen:


Thema	Seite	
Vorderansicht des XPSMC		
TER-Kommunikationsanschlüsse		
Anzeigeelemente und Systemdiagnose		
Anschlussschema		
Technische Kenndaten		
Fehlercodes		

Vorderansicht des XPSMC

Übersicht


Die folgenden Abbildungen zeigen die XPSMC-Modelle mit Schraubklemmen (Bestellreferenz: XPSMCTS) oder Käfigklemmen (Bestellreferenz: XPSMCTC).

Frontansicht XPSMCZ

- 1 Anschlussklemmen
- 2 TER-Anschluss
- 3 Reset-Taster

Frontansicht XPSMCZP und XPSMCZC

- 1 Anschlussklemmen
- 2 Feldbus-Anschluss (Profibus DP (Buchse) oder CANopen (Stecker))
- 3 TER-Anschluss
- 4 Reset-Taster

Codierung der Steckverbindungen Stecker 1...4

Die Steckverbindungen *Steckverbinder 1...4* können durch Einschieben der beiliegenden Codierprofile in die dafür vorgesehenen Nuten der Buchsenleisten und durch Abbrechen der Codiernasen an den Steckerleisten codiert werden.

Anzeige

Die LEDs der Anzeige geben den aktuellen Betriebszustand des Geräts wieder (siehe Kapitel *Anzeigeelemente und Systemdiagnose, Seite 52*).

Anschlussklemmen

Die Klemmen haben folgende Belegung:

Belegung	Bedeutung
A1-A2	Spannungsversorgung 24V; A1 fungiert als Pluspol (+24 VDC), A2 als Minuspol (0 VDC, GND)
GND	Die Erdung ist identisch mit dem 0 VDC-Potenzial von A2 für die Lasten an den Halbleiter-Sicherheitsausgängen o1-o6.
01-06	Halbleiter-Sicherheitsausgänge
13-44	Potentialfreie, kontaktbehaftete Sicherheitsausgänge
c1-c8	Kontrollausgänge zur Versorgung der Sicherheitseingänge Die Steuerausgänge geben ein Signal zur Erkennung von Kurzschlüssen und Spannungseinbrüchen für die angeschlossenen Steuerungskomponenten aus.
i1-i16 oder i1-i32	Sicherheitseingänge
H1	Anschluss für eine Mutinglampe Die Versorgungsspannung muss aus derselben Quelle erfolgen, die auch den XPSMC speist.

Verbindung

8-Stift RJ45-Verbinder für den Anschluss des XPSMC-Sicherheitscontrollers an einen PC für Konfiguration und/oder Diagnose.

Die Kommunikation über das TER-Terminal ist das Modbus RTU-Protokoll und kann auch verwendet werden für den Anschluss an ein HMI Magelis-Bedienterminal oder eine Standard-SPS.

Feldbus-Anschluss

Je nach Version:

• Profibus DP: 9-polige Sub-D-Buchse

• CANopen: 9-poliger Sub-D-Stecker.

Reset-Taster

Wurde ein externer Fehler entdeckt und wird von der Behebung des Fehlers ausgegangen, muss dies durch Betätigen des **Reset**-Tasters bestätigt werden. Wird kein Fehler mehr erkannt, kann der Controller wieder in den RUN-Modus wechseln.

Durch Drücken des **Reset**-Tasters während eines Ein-/Ausschaltzyklus wird der XPSMC-Controller auf die Standardwerte gesetzt. Dies bedeutet, dass das Kennwort auf 'Sicherheit' gesetzt wird. Die Konfiguration ist ungültig, jedoch nicht gelöscht. Der Controller kann also nicht in den RUN-Modus wechseln, er kann die Konfiguration und das Protokoll aber noch lesen. Um den Controller wieder in Betrieb zu nehmen, muss er neu konfiguriert werden (Konfiguration herunterladen und validieren).

CANopen-/Profibus DP-LEDs

Für die CANopen/Profibus DP-Verbindung sind zwei LEDs vorhanden: "RUN" (grün) und "ERR" (rot)

Beschreibung der LEDs siehe *Profibus DP-LEDs, Seite 94* für Profibus DP und *CANopen-LEDs, Seite 101* für CANopen.

TER-Kommunikationsanschlüsse

Verbindung

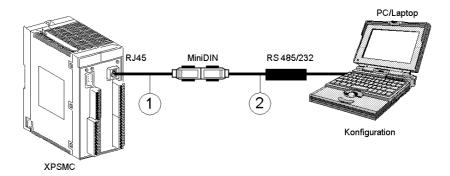
8-polige RJ45-Buchse mit folgender Belegung:

8-polige RJ45-Buchse mit Abschirmung	Pin-Nr.	Signal	Beschreibung
Abbildung:	1	_	-
	2	_	-
	3	DPT	TER-Anschluss Modussteuerung
	4	D1 (B)	RS485-Signal
	5	D0 (A)	RS485-Signal
	6	/DE	Negativ - Zulassen der Datenübertragung
8	7	5V	Logische VCC
	8	0V	Erde

Anschluss am PC zur Konfiguration

Es gibt zwei Möglichkeiten für den Anschluss des Sicherheitscontrollers an den PC (Computer):

- Verwendung einer seriellen Kommunikationsschnittstelle vom PC
- Verwendung einer USB-Kommunikationsschnittstelle vom PC


Serieller Anschluss

Für den seriellen Anschluss sind folgende 2 Kabelkomponenten erforderlich:

- XPSMCCPC-Adapter
- Serieller Adapter TSXPCX1031

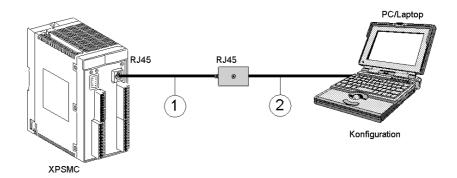
HINWEIS: Dieses Zubehör muss separat bestellt werden.

Die folgende Abbildung zeigt den physischen seriellen Anschluss vom PC zum Sicherheitscontroller XPSMC.

- 1 XPSMCCPC
- 2 TSXPCX1031

USB-Anschluss

Für den USB-Anschluss sind folgende 2 Kabelkomponenten erforderlich:


- Standard (1:1) RJ45/RJ45 paarig verdrillt, Kategorie 5D, Ethernet-Kabel Bestellref.: 490NTW00002
- TSXCUSB485 USB-Adapter

HINWEIS: Dieses Zubehör ist Bestandteil des XPSMC*PACK oder kann separat bestellt werden.

Zusätzlich benötigen Sie das USB Driver Pack, verfügbar unter Safety Suite V2 (XPSMCWIN) Software-CD oder unter www.schneider-electric.com.

Installationsanweisungen für das Driver Pack befinden sich im Software-Handbuch.

Die folgende Abbildung zeigt den physischen seriellen Anschluss vom PC zum Sicherheitscontroller XPSMC.

- 1 RJ45-RJ45 paarig verdrillt, Kategorie 5D oder besser (1:1) Ethernet-Kabel (z.B. 490NTW00002)
- 2 USB Adapter TSXCUSB485

Anschluss an den PC (Computer) Es gibt zwei Möglichkeiten für den Anschluss des Sicherheitscontrollers an den PC: 1. Verwendung einer seriellen Kommunikationsschnittstelle vom PC 2. Verwendung eines USB- Kommunikationsschnittstelle vom PC	Für den Anschluss sind folgende 2 Kabelkomponenten erforderlich: 1. Serieller Anschluss vom PC zum Sicherheitscontroller XPSMC: • XPSMCCPC-Adapter • Serieller Adapter TSXPCX1031 2. USB-Anschluss vom PC zur Kommunikationsschnittstelle des PCs • Standard (1:1) RJ45/RJ45 paarig verdrillt, Kategorie 5D, Ethernet-Kabel Bestellref. 490NTW00002: • TSXCUSB485 USB-Adapter
Anschluss eines Magelis-HMI- Bedienterminals (z. B. XBT)	Kabel XBT-Z938 oder Adapters XPSMCCPC + Kabel XBT-Z968
Anschluss einer Premium-Steuerung (z.B. Kommunikationskarten: TSXSCY21601 oder SCY11601)	Kabel XPSMCSCY

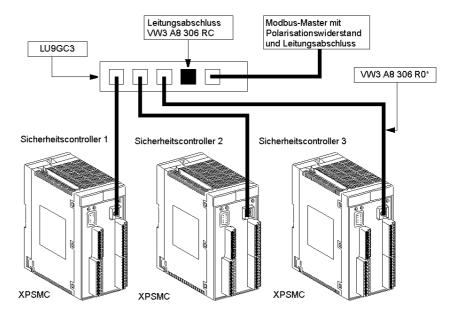

Einstellung der Schnittstellenkabel TSXPCX1031 und TSXCUSB485:

Abbildung	Position des Wahlschalters
OTHER MULTI OTHER DIRECT	Der Schalter muss sich auf Position 3 OTHER DIRECT befinden.

Anschluss eines oder mehrerer XPSMC an ein Modbus-RTU-System

HINWEIS: Es ist nicht möglich, den Controller über das LUI9GC3-System zu programmieren. Der Anschluss von mehr als einem Controller am Netzwerk gilt für eine Verwendung mit HMI-Magelis und den Standard-Steuerungen.

Die nachstehende Abbildung zeigt den Anschluss eines oder mehrerer XPSMC an ein Modbus-RTU-System:

Konfigurationsregeln

Vor der Verwendung in einem Bussystem muss jeder XPSMC einzeln adressiert und konfiguriert werden.

Wird der Controller innerhalb eines Modbus-Netzes unter starkem EMV-Einfluss verwendet, können die sich ergebenden Störungen zum Scheitern des Busverkehrs führen. Um eine Wiederholung zu vermeiden, empfehlen wir die Verwendung eines Klemm-Ferritfilters am Busanschluss.

Allgemeine Empfehlungen für die Verdrahtung des Modbus-Netzwerks:

- Verwenden Sie ein geschirmtes paarig verdrilltes Kabel.
- Verbinden Sie die beiden Bezugspotentiale (Erde) miteinander.
- Stellen Sie sicher, dass die maximale Kabellänge von 1000 m nicht überschritten wird
- Stellen Sie sicher, dass die maximale Stichleitungslänge von 20 m nicht überschritten wird.
- Zwischen Buskabel und Stromkabel sind mindestens 30 cm vorzusehen.
- Kreuzungen zwischen Buskabel und Stromkabeln sind im rechten Winkel (90°) auszuführen.
- Erden Sie die Kabelschirmung an jedem Gerät.
- Passen Sie die Leitung an beiden Enden mittels eines Leitungsabschlusses an.

HINWEIS

NETZWERKVERLUST

Stellen Sie sicher, dass die Geräte in einem Modbus-System über eindeutige Netzwerkadressen verfügen.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

Anzeigeelemente und Systemdiagnose

LED-Anzeigen

Anzeige XPSMC16

Die Anzeige des Betriebszustands des XPSMC16 erfolgt über 30 LEDs. Anzeige XPSMC32

Die Anzeige des Betriebszustands des XPSMC32 erfolgt über 46 LEDs.

Beschreibung der LEDs

LED	Farbe	Bedeutung
PWR	Grün	Spannungsversorgung (Power) Leuchtet bei anliegender Betriebsspannung an A1/A2.
CNF	Gelb	Konfiguration Leuchtet im Konfigurationsmodus. Blinkt, wenn der XPSMC nicht konfiguriert ist, z. B. bei der Erstinbetriebnahme. Vor dem Betrieb des XPSMC muss dieser konfiguriert werden.
E In	Rot	Interner Fehler (Internal Error) Leuchtet, wenn ein interner Fehler erkannt wurde. Die Sicherheitsausgänge werden sofort deaktiviert. Leuchtet die Anzeige nach dem Einschalten und der Rückstellung dauerhaft, wurde der XPSMC beschädigt und muss ersetzt werden.
E Ex	Rot	Externer Fehler (External Error) Leuchtet, wenn ein externer Fehler erkannt wurde, beispielsweise in der Verdrahtung. Es werden nur die Sicherheitsausgänge der betroffenen Eingänge deaktiviert. Nach Beseitigen des Fehlers und Betätigen des RESET-Tasters sind die zugeordneten Sicherheitsausgänge wieder betriebsbereit.

LED	Farbe	Bedeutung
RUN	Grün	Betrieb (Run) Leuchtet im RUN-Modus. Blinkt während des Übergangs vom RUN- in den STOP-Modus so lange wie die festgelegten Verzögerungszeiten laufen.
СОМ	Grün	Kommunikation (Communication) Leuchtet, wenn über die TERSchnittstelle mit dem Gerät kommuniziert wird.
0106	Grün	Ausgang 16 (Output 16) Leuchtet, wenn der entsprechende Halbleiter-Sicherheitsausgang aktiviert wird. Blinkt, wenn ein Kurzschluss, eine Störung oder ein externer Fehler an diesem Ausgang erkannt wird. Zudem leuchtet die LED E Ex auf. Eine Fehlermeldung kann entweder durch ein falsches Signal (z. B. Querschluss, Fremdspannung) verursacht werden oder dadurch, dass ein Ausgangstransistor nicht funktionsfähig ist. Klemmen Sie den Draht des betreffenden Ausgangs ab und betätigen Sie den RESET-Taster. Verschwindet die Fehlermeldung, wurde der Fehler in der Verdrahtung erkannt. Andernfalls ist ein Ausgangstransistor nicht funktionsfähig. Dieser Ausgang darf dann nicht mehr benutzt werden.
R1, R2	Grün	Relaisgruppe 1/2 (Relay group 1/2) Leuchtet, wenn die Relaisgruppe R1 (Relais-Sicherheitsausgänge 13/14 und 23/24) und/oder R2 (Relais-Sicherheitsausgänge 33/34 und 43/44) aktiviert ist/sind. Die LED(s) leuchten auf, wenn an diesem Ausgang ein Fehler erkannt wurde. Zudem leuchtet die LED E In auf. Dieser Ausgang darf dann nicht mehr benutzt werden.
116 132	Grün Grün	Eingang i1i16 (Input i1i16) Eingang i1i32 (Input i1i32) Leuchtet, wenn der entsprechende i1i16/i32-Eingangskreis geschlossen ist. Blinkt bei Erkennen eines Fehlers an diesem Eingang.

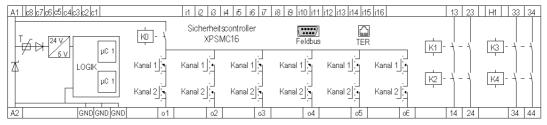
Anschlussschema

Einführung

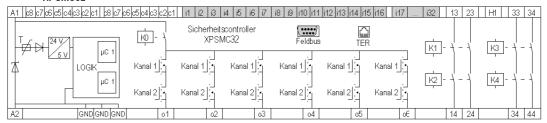
Die folgenden Informationen sollen Ihnen beim Anschließen und Verdrahten Ihres Sicherheitscontrollers XPSMC16 / XPSMC32 helfen.

Blockschaltbild für die Controller XPSMC

▲ GEFAHR


GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

- Trennen Sie alle Geräte, einschließlich der angeschlossenen Komponenten, vor der Entfernung von Abdeckungen oder Türen sowie vor der Installation oder Entfernung von Zubehörteilen, Hardware, Kabeln oder Drähten von der Spannungsversorgung, ausgenommen unter den im jeweiligen Hardware-Handbuch für dieses Geräte angegebenen Bedingungen.
- Verwenden Sie stets ein genormtes Spannungsprüfgerät, um festzustellen, ob die Spannungsversorgung wirklich abgeschaltet ist.
- Bringen Sie alle Abdeckungen, Zubehörteile, Hardware, Kabel und Drähte wieder an, sichern Sie sie und vergewissern Sie sich, dass eine ordnungsgemäße Erdung vorhanden ist, bevor Sie die Stromzufuhr zum Gerät einschalten.
- Betreiben Sie diese Geräte und jegliche zugehörigen Produkte nur mit der angegebenen Spannung.


Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schwerer Körperverletzung.

Das nachstehende Schaltbild zeigt den Anschluss für XPSMC16 / XPSMC32:

XPSMC16

XPSMC32

Klemmenbeschreibung:

Belegung	Bedeutung
A1-A2	Spannungsversorgung 24 V — - A1 fungiert als Pluspol (+24 V), A2 als Minuspol (0 V, GND).
GND	Die Erdung ist identisch mit dem 0-V-Potential von A2 für die Lasten an den Halbleiter-Sicherheitsausgängen o1o6.
c1-c8	Kontrollausgänge (für XPSMC32: es sind zwei Sätze von 8 Kontrollausgängen verfügbar)
i1-i16 oder i1-i32	Sicherheitseingänge
H1	Anschluss für eine Mutinglampe
01-06	Halbleiter-Sicherheitsausgänge
13/14, 23/24, 33/34, 43/44	Relais-Sicherheitsausgänge, potentialfrei
TER	8-poliger RJ45-Steckverbinder für Konfiguration und/oder Diagnose. Die Kommunikation über das TER-Terminal erfolgt mit dem Modbus RTU-Protokoll und kann auch für den Anschluss an ein HMI Magelis-Bedienterminal oder eine Standard-SPS verwendet werden.
Feldbus	Abhängig von der Version: Profibus DP: 9-polige Sub-D-Buchse. CANopen: 9-poliger Sub-D-Stecker.

Technische Kenndaten

A WARNUNG

UNBEABSICHTIGTER BETRIEBSZUSTAND DES GERÄTS

Überschreiten Sie keinen der in den folgenden Tabellen angegebenen Nennwerte.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Körperverletzungen oder Sachschäden zur Folge haben.

XPSMC•, Klemmen A1, A2, 13, 14, 23, 24, 33, 34, 43, 44

Einzelleiteranschlüsse

Anschlussquerschnitte Einzelleiteranschluss	XPSMCTS / XPSMCTC
Ohne Aderendhülsen	Starr 0,2 - 2,5 mm ² Flexibel 0,2 - 2,5 mm ² (24 - 12 AWG)
Verseilt mit Aderendhülsen (ohne Kunststoffhülsen)	0,25 - 2,5 mm ² (22 - 14 AWG)
Verseilt mit Aderendhülsen (mit Kunststoffhülsen)	0,25 - 2,5 mm ² (22 - 14 AWG)

Mehrleiteranschlüsse

Anschlussquerschnitte Mehrleiteranschluss (2 Leiter max. gleichen Querschnitts)	XPSMCTS	XPSMCTC
Ohne Aderendhülsen	Starr 0,2 - 1,5 mm ² (24 - 16 AWG) Verseilt 0,2 - 1,5 mm ² (24 - 16 AWG)	-
Verseilt mit Aderendhülsen (ohne Kunststoffhülsen)	0.20 - 1.5 mm ² (22 - 18 AWG)	-
Verseilt mit TWIN-Aderendhülsen (mit Kunststoffhülsen)	0,5 - 1,5 mm ² (20 - 16 AWG)	0,5 - 1 mm ² (20 - 18 AWG)

Sonstiges

Abisolierlänge	10 mm (0.39 in)	
Anzugsmoment	0,5 - 0,6 Nm (4.2 - 5.3 lb-in)	-

HINWEIS: AWG-Angaben gemäß EN / IEC 60947-1 / Tabelle 5

XPSMC•, andere Klemmen

Einzelleiteranschlüsse

Anschlussquerschnitte Einzelleiteranschluss	XPSMCTS• / XPSMCTC•
Ohne Aderendhülsen	Starr 0,14 - 1,5 mm ² Verseilt 0,14 - 1,5 mm ² (28 - 16 AWG)
Verseilt mit Aderendhülsen (ohne Kunststoffhülsen)	0,25 - 1,5 mm ² (22 - 16 AWG)
Verseilt mit Aderendhülsen (mit Kunststoffhülsen)	0,25 - 0,5 mm ² (22 - 20 AWG)

Mehrleiteranschlüsse

Anschlussquerschnitte Mehrleiteranschluss (2 Leiter max. gleichen Querschnitts)	XPSMCTS•	XPSMCTC•		
Ohne Aderendhülsen	Starr 0,14 - 0,5 mm ² (28 - 20 AWG) Verseilt 0,14 - 0,75 mm ² (28 - 18 AWG)	-		
Verseilt mit Aderendhülsen (ohne Kunststoffhülsen)	0,25 - 0,34 mm ² (22 AWG)	-		
Verseilt mit TWIN-Aderendhülsen (mit Kunststoffhülsen)	0.5 mm ² (20 AWG)	-		

Sonstiges

Abisolierlänge	9 mm (0.35 in)		
Anzugsmoment	0,5 - 0,6 Nm (1.9 - 2.2 lb-in)	-	

HINWEIS: AWG-Angaben gemäß EN / IEC 60947-1 / Tabelle 5

Mechanische Struktur

Gehäusebefestigung	Metalladapter zur Befestigung auf 35-mm-Normschiene (1.37 in.) nach EN / IEC 60715 und Schraubbefestigung Verwenden Sie eine DIN-Schiene mit einer Stärke von 1,5 mm (0.06 in.) für bis zu 2 g (0.07 oz) Vibrationsfestigkeit. Verwenden Sie den montierten Aufbau direkt auf einer Metallplatte für über 2 g (0.07 oz) Vibrationsfestigkeit.
Schutzart gemäß EN / IEC 60529, Anschlussklemmen Schutzart gemäß EN / IEC 60529, Gehäuse	IP 20 IP 20
Gewicht XPSMCT•16 Gewicht XPSMCT•32 Gewicht XPSMC16Z Gewicht XPSMC32Z Gewicht XPSMC16Z• Gewicht XPSMC32Z•	0,08 kg (0.18 lb) 0,11 kg (0.24 lb) 0,82 kg (1.81 lb) 0,84 kg (1.83 lb) 0,83 kg (1.85 lb) 0,85 kg (1.87 lb)
Einbaulage	Lüftungsschlitze nach oben und unten, siehe Kapitel <i>Montage, Seite 27</i> .
Umgebungstemperatur im Betrieb	-10 °C / +55 °C (+14 °F / +131 °F)
Lagertemperatur	-25 °C / +85 °C (-13 °F / +185 °F)
Schockfestigkeit	150 m/s ² Schockdauer 11 ms Schockform Halbsinus
Vibrationsfestigkeit	0,5 mm ² Von 10 bis 55 Hz

Spannungsversorgung

Überspannungskategorie III (4 kV) Verschmutzungsgrad 2 / Isolationsspannung 300 V gemäß EN / IEC 60664-1

Anschlussspannung UE gemäß IEC 60038	24V (± 20%) inkl. Welligkeit
Zeit zwischen Aus- und Einschalten	> 5 s
Kurzschlussschutz, max. Sicherungselement Typ gL	16 A
Leistungsaufnahme	<12 W
Max. Stromaufnahme inkl. Peripherie	8 A

Relais-Sicherheitsausgänge

Die nachstehende Tabelle enthält technische Daten zu den Sicherheits-Relaisausgängen:

Max. Strom pro Relaisausgang	6 A			
Relais-Sicherheitsausgänge, potenzialfrei	1314, 2324, 3334, 4344			
Max. Schaltleistung der potenzialfreien Relais- Sicherheitsausgänge	AC15 - C300 Ue = 230 VAC / Ie = 0,75 A DC13 Ue = 24 VDC / Ie = 1,5 A			
Summenstrombegrenzung bei gleichzeitiger Belastung mehrerer Relaisausgangskreise:	∑ lth ≤ 16 A Lastbeispiele:			
	K1/K2 K3/K4			
	6A 2A 6A 2A			
	4A 4A 4A			
Kurzschlussschutz, max. Sicherungselement für potentialfreie Sicherheitsausgangskreise	4 A (gL) oder 6 A flink			

Die nachstehende Tabelle enthält technische Daten zu den statischen Sicherheitsausgängen:

Halbleiter-Sicherheitsausgänge, Schließerfunktion (NO)	01, 02, 03, 04, 05, 06
Max. Strom der Halbleiter-Sicherheitsausgänge	2 A
Spannungsabfall der Halbleiter- Sicherheitsausgänge	0.25 V (typ.)
Mindestbetriebsstrom der Halbleiter- Sicherheitsausgänge	0.8 mA
Reststrom der Halbleiter-Sicherheitsausgänge	10μ <i>A</i>
Ein- und Ausschaltvermögen der Halbleiter- Sicherheitsausgänge	DC-13 SQ 24 V (SQ ist definiert in EN / IEC 60947-5-1, Tabelle A3)
Bedingter Kurzschlussstrom der Halbleiter- Sicherheitsausgänge	100 A

Summenstrombegrenzung bei gleichzeitiger Belastung mehrerer Halbleiter-Ausgänge:	Σ Ith \leq 6.5 A Beispiele:							
		o1	o2	03	о4	о5	о6	
				-/-	-/-	/	\	
		1,5A	1A	1A	1A	1A	1A	
		2A	2A	1A	0,5A	0,5A	0,5A	
Kurzschlussschutz, max. Sicherungselement für Halbleiter-Sicherheitsausgangskreise	nicht erforderlich, die Halbleiter- Ausgänge sind intern kurzschlussgeschützt							

Bei den Modellen XPSMC16Z, XPSMC16ZC, XPSMC16ZP, XPSMC32Z, XPSMC32ZC, XPSMC32ZP kann für die Ansprechzeiten zwischen 20 ms und 30 ms gewählt werden. Die Wahl der 30 ms-Ansprechzeit ermöglicht die Konfiguration weiterer Funktionen.

Ansprechzeit <= 20 ms

Ansprechzeit der Sicherheitsausgänge	<= 20 ms
Ansprechzeit der Schaltmatte	<= 30 ms
Inkremente der konfigurierbaren Zeiten	-10 ms, -15%

Ansprechzeit <= 30 ms

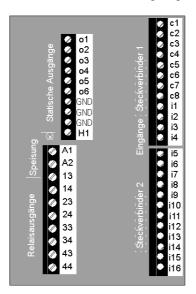
Ansprechzeit der Sicherheitsausgänge	<= 30 ms
Ansprechzeit der Schaltmatte	<= 45 ms
Inkremente der konfigurierbaren Zeiten	-15 ms, -15%

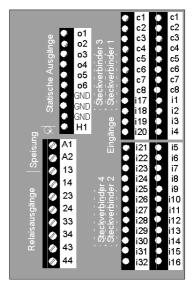
Die potentialfreien Sicherheitsausgänge sind ebenfalls zum Schalten von Kleinlasten (min. 17 V / 10 mA) geeignet. Dies ist jedoch nur dann möglich, wenn bislang über diesen Kontakt keine höheren Lasten geschaltet wurden, da hierdurch die Kontaktvergoldung abgebrannt sein könnte.

Eingangskreise

Anzahl Eingänge	16 oder 32
Maximale Kategorie / Maximale Leistungsstufe gemäß EN ISO / ISO 13849	4 / PL e
Maximale Sicherheitsstufe gemäß EN / IEC 62061	SILCL 3
Max. Spannung / Strom in den Eingangskreisen	28.8 V / 13 mA
Max. Leitungswiderstand in den Eingangskreisen	100 Ω
Max. Leitungskapazität in den Eingangskreisen	220 nF
Max. Leitungslänge in den Eingangskreisen	2000 m (6500 ft)

Sonstiges


Mutinglampe (weiße Leuchtquelle mit einer Helligkeit von mind. 200 cd/m² und einer leuchtenden Fläche von mind. 1 cm²)	Glühbirne (24 V / min. 0,5 W bis max. 7,0 W, zum Beispiel: Referenzen DL1-BEB) oder LED (24 V / min. 0,5 W bis max. 7,0 W, zum Beispiel: Referenzen DL1-BDB1
Magnetschalter	Typ XCS-DM•
Schaltmatte	Typ XY2-TP•
Zustimmschalter	Typ XY2AU•


Anschlüsse

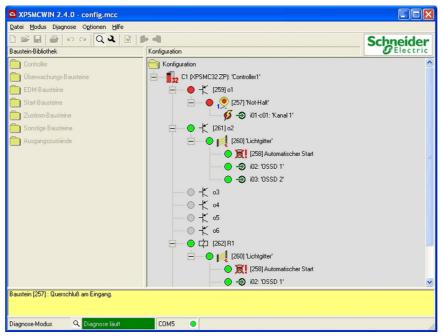
Schraubklemmen für XPSMC16•• (inkl. Codiervorrichtung)	XPSMCTS16
Schraubklemmen für XPSMC32•• (inkl. Codiervorrichtung)	XPSMCTS32
Federzugklemmen für XPSMC16•• (inkl. Codiervorrichtung)	XPSMCTC16
Federzugklemmen für XPSMC32•• (inkl. Codiervorrichtung)	XPSMCTC32

Klemmenleisten

Die nachstehende Abbildung zeigt die Klemmenbelegung für XPSMC16/32:

Die nachstehende Tabelle beschreibt die Belegung der verschiedenen Klemmen:

Belegung	Bedeutung
A1-A2	Spannungsversorgung 24V; A1 fungiert als Pluspol (+24 VDC), A2 als Minuspol (0 VDC, GND)
GND	Die Erdung ist identisch mit dem 0 VDC-Potenzial von A2 für die Lasten an den Halbleiter-Sicherheitsausgängen o1-o6.
01-06	Halbleiter-Sicherheitsausgänge
13-44	Potenzialfreie, kontaktbehaftete Sicherheitsausgänge
c1-c8	Kontrollausgänge zur Versorgung der Sicherheitseingänge Die Steuerausgänge geben ein Signal zur Erkennung von Kurzschlüssen und Spannungseinbrüchen für die angeschlossenen Steuerungskomponenten aus.
i1-i16 oder i1 bis i32	Sicherheitseingänge
H1	Anschluss für eine Mutinglampe Die Versorgungspannung muss aus derselben Quelle erfolgen, die auch den XPSMC speist.


Fehlercodes

Dialogfeld Fehlercodes

Das Diagnosefenster ist in der XPSMCWIN Software verfügbar. Die Fehlerbehebung einer Konfiguration wird mithilfe dieses Tools vereinfacht.

Die Diagnose wird vereinfacht durch Bereitstellung der Fehlerinformationen zusammen mit den Indexzahlen der Bausteine.

Die nachfolgende Abbildung zeigt ein Beispiel für den Diagnose-Anzeigemodus:

HINWEIS: Die Zahl/der Index des Bausteins in eckigen Klammern [] verweist auf die Bausteine in der Konfiguration. Die Indizes der Bausteine befinden sich in der Konfigurationsbaumstruktur selbst sowie im Konfigurationsprotokoll.

Fehlercodenummern und Diagnosehinweise des XPSMC:

Fehlercode	Diagnosehinweis	Status
1	Querschluss am Eingang	
2	Mögliches Hardwareproblem erkannt	
3	Mutingfehler erkannt	
4	Freifahrzeit überschritten	F. I.I.
5	Timeout-Fehler erkannt	Fehler
6	Nachlaufweg zu lang	
7	Kurzschluss	
8	Mutinglampe nicht funktionsfähig	
9	Nockenschaltwerk nicht funktionsfähig	
10	Pressensicherheitsventil nicht funktionsfähig	
11	Fremdspannung wird eingespeist	
12	Ausgang schaltet nicht EIN	
13	Mögliches Ketten-/Wellenbruchproblem erkannt	
16	Reset-Taster blockiert	
17	Zeitüberschreitung	
18	Schalter unvollständig geöffnet	
19	Anlaufsperre aktiv	Hinweise
20	Drahtbruch	
21	Verzögerungszeit läuft	
22	Verriegelung prüfen	
23	Ventil prüfen	
24	Unerwartetes Mutingsignal	
25	Sensor permanent aktiviert	
26	Neustartsperre aktiv	
27	Schalter unvollständig geschlossen	
28	Keine Modusauswahl	
29	Schutzmaßnahmen neu starten	
30	Befehl Öffnen und Schließen aktiv	
31	Not-Aus gedrückt	

HINWEIS: Die Diagnosehinweise werden in der XPSMCWIN-Diagnose dargestellt. Bei der Feldbus-Kommunikation werden nur die Fehlercodes übertragen, jedoch nicht die Hinweise.

4.2 Modbus RTU-Kommunikation

Allgemeines

Dieser Abschnitt beschreibt den Anschluss Ihrer XPSMC-Hardware an Modbus RTU. Er listet die für den Anschluss an HMI Magelis-Bedienterminals oder Premium-Steuerungen erforderlichen Kabel auf, liefert ein Konfigurationsbeispiel einer Premium-Steuerung sowie eine Liste mit den einschlägigen Funktionscodes.

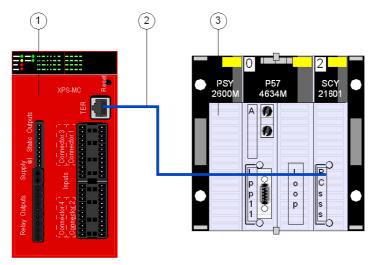
Inhalt dieses Abschnitts

Dieser Abschnitt enthält die folgenden Themen:

Thema	Seite
Kabel zum Anschluss der XPSMC-Hardware	66
Anschluss XPSMC an Premium SPS Modbus-Kommunikationskarten	68
Konfigurieren einer Premium SPS mit Unity für die Modbus RTU- Kommunikation	71
Importieren eines Abschnitts, der einen DFB enthält	76
Beobachten der Modbus-Kommunikationen	84
Funktionscodes und Parameter	87

Kabel zum Anschluss der XPSMC-Hardware

Einführung

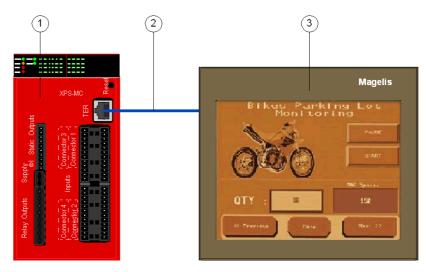

Die folgenden Informationen helfen bei der richtigen Wahl des Kabels für den Anschluss der XPSMC-Hardware für Modbus RTU an ein Magelis-Bedienterminal oder an eine Premium SPS.

Kabel

Anschluss eines Magelis-Bedienterminals	Kabel XBT-Z938 oder Adapter XPSMCCPC + Kabel XBT-Z968
Anschluss an eine Premium-Steuerung (Modbus RTU serielle Karte TSXSCY21601 oder TSXSCY11601)	XPSMCSCY-Kabel

Anschluss des XPSMC an eine Premium SPS

Die nachstehende Abbildung zeigt die Verbindung zwischen einem XPSMC••Z• und einer Premium-SPS:



- 1 XPSMC••Z•
- 2 XPSMCSCY-Kabel
- 3 Premium-SPS mit SCY21601, Modbus RTU serielle Schnittstelle

Die Konfiguration der Modbus RTU-Kommunikation ist bei allen Hardware-Referenzen identisch.

Anschluss des XPSMC an ein Magelis-Bedienterminal

Die nachstehende Abbildung zeigt den Anschluss zwischen einem XPSMC••Z• und einem Bedienterminal Magelis XBTG•:

- 1 XPSMC••Z•
- 2 XBT-Z938 Kabel oder XPSMCCPC + XBT-Z968 Kabel
- 3 Magelis-Bedienterminal XBTG•, XBTGT oder XBTGK

Die Konfiguration der Modbus RTU-Kommunikation ist bei allen Hardware-Referenzen identisch.

Anschluss XPSMC an Premium SPS Modbus-Kommunikationskarten

Typen der Premium SPS Modbus-Kommunikationskarten

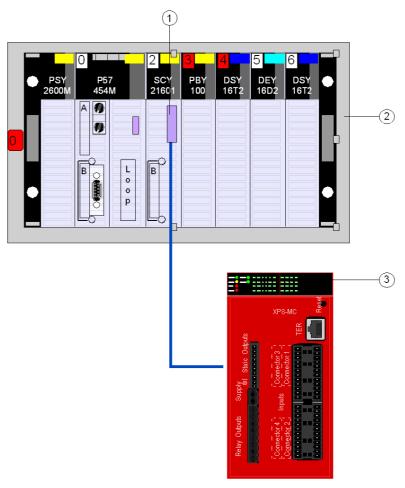
Folgende Karten sind für Premium SPS für Modbus RTU-Kommunikation verfügbar:

- TSX SCY 11601
- TSX SCY 21601

TSX SCY 11601

Das TSX SCY 11601-Kommunikationsmodul ermöglicht die Kommunikation über eine Modbus-Schnittstelle.

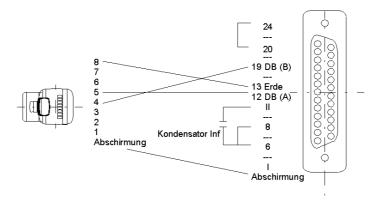
Es besteht aus einem Kommunikationskanal, Kanal 0, Mono-Protokoll, RS485 potentialgetrennte, asynchrone, serielle Schnittstelle zur Unterstützung des Modbus-Protokolls.


TSX SCY 21601

Das TSX SCY 21601-Modul hat zwei Kommunikationsports, PCMCIA und RS485:

RS485	PCMCIA
Eingebauter Multiprotokoll-Kanal (Kanal 0), RS485 potentialgetrennte, asynchrone, serielle Schnittstelle zur Unterstützung von Uni-Telway, Modbus oder Zeichenmodus- Protokollen.	PCMCIA-Hostkanal (Kanal 1) zur Unterstützung der folgenden Protokolle: Uni-Telway, Modbus und Zeichenmodus auf RS232-D Stromschleife oder RS485-Schnittstelle entsprechend den Karten TSX SCP 111, 112 und 114 Fipway-Zellennetzwerk entsprechend TSX FPP 20-Karte

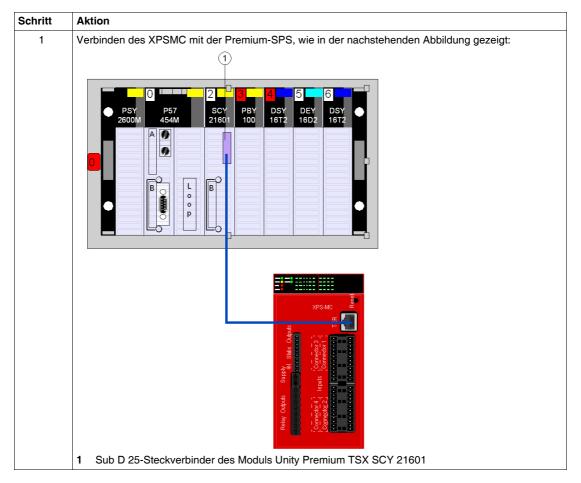
Anschlussschema TSX SCY 21601

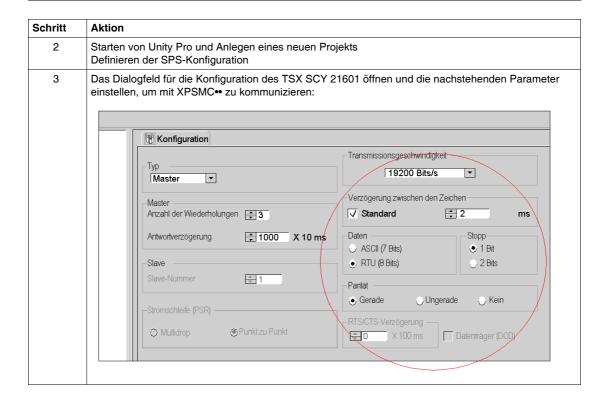

Die nachstehende Abbildung zeigt eine TSX SCY 21601-Konfiguration:

- 1 Sub-D 25-Stecker von Unity Premium SPS SCY 21601
- 2 Master
- 3 Slave

XPSMCSCY-Kabel

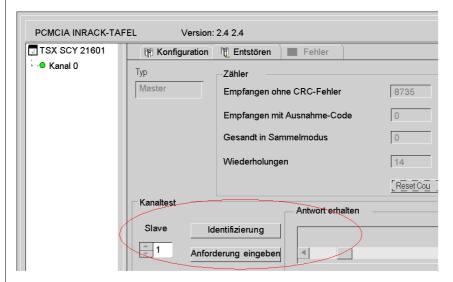
Die nachstehende Abbildung zeigt die Spezifikationen des Anschlusskabels XPSMCSCY:

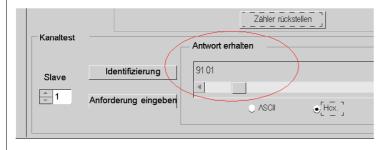

Konfigurieren einer Premium SPS mit Unity für die Modbus RTU-Kommunikation


Allgemeines

Dieses Beispiel zeigt eine Verbindung des Sicherheitscontrollers XPSMC über Modbus RTU mit dem Modbus Master (Premium TSX mit einem TSX SCY 21601 Modbus RTU-Schnittstelle von Schneider Electric). Modbus RTU ist über Unity Pro konfiguriert.

Konfigurieren einer Premium-Steuerung mit Unity


Die Vorgehensweise bei der Konfiguration einer Premium-SPS für die Modbus RTU-Kommunikation ist wie folgt:



Schritt Aktion

Um die Kommunikation zu testen, die Slave-Adresse Ihres XPSMC•• eingeben und auf die Schaltfläche Identifizierung klicken.

Ergebnis: Ist die Kommunikationskonfiguration korrekt und die Kommunikation OK, wird die Nummer - wie nachstehend dargestellt - im Feld **Antwort erhalten** angezeigt.

Eingänge und Ausgänge

Beschreibung der Eingänge und Ausgänge (für Adresse 1 => Slave 01)

Eingang / Ausgang	Name	Тур	Beschreibung	
Eingang	Adresse	ANY_ARRAY_INT	ADDR('m.n.p.x') ist die Hardware-Adresse der Modbus-Karte (erste drei Zahlen) m: Rack n: Modul p: Kanal x: Modbus Slave-Adresse	
Eingang / Ausgang	Management	ARRAY[13] OF INT	Management-Parameter des Modbus	
Ausgang	Ausgänge	ARRAY[18] OF BOOL	8 Ausgänge (6 Transistor- und 2 Relais- Ausgänge)	
Ausgang	Ausgang_Fehler	ARRAY[18] OF BOOL	Fehler-Bit für die 8 Ausgänge	
Ausgang	Eingänge	ARRAY[132] OF BOOL	32 Bits für Eingang (MC32), 16 Bits für Eingang (MC16)	
Ausgang	Eingang_Fehler	ARRAY[132] OF BOOL	Fehler-Bit für 16 / 32 Eingänge	
Ausgang	Mitteilungen	ARRAY[13] OF STRING	Text der Mitteilungen (max. 16 Zeichen)	
Ausgang	Gerät_Nummer	ARRAY[13] OF INT	Gerätenummer des Moduls für Mitteilungen (max. 3)	
Ausgang	Stopp	BOOL	XPSMC ist im STOPP	
Ausgang	Betrieb (Run)	BOOL	XPSMC ist im RUN-Modus	
Ausgang	Konfiguration	BOOL	XPSMC ist in Konfiguration	
Ausgang	Fehler_Intern	BOOL	XPSMC hat einen internen Fehler erkannt	
Ausgang	Fehler_Extern	BOOL	XPSMC hat einen externen Fehler erkannt	
Ausgang	Gerät	STRING	XPSMC16 oder XPSMC32	
Ausgang	Konf_OK	BOOL	Konfiguration ist OK	
Ausgang	Fehler_1001	ARRAY[116] OF BOOL	Fehlerwort 1001 (für interne Verwendung)	
Ausgang	Fehler_100E	ARRAY[116] OF BOOL	Fehlerwort 100E (für interne Verwendung)	
Ausgang	Modbus_Zähler	DINT	Modbus-Anfragezähler	
Ausgang	Modbus_Zähler_OK	DINT	Modbus-Anfrage OK Zähler	
Ausgang	Modbus_Zähler_Fehler	DINT	Modbus-Anfrage Fehler Zähler	
Ausgang	Modbus_Fehler_Art	INT	Art des erkannten Modbus-Fehlers	
Ausgang	Modbus_Zyklus	DINT	Modbus-Anfrage / Zykluszeit	
Ausgang	Modbus_Wörter	ARRAY[014] OF INT	Matrix aller Modbus-Wörter (0-14)	
Ausgang	Feldbus_Karte_Ok	BOOL	Feldbus-Karte (Profibus oder CANopen) OK Keine Prüfung der Kommunikation	

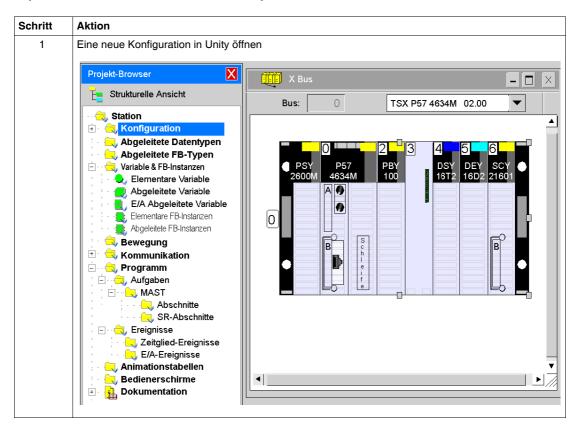
Eingänge und Ausgänge von DFB

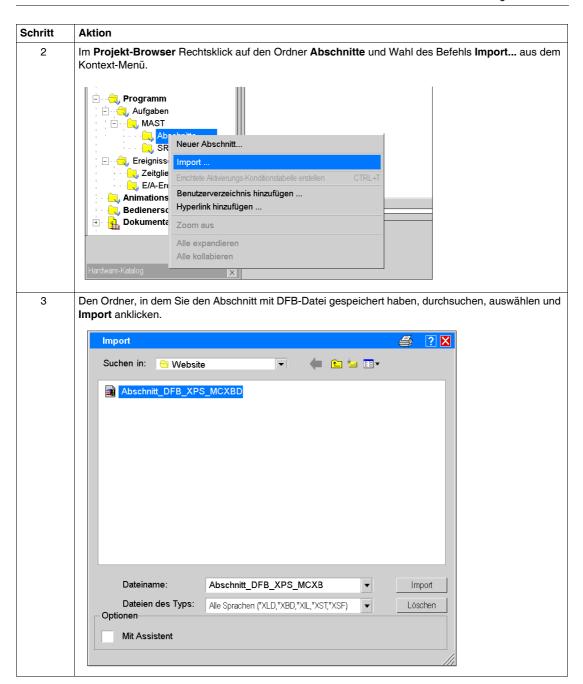
Wenn Sie den auf der Webseite www.schneider-electric.com abrufbaren DFB Section_DFB_XPS_MC.XBD einfügen, stehen die Eingangs- und Ausgangsvariablen bereits zur Verfügung.

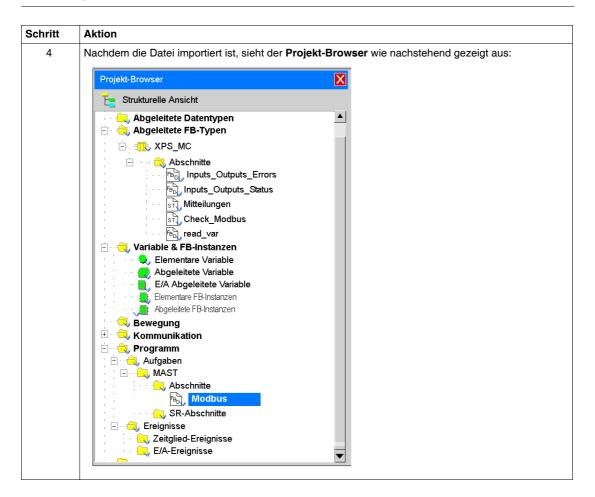
Einen zweiten DFB einsetzen

Vorgehensweise zum Einfügen eines zweiten DFBs:

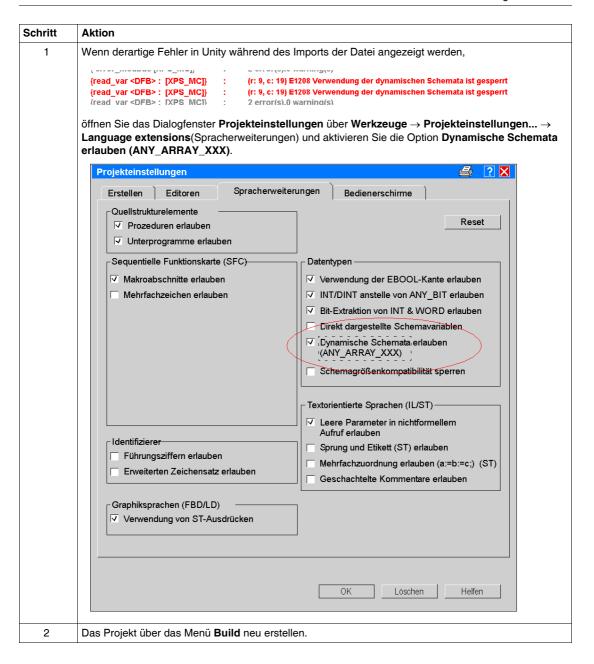
chritt	Aktion			
1	Wenn Sie einen zweiten DFB (XPS_MC-DFB) einfügen, ersetzen Sie wie im Beispiel im nächsten Schritt gezeigt, "Slave_01" durch die Modbus-Adresse de Slaves.			
2	Variablenl		Sie Slave_32 ein und erstelle ave-Adressen 1,2,3	en eine ne
	Name	e	Тур	▼
	11.0	Onf Ok Slave 01	BOOL	
		Onf Ok Slave 02	BOOL	
		Conf_Ok_Slave_03	BOOL	
	7	Oonfig_Slave_01	BOOL	
	3	Config_Slave_02	BOOL	
	(Config_Slave_03	BOOL	
	<u> </u>	Device_Number_Slave_01	ARRAY[13] OF INT	
	+ -	Device_Number_Slave_02	ARRAY[13] OF INT	
	+ -	Device_Number_Slave_03	ARRAY[13] OF INT	
		Device_Slave_01	STRING	
	7	Device_Slave_02	STRING	
	1 1	Device_Slave_03	STRING	
	9-14	Error_Extern_Slave_01	BOOL	
	(Error_Extern_Slave_02	BOOL	
	7	Error_Extern_Slave_03	BOOL	
		Error_Intern_Slave_01	BOOL	
		Error_Intern_Slave_02	BOOL	
	1 1 1	Error_Intern_Slave_03	BOOL	
	1 1 1	Error_Slave_01	BOOL	
	F (Error_Slave_02	BOOL	
	1 1 1 1 1	Error_Slave_03	BOOL	
	+ -	Index_Slave_01	ARRAY[13] OF INT	
	+ -	Index_Slave_02	ARRAY[13] OF INT	
	<u>+</u> ·	Index_Slave_03	ARRAY[13] OF INT	

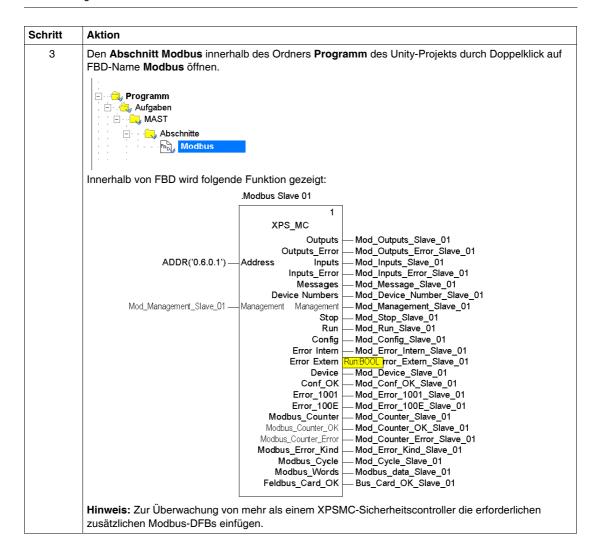

Importieren eines Abschnitts, der einen DFB enthält


Übersicht

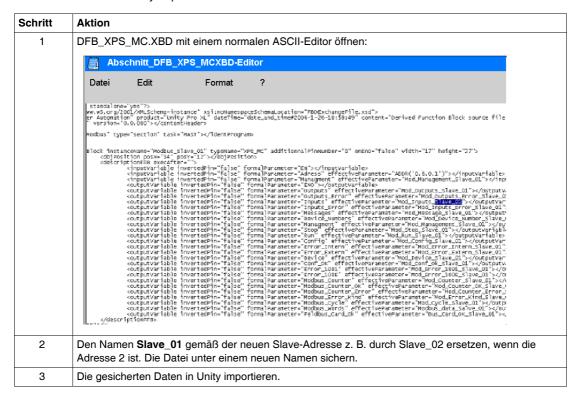

Wenn Sie einen Abschnitt mit DFB in Unity importieren, müssen Sie dessen Inhalt an Ihre Konfiguration anpassen. Sie können den Import und die Anpassung auf zwei verschiedene Weisen ausführen:

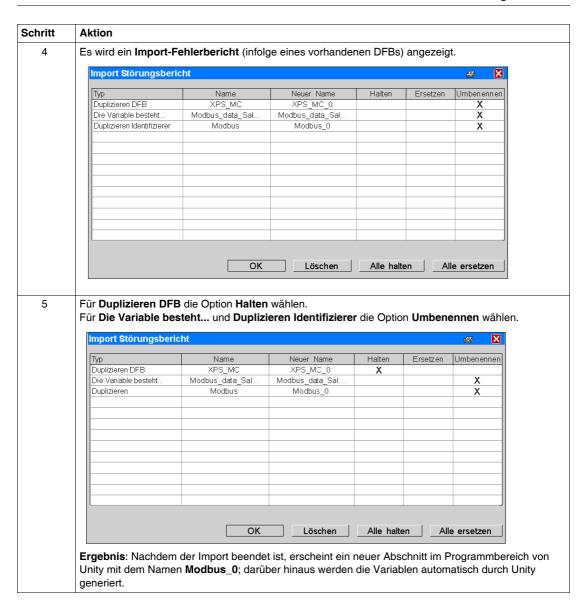
- Importieren und Anpassen des Abschnitts mit DFB-Datei in Unity
- Anpassen der Datei mit einem ASCII-Editor und Importieren in Unity.


Importieren des Abschnitts mit DFB in Unity



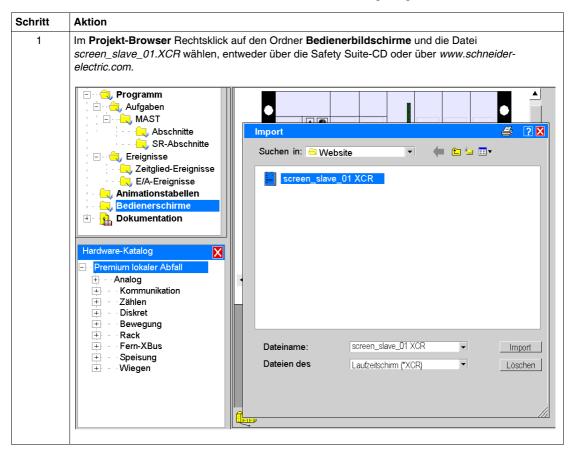
Fehler Importieren des Abschnitts mit DFB in Unity

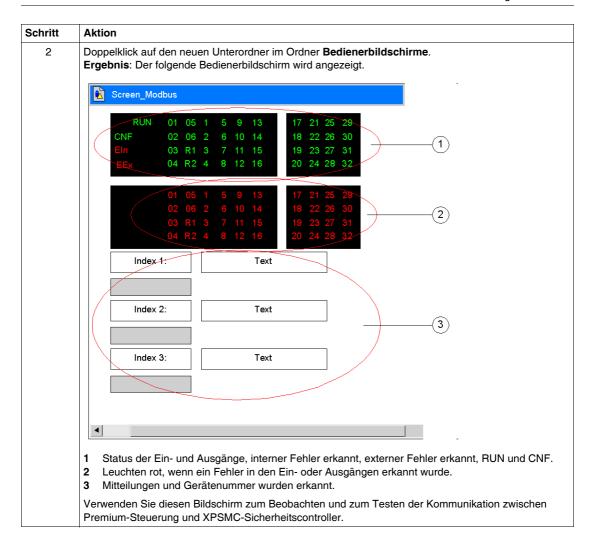

Einfügen zusätzlicher Modbus-DFBs


Für das Einfügen zusätzlicher Modbus-DFBs wie folgt vorgehen.

Anpassung der Datei mittels ASCII-Editor

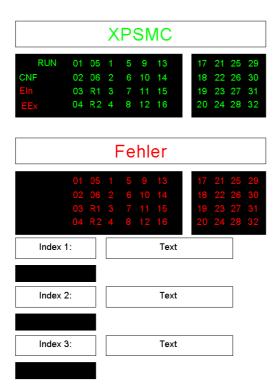
Da der Abschnitt mit den DFB-Dateien normalerweise aus XML-Dateien besteht, können Sie diese mit einem konventionellen ASCII-Editor editieren, bevor diese in Unity importiert werden.


Beobachten der Modbus-Kommunikationen


Bedienerbildschirm-Datei

Zur Beobachtung der Modbus-Kommunikationen ist die folgende Bedienerbildschirm-Datei entweder über die Safety Suite V2-CD oder über www.schneiderelectric.com zu verwenden.

Installation des Bedienerbildschirms


Zur Installation des Bedienerbildschirms wie folgt vorgehen.

Überwachung XPSMC•• Daten

Verwenden Sie den Bedienerbildschirm für die Überwachung der Daten aus XPSMC••.

Wenn Sie mehr als einen XPSMC-Sicherheitscontroller haben, ändern Sie die Namen unter Verwendung des ASCII-Editors durch Ersetzen von SLAVE_01 durch Ihre Erweiterung (siehe Abschnitt Anpassung der Datei mit einem ASCII-Editor (siehe Seite 82)).

Funktionscodes und Parameter

Funktionscodes

Der XPSMC-Controller unterstützt die Modbus RTU-Funktionen 01, 02 und 03 und ist ein Modbus RTU-Slave.

Einzelheiten zum Modbus-Protokoll sind den Anweisungsblättern des jeweiligen Modbus-Masters zu entnehmen.

Die Tabelle beschreibt die zu lesenden Daten, die jeweiligen Adressen und die Funktionscodes Modbus RTU.

Adressen (hex)	Adressen (dez.)	Datengröße	Unterstützte Modbus- Funktion	Bedeutung
0100-0127	256-295	40 Bit	01 (0x01) 02 (0x02)	8 Bit Ausgangszustand / 32 Bit Eingangszustand (0 = AUS, 1 = EIN)
0200-0227	512-551	40 Bit	01 (0x01) 02 (0x02)	32 Bit Eingangszustand / 8 Bit Ausgangszustand (0 = AUS, 1 = EIN)
1000-100D	4096-4109	14 Wörter	03 (0x03)	Informationen und Fehler Bedeutung, siehe nächste Tabelle
-	-	-	43 (0x2B) MEI Typ 14 (0x0E)	Auslesen der Geräteinformation

Die folgende Tabelle liefert zu lesende Daten für Einzelheiten zur Hardware und zum Konfigurationsstatus.

Die folgende Tabelle liefert Daten über physikalische Eingangs-/Ausgangskanäle, die gelesen werden können, um den Status zu betrachten.

Wort- Adressen (hex.)	Wort- Adressen (dez.)	Höherwertiges Byte	Niederwertiges Byte	Details
1002	4098	Zustand (Eingang 1-8)	Zustand (Eingang 9-16)	Bit: 1 = Entsprechender Ein-
1003	4099	Zustand (Eingang 17-24)	Zustand (Eingang 25-32)	Ausgang ein
1004	4100	Unbenutzt (0)	Zustand (Ausgang 1-8)	

Die nachstehende Tabelle liefert Daten über physische Eingangs-/Ausgangsfehlerzustände:

Wort- Adressen (hex.)	Wort- Adressen (dez.)	Höherwertiges Byte	Niederwertiges Byte	Details
1005	4101	Fehler Eingang (Eingang 1-8)	Fehler Eingang (Eingang 9-16)	Bit: 1 = Entsprechender Ein-
1006	4102	Fehler Eingang (Eingang 17-24)	Fehler Eingang (Eingang 25-32)	/Ausgang in Fehlerzustand
1007	4103	Unbenutzt (0)	Fehler Ausgang (Ausgang 1-8)	

33003277 01/2012

Die folgende Tabelle liefert Daten zu den Diagnosehinweisen (DH):

Wort- Adressen (hex.)	Wort- Adressen (dez.)	Höherwertiges Byte	Niederwertiges Byte	Details
1008	4104	(DH 1) Index höherwertig	(DH 1) Index niederwertig	Index Software- Vorrichtungsnummer
1009	4105	Unbenutzt (0)	(DH 1) Meldung	Meldung Diagnosehinweis (siehe Kapitel Fehlercodes,
100A	4106	(DH 2) Index höherwertig	(DH 2) Index niederwertig	Seite 63)
100B	4107	Unbenutzt (0)	(DH 2) Meldung	
100C	4108	(DH 3) Index höherwertig	(DH 3) Index niederwertig	
100D	4109	Unbenutzt (0)	(DH 3) Meldung	
100E	4110	Reserviert		

Modbus-Parameter

Die folgende Tabelle zeigt die möglichen Parameter zu XPSMC••Z• Modbus RTU.

Adresse	1 bis 247
Baudrate	 1200 Bit/s 2400 Bit/s 4800 Bit/s 9600 Bit/s 19200 Bit/s
Parität	GeradeUngeradeOhne
Festgelegte Parameter	 RTU Mode (Remote Terminal Unit Mode) 1 Startbit 8 Datenbits 1 Stoppbit bei Parität Gerade oder Ungerade 2 Stoppbits bei Parität Ohne

4.3 Beschreibung der Profibus DP-Parameter und - Einstellungen

Einführung

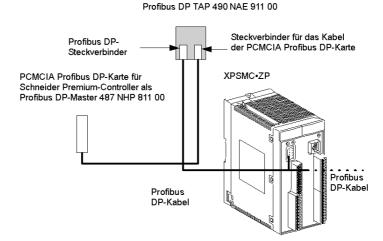
Dieses Kapitel enthält eine Übersicht über die Parameter und Einstellungen von Profibus DP.

Zur Konfigurierung von Profibus DP Master benötigen Sie ein Werkzeug für die Netzwerkkonfiguration wie Sycon 2.9 oder besser. Es können andere Werkzeuge zur Netzwerkkonfiguration von Profibus DP verwendet werden. Die GSD-Dateien für den Sicherheitscontroller sind entweder auf der Safety Suite-CD oder bei www.schneider-electric.com verfügbar. Zusätzliche Informationen erhalten Sie im Kapitel Anschluss des XPSMC mit Profibus und Sycon 2.9, Seite 157 in diesem Handbuch.

Inhalt dieses Abschnitts

Dieser Abschnitt enthält die folgenden Themen:

Thema	Seite
Profibus DP-Kommunikationsanschluss	
Profibus DP-LEDs	94
Datenaustausch	95

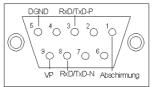

Profibus DP-Kommunikationsanschluss

Einführung

Die folgenden Informationen geben einen Überblick über den Profibus DP-Kommunikationsanschluss und enthalten ein Verdrahtungsbeispiel.

Verdrahtungsbeispiel

Die nachstehende Abbildung illustriert den Anschluss des XPSMC an ein Profibus DP-System



HINWEIS: Es wird empfohlen, die Abschirmung des Feldbuskabels in der Nähe des Produkts mit der Funktionserde zu verbinden.

Profibus DP Pinbelegung

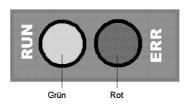
Die folgende Abbildung zeigt die Pinbelegung der Profibus DP-Steckverbindungen:

Profibus DP-Anschluss (Buchse)

(Details hierzu können Sie den nachstehenden Tabellen entnehmen.)

Die nachstehende Tabelle enthält die Profibus DP-Pinbelegung:

Pin-Nr.	Signal	Beschreibung	
1	Abschirmung	Abschirmung/Funktionserde	
2	-	Reserviert	
3	RxD/TxD-P	Empfangs-/Sendedaten plus (B-Draht)	
4	-	Reserviert	
5	DGND	Datenerde (Bezugspotenzial für VP)	
6	-	Reserviert	
7	-	Reserviert	
8	RxD/TxD-N	Empfangs-/Sendedaten minus (A-Draht)	
9	VP	Versorgungsspannung plus (+5 VDC)	


Profibus DP-LEDs

Einführung

Die folgenden Informationen erleichtern das Verständnis für den Status der Profibus DP-Kommunikation. Der Status wird durch LEDs angezeigt.

Profibus DP-LEDs

Die nachstehende Abbildung zeigt die LEDs am XPSMC:

Profibus DP-Status

Die nachstehende Tabelle zeigt die möglichen Zustände der Profibus DP-LEDs:

RUN LED	ERR LED	Beschreibung	
Ein	Ein	Profibus DP-Hardware OK.	
Ein	Aus	Zustand normal, Kommunikation OK	
Aus	Aus	Profibus DP-Hardware nicht OK.	
Aus	Ein	Keine Kommunikation möglich, da Konfiguration nicht vorhanden oder Hardware nicht funktionsfähig ist.	

Datenaustausch

Einführung

Die folgenden Informationen unterstützen Sie bei der Konfiguration des Profibus DP-Datenaustauschs.

Profibus DP - Austausch der Eingangszustände

Die nachstehende Tabelle beschreibt den Austausch der Eingangszustände für Hardware und Konfiguration per Profibus DP:

Profibus DP- Wort	Höherwertiges Byte	Niederwertiges Byte	Details
1	Modus	Status	Modusbit 0 Reset-Taster gedrückt 1 XPSMC betriebsfähig 4 1 = XPSMC16 0 = XPSMC32
			 1 = nach den Befehlen POWER UP oder START und bis zur Beendigung des Selbsttests Konfiguration gültig STOP-Befehl erhalten
			Statusbit 0 RUN 1 CONF 3 INT Error 4 EXT Error 5 STOP 6 STATUS_R_S
2	Reserviert	Reserviert	Reserviert

Die nachstehende Tabelle beschreibt den Austausch der Eingangszustände für die E/A-Daten per Profibus DP:

Profibus DP- Wort	Höherwertiges Byte	Niederwertiges Byte	Details
3	Zustand Eingang (Eingang 1-8)	Zustand Eingang (Eingang 9-16)	Bit: 1 = Entsprechender Ein-/Ausgang ein
4	Zustand Eingang (Eingang 17-24)	Zustand Eingang (Eingang 25-32)	
5	Unbenutzt (0)	Zustand Ausgang (Ausgang 1-8)	

Die nachstehende Tabelle beschreibt den Austausch der Eingangszustände für die erfassten E/A-Fehler per Profibus DP:

Profibus DP-	Höherwertiges	Niederwertiges	Details
Wort	Byte	Byte	
6	Fehler Eingang	Fehler Eingang	Bit:
	(Eingang 1-8)	(Eingang 9-16)	1 = Fehlererkennung am
7	Fehler Eingang (Eingang 17-24)	Fehler Eingang (Eingang 25-32)	entsprechenden Ein-/Ausgang
8	Unbenutzt (0)	Zustand Ausgang (Ausgang 1-8)	

Die nachstehende Tabelle beschreibt den Austausch der Eingangszustände für die Diagnosehinweise (DH) per Profibus DP:

Profibus DP-Wort	Höherwertiges Byte	Niederwertiges Byte	Details
9	(DH 1) Index höherwertig	(DH 1) Index niederwertig	Index: Software-
10	Unbenutzt (0)	(DH 1) Meldung	Vorrichtungsnummer Meldung:
11	(DH 2) Index höherwertig	(DH 2) Index niederwertig	Diagnosehinweis (siehe Kapitel <i>Fehlercodes,</i>
12	Unbenutzt (0)	(DH 2) Meldung	Seite 63)
13	(DH 3) Index höherwertig	(DH 3) Index niederwertig	
14	Unbenutzt (0)	(DH 3) Meldung	

Profibus DP-Parameter

Für den Datenaustausch zwischen dem XPSMC und dem Profibus DP-Anschluss wird eine Schnittstelle bereitgestellt. Die Profibus DP-Parameter werden weiter unten beschrieben. Die Profibus DP-Knotenadresse kann über die XPSMCWIN Konfigurationssoftware in einem Bereich von 1 - 125 festgelegt werden.

4.4 Beschreibung der CANopen-Parameter und - Einstellungen

Einführung

Dieses Kapitel enthält eine Übersicht über die Parameter und Einstellungen von CANopen.

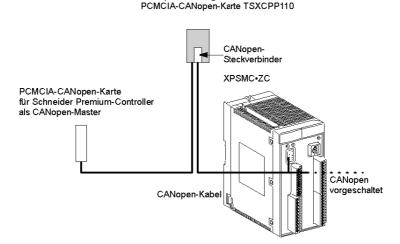
Für die Konfigurierung des CANopen Master benötigen Sie ein Werkzeug für die Netzwerkkonfiguration wie Sycon 2.9 oder besser. Es können andere Werkzeuge für die Netzwerkkonfiguration von CANopen verwendet werden. Die EDS-Dateien für den Sicherheitscontroller sind entweder auf der Safety Suite-CD oder bei www.schneider-electric.com verfügbar. Weitere Informationen finden Sie unter Anschluss des XPSMC mit CANopen und Sycon 2.9, Seite 146 in diesem Handbuch.

Inhalt dieses Abschnitts

Dieser Abschnitt enthält die folgenden Themen:

Thema	Seite
CANopen-Kommunikationsanschluss	99
CANopen-LEDs	101
CANopen-Netzwerklänge und Stichleitungslänge	102
CANopen-Datenaustausch	104

CANopen-Kommunikationsanschluss

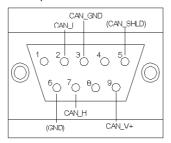

Einführung

Die folgenden Informationen geben einen Überblick über den CANopen-Kommunikationsanschluss und enthalten ein Verdrahtungsbeispiel.

CANopen-Abzweig mit Kabel und

Verdrahtungsbeispiel

Die nachstehende Abbildung illustriert den Anschluss des XPSMC an ein CANopen-System:



HINWEIS: Es wird empfohlen, die Abschirmung des Feldbuskabels in der Nähe des Produkts mit der Funktionserde zu verbinden.

CANopen-Pinbelegung

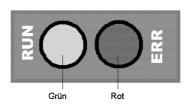
Die folgende Abbildung zeigt die Pinbelegung der CANopen-Steckverbindungen:

CANopen-Anschlussstecker

(Details hierzu können Sie den nachstehenden Tabellen entnehmen.)

Die nachstehende Tabelle enthält die CANopen-Pinbelegung:

Pin-Nr.	Signal	Beschreibung
1	-	Reserviert
2	CAN_L	CAN_L-Busleitung (signifikant niederwertig)
3	CAN_GND	CAN-Erde
4	-	Reserviert
5	(CAN-SHLD)	Optionale CAN-Abschirmung
6	(GND)	Optionale CAN-Erde
7	CAN_H	CAN_H-Busleitung (signifikant höherwertig)
8	-	Reserviert (Fehlerleitung)
9	(CAN_V+)	Optionale externe, positive CAN- Versorgung


CANopen-LEDs

Einführung

Die folgenden Informationen erleichtern das Verständnis für den Status der CANopen-Kommunikation. Der Status wird durch LEDs angezeigt.

CANopen-LEDs

Die nachstehende Abbildung zeigt die LEDs am XPSMC:

CANopen-Status

Die nachstehende Tabelle zeigt die möglichen Zustände der CANopen-LEDs:

RUN LED	ERR LED	Beschreibung
Ein	Aus	CANopen-Hardware OK. Zustand normal, Kommunikation möglich.
Aus	Aus	CANopen-Hardware nicht OK.
•	nken, sodann Fehler- blinkend, wiederholt	Konfiguriert und auf Kommunikation wartend.
Aus	Ein	Keine Kommunikation möglich.
Aus	Einfaches Blinken (kurzes Blinken, gefolgt von einer langen Pause)	Mindestens einer der Fehlerzähler der CANopen- Controller hat den Warngrenzwert erreicht bzw. überschritten (Erkennung zu vieler Fehler).
Aus	Doppeltes Blinken (zweifaches kurzes Blinken, gefolgt von einer Pause)	Ein Guarding- oder Heartbeat-Ereignis ist aufgetreten.

33003277 01/2012

CANopen-Netzwerklänge und Stichleitungslänge

Netzwerklänge und Bitrate

Die Länge wird durch die Bitrate infolge des Prozesses zur Bitarbitrierung beschränkt.

Bitrate	Max. Länge
1 MBit/s	20 m/65 ft
800 kBit/s	40 m/131 ft
500 kBit/s	100 m/328 ft
250 kBit/s	250 m/820 ft
125 kBit/s	500 m/1640 ft
50 kBit/s	1000 m/3280 ft
20 kBit/s	2500 m/8202 ft
10 kBit/s	5000 m/16404 ft

In CANopen-Dokumentationen ist häufig eine maximale Länge von 40 m/131 ft bei 1 Mbit/s angegeben.

Diese Länge wird ohne galvanische Trennung berechnet, wie sie in den CANopen-Geräten von Schneider Electric verwendet wird.

Mit der galvanischen Trennung beträgt die errechnete minimale Netzwerklänge 4 m/13 ft bei 1 Mbit/s.

Die Erfahrung hat jedoch gezeigt, dass die praktikable Länge bei 20 m/65 ft liegt. Diese Länge könnte durch Stichleitungen oder andere Einflüsse verkürzt werden.

Längenbeschränkungen im Zusammenhang mit Stichleitungen

Längenbeschränkungen im Zusammenhang mit Stichleitungen müssen berücksichtigt werden. Nachfolgend sind die entsprechenden Parameter aufgeführt:

Bitrate (kbits/s)	L _{max} [m/ft] ⁽¹⁾	ΣL _{max} [m/ft] Stern lokal ⁽²⁾	Intervall min [m/ft] $0.6 \times \Sigma L_{Lokal}$ (3)	ΣL _{max} [m/ft] Am gesamten Bus ⁽⁴⁾
1000	0,3 m/0.9 ft	0,6 m/1.9 ft	-	1,5 m/4.9 ft
800	3 m/9.8 ft	6 m/19.7 ft	3,6 m/11.8 ft	15 m/49 ft
500	5 m/16.5 ft	10 m/32 ft	6 m/19.7 ft	30 m/98 ft
250	5 m/16.5 ft	10 m/32 ft	6 m/19.7 ft	60 m/196.8 ft

Bitrate (kbits/s)	L _{max} [m/ft] ⁽¹⁾	ΣL _{max} [m/ft] Stern lokal ⁽²⁾	Intervall min [m/ft] 0.6 x Σ L Lokal (3)	ΣL _{max} [m/ft] Am gesamten Bus ⁽⁴⁾
125	5 m/16.5 ft	10 m/32 ft	6 m/19.7 ft	120 m/393 ft
50	60 m/196.8 ft	120 m/393 ft	72 m/236 ft	300 m/984 ft
20	150 m/492 ft	300 m/984 ft	180 m/590,5 ft	750 m/2460.5 ft
10	300 m/984 ft	600 m/1968 ft	360 m/1181 ft	1500 m/4921 ft

- (1) L_{max}: Maximale Länge für 1 Stichleitung
- (2) ΣL_{max} Stern lokal: Maximale kumulierte Länge von Stichleitungen am selben Punkt bei Verwendung eines Abgriffs mit mehreren Anschlüssen zur Bildung einer lokalen Sternkonfiguration.
- (3) Intervall min: Mindestabstand zwischen 2 Abgriffen.
 Wert für eine maximale Abzweiglänge an demselben Punkt. Die Berechnung kann separat für jeden Abzweig erfolgen. Intervall min zwischen 2 Abzweigen beträgt 60 % der kumulierten Länge von Abzweigen an demselben Punkt.
- (4) ΣL_{max} Am gesamten Bus: Maximale kumulierte Länge von Stichleitungen am Bus.

Einsatz von Verstärkern

Bei einem Betrieb von mehr als 64 Geräten sollte ein Verstärker verwendet werden.

Verstärker fügen eine Laufzeitverzögerung im Bus hinzu, wodurch sich die maximale Netzwerklänge des Busses verringert.

Eine Laufzeitverzögerung von 5 ns entspricht einer Reduzierung der Länge um 1 m/3.2 ft.

Ein Verstärker mit beispielsweise 150 ns Verzögerung vermindert daher die Buslänge um 30 m/98 ft.

CANopen-Datenaustausch

Einführung

Die folgenden Informationen unterstützen Sie bei der Konfiguration Ihres CANopen-Datenaustauschs.

CANopen-Parameter

Für den Datenaustausch zwischen dem XPSMC und dem CANopen-Anschluss wird eine Schnittstelle bereitgestellt. Nachfolgend werden die CANopen-Parameter beschrieben.

Die CANopen-Parameter können mit Hilfe der Software XPSMCWIN eingestellt werden.

Die CANopen-Parameter lauten wie folgt:

- 1. Bitrate.
 - 20 kBit/s
 - 50 kBit/s
 - 125 kBit/s
 - 250 kBit/s
 - 500 kBit/s
 - 800 kBit/s
 - 1 MBit/s
- 2. Knotenadresse
 - 1 127

Die Standard-Bitrate beträgt 250 kBit/s.

Diese Parameter können mit Hilfe der Software XPSMCWIN angepasst werden. Die .eds-Datei enthält eine Beschreibung des Objektverzeichnisses.

Die PDOs werden statisch zugeordnet. Für die Parameter des XPSMC werden vier PDOs verwendet.

Frühere Firmwareversionen als 2.40: PDOs 5 bis 8 werden verwendet.

Firmwareversion 2.40 und höher: Je nach Einstellung in der Software XPSMCWIN werden PDOs 1 bis 4 oder PDOs 5 bis 8 verwendet.

Die nachstehende Tabelle enthält die PDO-Zuordnung:

PDO*	Byte	Objektindex, Teilindex	Details
PDO 1 oder PDO 5	1.Byte	2000	Status
PDO 1 oder PDO 5	2.Byte	2001	Modus
PDO 1 oder PDO 5	3.Byte	2002	Reserviert
* ie nach Firmwareversion und Software-Konfiguration			

PDO*	Byte	Objektindex, Teilindex	Details
PDO 1 oder PDO 5	4.Byte	2003	Reserviert
PDO 1 oder PDO 5	5.Byte	2004	Zustand Eingang 9-16
PDO 1 oder PDO 5	6.Byte	2005	Zustand Eingang 1-8
PDO 1 oder PDO 5	7.Byte	2006	Zustand Eingang 25-32
PDO 1 oder PDO 5	8.Byte	2007	Zustand Eingang 17-24
PDO 2 oder PDO 6	1.Byte	2008	Zustand Ausgang 1-8
PDO 2 oder PDO 6	2.Byte	2009	Unbenutzt
PDO 2 oder PDO 6	3.Byte	200A	Fehler Eingang 9-16
PDO 2 oder PDO 6	4.Byte	200B	Fehler Eingang 1-8
PDO 2 oder PDO 6	5.Byte	200C	Fehler Eingang 25-32
PDO 2 oder PDO 6	6.Byte	200D	Fehler Eingang 17-24
PDO 2 oder PDO 6	7.Byte	200E	Fehler Ausgang 1-8
PDO 2 oder PDO 6	8.Byte	200F	Unbenutzt
PDO 3 oder PDO 7	1.Byte	2010	Diagnosedaten Index 1 niederwertig
PDO 3 oder PDO 7	2.Byte	2011	Diagnosedaten Index 1 höherwertig
PDO 3 oder PDO 7	3.Byte	2012	Diagnosedaten Meldung 1
PDO 3 oder PDO 7	4.Byte	2013	Unbenutzt
PDO 3 oder PDO 7	5.Byte	2014	Diagnosedaten Index 2 niederwertig
PDO 3 oder PDO 7	6.Byte	2015	Diagnosedaten Index 2 höherwertig
PDO 3 oder PDO 7	7.Byte	2016	Diagnosedaten Meldung 2
PDO 3 oder PDO 7	8.Byte	2017	Unbenutzt
PDO 4 oder PDO 8	1.Byte	2018	Diagnosedaten Index 3 niederwertig
PDO 4 oder PDO 8	2.Byte	2019	Diagnosedaten Index 3 höherwertig
PDO 4 oder PDO 8	3.Byte	201A	Diagnosedaten Meldung 3
PDO 4 oder PDO 8 4.Byte 201B Unbenutzt			Unbenutzt
* je nach Firmwareversion und Software-Konfiguration			

HINWEIS: Ausführliche Angaben zur Diagnose finden Sie unter *Dialogfeld Fehlercodes, Seite 63* (Tabelle mit Fehlermeldungen und Diagnosehinweisen).

Objektverzeichnis des Sicherheitscontrollers XPSMC ZC

Die Tabellenspalte **Objekttyp** enthält den Objektnamen in Übereinstimmung mit der nachstehenden Tabelle und verweist auf die Art des für diesen Index im Objektverzeichnis verwendeten Objekts.

Die nachstehende Tabelle enthält die im Objektverzeichnis verwendeten Definitionen:

Objektcode	Bedeutung
VAR	Einzelwert, z. B. unsigned8, boolescher Wert, Gleitkommawert, Ganzzahl16, sichtbare Zeichenkette usw.
ARR (ARRAY)	Mehrfaches Datenfeldobjekt, bei dem jedes Datenfeld einer einfachen Variablen desselben Basisdatentyps entspricht, z. B. Längenbereich von UNSIGNED16 usw. Teilindex 0 gehört zu unsigned8 und ist somit nicht Bestandteil der ARRAY-Daten. Teilindex 0 legt die Nummern der Elemente in ARRAY fest.
REC (RECORD)	Mehrfaches Datenfeldobjekt, bei dem die Datenfelder eine beliebige Kombination aus einfachen Variablen sein können. Teilindex 0 gehört zu unsigned8 und ist somit nicht Bestandteil der RECORD-Daten. Teilindex 0 legt die Nummern der Elemente in RECORD fest.

Der Datentyp legt die Beziehung zwischen den Werten und der Codierung für Daten dieses Typs fest. Den Datentypen werden in den zugehörigen Typdefinitionen Namen zugeordnet.

Die nachstehende Tabelle beschreibt die verschiedenen Datentypen:

Akronym	Datentyp	Wertebereich	Datenlänge
BOOL	Boolescher Wert	0 = Falsch, 1 = Wahr	1 Byte
INT8	Ganzzahl 8 Bit	-128 +127	1 Byte
INT16	Ganzzahl 16 Bit	-32768 +32767	2 Byte
INT32	Ganzzahl 32 Bit	-2147483648 +2147483647	4 Byte
UINT8	Ganzzahl ohne Vorzeichen 8 Bit	0 255	1 Byte
UINT16	Ganzzahl ohne Vorzeichen 16 Bit	0 65535	2 Byte
UINT32	Ganzzahl ohne Vorzeichen 32 Bit	0 4294967295	4 Byte
STRING8	Sichtbare Zeichenkette 8 Byte	ASCII-Zeichen	8 Byte
STRING16	Sichtbare Zeichenkette 16 Byte	ASCII-Zeichen	16 Byte

Die nachstehende Tabelle enthält eine Übersicht über die Einträge im Objektverzeichnis, die über das Kommunikationsprofil des Sicherheitscontrollers XPSMC•ZC definiert werden. Es handelt sich um einen dynamischen Auszug aus dem Objektverzeichnis. Einige Standardwerte, z. B. die Softwareversion, können können von denen im tatsächlichen Objektverzeichnis des XPSMC abweichen.

Index, Teilindex	Name	Datentyp	Objekt- typ	Zugriffs- typ	Standard- wert	Beschreibung
1000	Gerätetyp	UINT32	VAR	ro	0x00010191	Gerätetyp und -profil
1001	Fehlerregister	UINT8	VAR	ro	0x0000	Fehlerregister
1003	Vordefiniertes Fehlerfeld	UINT32	ARR	-	-	Fehlerhistorie
1003, 0	Fehleranzahl	UINT8	VAR	rw	0x0	Anzahl der erkannten Fehler
1003, 1	Standard-Fehlerfeld 1	UINT32	VAR	ro	0x0	Fehleranzahl erkannter Fehler 1
1003, 2	Standard-Fehlerfeld 2	UINT32	VAR	ro	0x0	Fehleranzahl erkannter Fehler 2
1003, 3	Standard-Fehlerfeld 3	UINT32	VAR	ro	0x0	Fehleranzahl erkannter Fehler 3
1003, 4	Standard-Fehlerfeld 4	UINT32	VAR	ro	0x0	Fehleranzahl erkannter Fehler 4
1003, 5	Standard-Fehlerfeld 5	UINT32	VAR	ro	0x0	Fehleranzahl erkannter Fehler 5
1005	COB-ID SYNC-Meldung	UINT32	VAR	rw	0x80	Kennung des SYNC-Objekts
1008	Herstellerspez. Gerätena- me	STRING16	VAR	ro	XPSMCxxZC	Gerätename
1009	Herstellerspez. Hardware- version	STRING16	VAR	ro	2.10	Hardwareversion
100A	Herstellerspez. Software- version	STRING16	VAR	ro	1.08	Softwareversion
100C	Guarding-Dauer	UINT16	VAR	rw	0x0	Dauer des Knoten-Guar- ding (ms)
100D	Lebensdauerfaktor	UINT16	VAR	rw	0x00	Faktor des Knoten-Guar- ding-Protokolls
1014	COB-ID EMCY-Meldung	UINT32	VAR	rw	0x80 + Knoten-ID	Kennung des EMCY-Objekts
1016	Consumer-Heartbeat-Dau- er	UINT32	ARR	-	-	Consumer-Heartbeat- Objekt
1016, 0	Anzahl Eingänge	UINT8	VAR	ro	0x1	Anzahl zu kontrollieren- der Knoten

Index, Teilindex	Name	Datentyp	Objekt- typ	Zugriffs- typ	Standard- wert	Beschreibung
1016, 1	Consumer-Heartbeat-Dau- er des Knotens	UINT32	VAR	rw	0x0	Dauer und Knoten-ID des kontrollierten Knotens
1017	Produktions-Heartbeat- Dauer	UINT16	VAR	rw	0x0	Dauer des Heartbeat-Objekts
1018	ID-Objekt	Identität	REC	-	-	ID-Objekt
1018, 0	Anzahl Eingänge	UINT8	VAR	ro	4	Anzahl Objekte
1018, 1	Anbieter-ID	UINT32	VAR	ro	0x0700005A	Anbieter-ID
1018, 2	Produktcode	UINT32	VAR	ro	0x90102	Produktcode
1018, 3	Revisionsnummer	UINT32	VAR	ro	0x00010008	Revisionsnummer
1018, 4	Seriennummer	UINT32	VAR	ro	0x2800564	Seriennummer
1029	Fehlerverhalten	UINT8	ARR	-	-	Verhalten im Falle eines erkannten Kommunikationsfehlers
1029, 0	Anzahl Eingänge	UINT8	VAR	ro	0x1	Anzahl Eingänge
1029, 1	Kommunikationsfehler	UINT8	VAR	rw	0x0	Verhalten im Falle eines erkannten Kommunikationsfehlers
1200	Serverspez. SDO-Parameter	SDO- Parameter	REC	-	0x0	Serverspez. SDO-Ein- stellungen
1200, 0	Anzahl Eingänge	UINT8	VAR	ro	0x2	Anzahl Attribute
1200, 1	COB-ID rx	UINT32	VAR	ro	0x600 + Knoten-ID	Kennung Client → Server
1200, 2	COB-ID tx	UINT32	VAR	ro	0x580 + Knoten-ID	Kennung Client → Client
1201	Serverspez. SDO-Parameter	SDO- Parameter	REC	-	0x0	Serverspez. SDO-Ein- stellungen
1201, 0	Anzahl Eingänge	UINT8	VAR	ro	0x3	Anzahl Attribute
1201, 1	COB-ID rx	UINT32	VAR	ro	-	$Kennung\;Client\toServer$
1201, 2	COB-ID tx	UINT32	VAR	ro	-	Kennung Server → Client
1201, 3	Knotenadresse des SDO- Client	UINT8	VAR	rw	-	Knotenadresse des SDO-Client
1804	TxPDO5-Kommunikations-parameter	PDO CommPar	REC	-	-	Erste Sende-PDO-Ein- stellungen
1804, 0	Anzahl Eingänge	UINT8	VAR	ro	0x3	Anzahl Einstellungen
1804, 1	COB-ID	UINT32	VAR	rw	0x80000680	Kennung des PDO
1804, 2	Übertragungsmodus	UINT8	VAR	rw	0xFF	Übertragungstyp

Index, Teilindex	Name	Datentyp	Objekt- typ	Zugriffs- typ	Standard- wert	Beschreibung
1804, 3	Verzögerungszeit	UINT16	VAR	rw	0x0	Minimales Zeitintervall zwischen zwei PDOs (100 s)
1804, 5	Ereignis-Zeitglied	UINT16	VAR	rw	0x0	Dauer der Ereignis-Freigabe (ms)
1805	TxPDO6-Kommunikations-parameter	PDO CommPar	REC	-	-	Zweite Sende-PDO-Ein- stellungen
1805, 0	Anzahl Eingänge	UINT8	VAR	ro	0x3	Anzahl Einstellungen
1805, 1	COB-ID	UINT32	VAR	rw	0x80000681	Kennung des PDO
1805, 2	Übertragungsmodus	UINT8	VAR	rw	0xFF	Übertragungstyp
1805, 3	Verzögerungszeit	UINT16	VAR	rw	0x0	Minimales Zeitintervall zwischen zwei PDOs (100 µs)
1805, 5	Ereignis-Zeitglied	UINT16	VAR	rw	0x0	Dauer der Ereignis-Freigabe (ms)
1806	TxPDO7-Kommunikations-parameter	PDO CommPar	REC	-	-	Dritter Sendeparameter
1806, 0	Anzahl Eingänge	UINT8	VAR	ro	0x3	Anzahl Einstellungen
1806, 1	COB-ID	UINT32	VAR	rw	0x80000682	Kennung des PDO
1806, 2	Übertragungsmodus	UINT8	VAR	rw	0xFF	Übertragungstyp
1806, 3	Verzögerungszeit	UINT16	VAR	rw	0x0	Minimales Zeitintervall zwischen zwei PDOs (100 μs)
1806, 5	Ereignis-Zeitglied	UINT16	VAR	rw	0x0	Dauer der Ereignis-Freigabe (ms)
1807	TxPDO8-Kommunikations-parameter	PDO	REC	-	-	Vierte Sende-PDO-Ein- stellungen
1807, 0	Anzahl Eingänge	UINT8	VAR	ro	0x3	Anzahl Einstellungen
1807, 1	COB-ID	UINT32	VAR	rw	0x80000683	Kennung des PDO
1807, 2	Übertragungsmodus	UINT8	VAR	rw	0xFF	Übertragungstyp
1807, 3	Verzögerungszeit	UINT16	VAR	rw	0x0	Minimales Zeitintervall zwischen zwei PDOs (100 µs)
1807, 5	Ereignis-Zeitglied	UINT16	VAR	rw	0x0	Dauer der Ereignis-Freigabe (ms)
1A04	TxPDO5-Zuordnungspara- meter	PDO- Zuordnung	REC	-	-	PDO-Zuordnung für TxPDO5

33003277 01/2012 109

Index, Teilindex	Name	Datentyp	Objekt- typ	Zugriffs- typ	Standard- wert	Beschreibung
1A04, 0	Anzahl zugeordneter Objekte	UINT8	VAR	ro	0x8	Anzahl zugeordneter Objekte
1A04, 1	Zuordnung Modusbyte	UINT32	VAR	ro	0x20000008	Erstes zugeordnetes Objekt
1A04, 2	Zuordnung Statusbyte	UINT32	VAR	ro	0x20010008	Zweites zugeordnetes Objekt
1A04, 3	Reserviert	UINT32	VAR	ro	0x20020008	Drittes zugeordnetes Objekt
1A04, 4	Reserviert	UINT32	VAR	ro	0x20030008	Viertes zugeordnetes Objekt
1A04, 5	Zuordnung Eingangszu- stand Eingänge 1-8	UINT32	VAR	ro	0x20040008	Fünftes zugeordnetes Objekt
1A04, 6	Zuordnung Eingangszu- stand Eingänge 9-16	UINT32	VAR	ro	0x20050008	Sechstes zugeordnetes Objekt
1A04, 7	Zuordnung Eingangszu- stand Eingänge 17-24	UINT32	VAR	ro	0x20060008	Siebtes zugeordnetes Objekt
1A04, 8	Zuordnung Eingangszu- stand Eingänge 25-32	UINT32	VAR	ro	0x20070008	Achtes zugeordnetes Objekt
1A05	TxPDO6-Zuordnungspara- meter	PDO- Zuordnung	REC	-	-	PDO-Zuordnung für TxPDO6
1A05, 0	Anzahl zugeordneter Objekte	UINT8	VAR	ro	8	Anzahl zugeordneter Objekte
1A05, 1	Unbenutzt	UINT32	VAR	ro	0x20080008	Erstes zugeordnetes Objekt
1A05, 2	Zuordnung Ausgangszustand Ausgang 1-8	UINT32	VAR	ro	0x20090008	Zweites zugeordnetes Objekt
1A05, 3	Zuordnung Fehlerzustand Eingänge 1-8	UINT32	VAR	ro	0x200A0008	Drittes zugeordnetes Objekt
1A05, 4	Zuordnung Fehlerzustand Eingänge 9-16	UINT32	VAR	ro	0x200B0008	Viertes zugeordnetes Objekt
1A05, 5	Zuordnung Fehlerzustand Eingänge 17-24	UINT32	VAR	ro	0x200C0008	Fünftes zugeordnetes Objekt
1A05, 6	Zuordnung Fehlerzustand Eingänge 25-32	UINT32	VAR	ro	0x200D0008	Sechstes zugeordnetes Objekt
1A05, 7	Unbenutzt	UINT32	VAR	ro	0x200E0008	Siebtes zugeordnetes Objekt
1A05, 8	Zuordnung Fehlerzustand Ausgang 1-8	UINT32	VAR	ro	0x200F0008	Achtes zugeordnetes Objekt

Index, Teilindex	Name	Datentyp	Objekt- typ	Zugriffs- typ	Standard- wert	Beschreibung
1A06	TxPDO7-Zuordnungspara- meter	PDO- Zuordnung	REC	-	-	PDO-Zuordnung für TxPDO7
1A06, 0	Anzahl zugeordneter Objekte	UINT8	VAR	ro	8	Anzahl zugeordneter Objekte
1A06, 1	Zuordnung Diagnosedaten Index 1 höherwertig	UINT32	VAR	ro	0x20100008	Erstes zugeordnetes Objekt
1A06, 2	Zuordnung Diagnosedaten Index 1 niederwertig	UINT32	VAR	ro	0x20110008	Zweites zugeordnetes Objekt
1A06, 3	Zuordnung Unbenutzt	UINT32	VAR	ro	0x20120008	Drittes zugeordnetes Objekt
1A06, 4	Zuordnung Diagnosedaten Meldung 1 höherwertig	UINT32	VAR	ro	0x20130008	Viertes zugeordnetes Objekt
1A06, 5	Zuordnung Diagnosedaten Meldung 1 niederwertig	UINT32	VAR	ro	0x20140008	Fünftes zugeordnetes Objekt
1A06, 6	Zuordnung Diagnosedaten Meldung 1	UINT32	VAR	ro	0x20150008	Sechstes zugeordnetes Objekt
1A06, 7	Zuordnung Unbenutzt	UINT32	VAR	ro	0x20160008	Siebtes zugeordnetes Objekt
1A06, 8	Zuordnung Diagnosedaten Meldung 2	UINT32	VAR	ro	0x20170008	Achtes zugeordnetes Objekt
1A07	TxPDO8-Zuordnungspara- meter	PDO	REC	-	-	PDO-Zuordnung für TxPDO8
1A07, 0	Anzahl zugeordneter Objekte	UINT8	VAR	ro	8	Anzahl zugeordneter Objekte
1A07, 1	Zuordnung Diagnosedaten Meldung 3 höherwertig	UINT32	VAR	ro	0x20180008	Erstes zugeordnetes Objekt
1A07, 2	Zuordnung Diagnosedaten Meldung 3 niederwertig	UINT32	VAR	ro	0x20190008	Zweites zugeordnetes Objekt
1A07, 3	Zuordnung Unbenutzt	UINT32	VAR	ro	0x201A0008	Drittes zugeordnetes Objekt
1A07, 4	Zuordnung Diagnosedaten Meldung 3	UINT32	VAR	ro	0x201B0008	Viertes zugeordnetes Objekt
2000	Statusbyte	UINT8	VAR	ro	-	Statusbit 0. RUN 1. CONF 3. INT Error 4. EXT Error 5. STOP 6. STATUS_R_S

Index, Teilindex	Name	Datentyp	Objekt- typ	Zugriffs- typ	Standard- wert	Beschreibung
2001	Modusbyte	UINT8	VAR	ro	-	Modusbit 0. Reset-Taster gedrückt 1. XPSMC betriebsfähig 4. 1 = XPSMC16 . 0 = XPSMC32 5. 1 = nach den Befehlen POWER UP oder START und bis zur Beendigung des Selbsttests 6. Konfiguration gültig 7. STOP-Befehl erhalten
2002	Reserviert	UINT8	VAR	ro	-	Reserviert
2003	Reserviert	UINT8	VAR	ro	-	Reserviert
2004	Zustand Eingang 9-16	UINT8	VAR	ro	-	Zustand Eingang (Eingang 9-16)
2005	Zustand Eingang 1-8	UINT8	VAR	ro	-	Zustand Eingang (Eingang 1-8)
2006	Zustand Eingang 25-32	UINT8	VAR	ro	-	Zustand Eingang (Eingang 25-32)
2007	Zustand Eingang 17-24	UINT8	VAR	ro	-	Zustand Eingang (Eingang 17-24)
2008	Zustand Ausgang 1-8	UINT8	VAR	ro	-	Fehler Ausgang (Ausgang 1-8)
2009	Unbenutzt	UINT8	VAR	ro	-	Unbenutzt
200A	Fehler Eingang 9-16	UINT8	VAR	ro	-	Fehler Eingang (Eingang 9-16)
200B	Fehler Eingang 1-8	UINT8	VAR	ro	-	Fehler Eingang (Eingang 1-8)
200C	Fehler Eingang 25-32	UINT8	VAR	ro	-	Fehler Eingang (Eingang 25-32)
200D	Fehler Eingang 17-24	UINT8	VAR	ro	-	Fehler Eingang (Eingang 17-24)
200E	Fehler Ausgang 1-8	UINT8	VAR	ro	-	Fehler Ausgang (Ausgang 1-8)
200F	Unbenutzt	UINT8	VAR	ro	-	Unbenutzt
2010	Diagnosedaten 1 nieder- wertig	UINT8	VAR	ro	-	Vorrichtungsnummer (niedrig)

Index,	Name	Datentyp	Objekt-	Zugriffs-	Standard-	Beschreibung
Teilindex			typ	typ	wert	
2011	Diagnosedaten Index 1 hö- herwertig	UINT8	VAR	ro	-	Vorrichtungsnummer (hoch)
2012	Diagnosedaten Meldung 1	UINT8	VAR	ro	-	Diagnosehinweis
2013	Unbenutzt	UINT8	VAR	ro	-	Unbenutzt
2014	Diagnosedaten Index 2 nie- derwertig	UINT8	VAR	ro	-	Vorrichtungsnummer (niedrig)
2015	Diagnosedaten Index 2 hö- herwertig	UINT8	VAR	ro	-	Vorrichtungsnummer (hoch)
2016	Diagnosedaten Meldung 2	UINT8	VAR	ro	-	Diagnosehinweis
2017	Unbenutzt	UINT8	VAR	ro	-	Unbenutzt
2018	Diagnosedaten Meldung niederwertig	UINT8	VAR	ro	-	Vorrichtungsnummer (niedrig)
2019	Diagnosedaten Meldung 3 höherwertig	UINT8	VAR	ro	-	Vorrichtungsnummer (hoch)
201A	Diagnosedaten Meldung 3	UINT8	VAR	ro	-	Diagnosehinweis
201B	Unbenutzt	UINT8	VAR	ro	-	Unbenutzt
5FFF	SE-Datenobjekt	SE-Daten	REC	-	-	Schneider Electric-Objekt
5FFF, 0	Anzahl Eingänge	UINT8	VAR	ro	3	Anzahl Eingänge
5FFF, 1	Markenname	STRING 16	VAR	ro	Telemeca- nique	Markenname
5FFF, 2	Konformitätsklasse	STRING 16	VAR	ro	S20	Interne Konformitätsklas- se
5FFF, 3	Bus-Aus-Zähler	UINT8	VAR	rw	0x0	Bus-Aus-Zähler

HINWEIS: Ausführliche Angaben zu den Gerätenummern und den Diagnosehinweisen, siehe auch *Dialogfeld Fehlercodes, Seite 63* (Tabelle mit Fehlermeldungen und Diagnosehinweisen).

Die nachstehende Tabelle enthält Angaben zu den Übertragungstypen:

Übertragungstyp	PDO-Übertragung							
	Zyklisch	Azyklisch	Synchron	Asynchron	Nur RTR			
0	-	х	x	-	-			
1 - 240	х	-	x	-	-			
253	-	-	-	х	х			
254	-	-	-	х	-			
255	=	-	-	х	-			

0: Der Knoten überträgt das PDO synchron zum SYNC-Objekt, die Übertragung erfolgt jedoch ereignisbedingt.

1-240: Der Knoten überträgt das PDO jeden 1. - 240. Empfang eines SYNC-Objekts.

253: Der Knoten überträgt das PDO nach einer Anforderung für eine Fernübertragung.

254: Der Übertragungsmodus ist vollständig herstellerspezifisch.

255. Der Übertragungsmodus wird im Geräteprofil definiert.

Anhang

Übersicht

Zusätzliche Informationen, die nicht unbedingt für das Verständnis der Dokumentation erforderlich sind.

Inhalt dieses Anhangs

Dieser Anhang enthält die folgenden Kapitel:

Kapitel	Kapitelname	Seite
Α	Kurzbeschreibung der Funktionsbausteine	117
В	Anwendungsbeispiele	129
С	Elektrische Lebensdauer der Ausgangskontakte	135
D	Buskonfigurationsbeispiele	137
Е	Konformitätserklärung	161

Kurzbeschreibung der Funktionsbausteine

Übersicht

Dieses Kapitel enthält eine kurze Beschreibung der Funktionsbausteine.

HINWEIS: Die für die folgenden Bausteine angegebenen Zeitbereiche basieren auf einer Ansprechzeit von 20 ms. Bei Verwendung einer Basis von 30 ms ändern sich die Bereiche ein wenig.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Funktionen und Bausteine	118
Überwachungsbausteine	119
EDM-Baustein	123
Start-Bausteine	124
Zustimm-Bausteine	125
Sonstige Bausteine	126
Ausgabe-Bausteine	128

33003277 01/2012 117

Funktionen und Bausteine

Übersicht

Die Sicherheitscontroller der Baureihe XPSMC verfügen über folgende Überwachungsbausteine/-funktionen.

Einzelheiten zu jeder Funktion finden Sie im Software-Handbuch XPSMCWIN.

Gerätetyp	Bausteine
Überwachungsbausteine	 Not-Aus einkanalig, zweikanalig Schutztür einkanalig, zweikanalig, zweikanalig mit Zuhaltung Lichtgitter (BWS) mit Transistorausgängen, mit Relaisausgängen, mit und ohne Muting und Überwachung der Mutinglampe Magnetschalter Zweihandsteuerung Typ IIIA*, Typ IIIC gemäß EN 574 Schaltmatte, kurzschlussbildend Stillstandserkennung
Spezielle Überwachungsbausteine	 Überwachung von Spritzgieß- oder Blasformmaschinen Ventilkontrolle für Hydraulikpresse, Basisausführung Ventilkontrolle für Hydraulikpresse, erweiterte Ausführung** Überwachung von Exzenterpressen, Basisausführung Überwachung von Exzenterpressen, erweiterte Ausführung** Sitzventilkontrolle Wellen-/Kettenbruch-Überwachung
EDM-Bausteine	Kontaktüberwachung externer Geräte
Start-Bausteine	Automatischer, nicht überwachter, überwachter Start
Zustimm-Bausteine	Zustimmschalter zweikanalig, dreikanalig
Sonstige Bausteine	 Zeitglied** Logische Verknüpfungen: OR, AND*, XOR*, Negation*, RS-FlipFlop* Merker* Basiskontaktfunktionen* Fußschaltersteuerung Wahlschalter** Sicheres Werkzeug

Ein Ausgang des Controllers kann für die Anzeige eines Fehlerzustands konfiguriert werden*. Ein Sicherheitseingang kann optional zum Fernrücksetzen des Controllers verwendet werden*.

HINWEIS: Durch ein Sternchen [*] gekennzeichnete Bausteine sind mit Firmwareversion 2.40 und höher verfügbar.

Die Funktionen der mit zwei Sternchen [**] gekennzeichneten Bausteine wurde mit der Firmwareversion 2.40 erweitert.

Überwachungsbausteine

Kurzbeschreibung der Überwachungsbausteine

Überwachungsbau- steine	Kurzbeschreibung
Not-Aus einkanalig	 Überwacht einen einzelnen Not-Aus-Kontakt. Bis Kategorie 4, PL e gemäß EN ISO / ISO 13849 mit dem notwendigen Fehlerausschluss bei der Eingangsverdrahtung. Die Not-Aus-Bausteine sollten im Rahmen der Maschinenwartung geprüft werden.
Not-Aus zweikanalig	 Überwacht 2 Not-Aus-Kontakte. Für einen Neustart müssen beide Kontakte des Not-Aus-Bausteins zuvor geöffnet werden. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849. Die Not-Aus-Baustein sollten im Rahmen der Maschinenwartung geprüft werden.
Schutztür einkanalig	 Überwacht einen einzelnen Kontakt einer Schutztür. Mit oder ohne Anlaufsperre konfigurierbar. Bis Kategorie 1, gemäß EN ISO / ISO 13849.
Schutztür zweikanalig	 Überwacht zwei Kontakte einer Schutztür. Mit oder ohne Anlaufsperre konfigurierbar. Die Synchronzeit kann konfiguriert werden. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.
Schutztür mit Zuhaltung	 Überwacht 2 Kontakte einer Schutztür und einen zusätzlichen Verriegelungskontakt. Mit oder ohne Anlaufsperre konfigurierbar. Die Synchronzeit kann konfiguriert werden. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.
Lichtgitter (BWS) mit Transistorausgängen	 Überwacht ein Lichtgitter mit PNP-Ausgängen. Der XPSMC überwacht nicht die Verbindung zu den OSSDs. Mit oder ohne Anlaufsperre konfigurierbar. Die Synchronzeit für die Eingänge kann konfiguriert werden. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.
Lichtgitter (BWS) mit Relaisausgängen	 Überwacht ein Lichtgitter mit Relaisausgängen. Querschlussüberwachung der Verbindungen an der Eingangsverdrahtung durch den XPSMC. Mit oder ohne Anlaufsperre konfigurierbar. Die Synchronzeit für die Eingänge kann konfiguriert werden. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.
HINWEIS: Funktionen, Firmwareversion 2.40	die durch ein Sternchen [*] gekennzeichnet sind, sind mit der und höher verfügbar.

33003277 01/2012 119

Überwachungsbau- steine	Kurzbeschreibung
Lichtgitter mit Muting und Überwachung der Mutinglampe mit Transistor-Ausgängen	 Dieselben Merkmale wie die Lichtgitter ohne Muting und Transistorausgänge. Anschluss von vier Mutingsensoren und einer Mutinglampe gemäß EN / IEC 61496-1. Die Mutinglampe wird auf Kurzschluss oder Drahtbruch überwacht. Die Merkmale der Lampe finden Sie in den technische Kenndaten. Die Synchronzeit kann konfiguriert werden, um das Muting-Signal in einer Gruppe zu erstellen. Die maximale Muting-Dauer kann konfiguriert werden. Eine Freifahrfunktion mit einstellbarer Zeit ist verfügbar. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.
Lichtgitter mit Muting und Überwachung der Mutinglampe mit Transistor-Ausgängen	 Dieselben Merkmale wie die Lichtgitter ohne Muting und Transistorausgänge. Anschluss von vier Mutingsensoren und einer Mutinglampe gemäß EN / IEC 61496-1. Die Mutinglampe wird auf Kurzschluss oder Drahtbruch überwacht. Die Merkmale der Lampe finden Sie in den technische Kenndaten. Die Synchronzeit kann konfiguriert werden, um das Mutingsignal in einer Gruppe zu erstellen. Die maximale Mutingdauer kann konfiguriert werden. Eine Freifahrfunktion mit einstellbarer Zeit ist verfügbar. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.
Magnetschalter	 Überwacht die (nicht zwangsgeführten) Kontakte (NC + NO) eines Magnetschalters. Mit oder ohne Anlaufsperre konfigurierbar. Synchronisationszeit kann konfiguriert werden. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.
Zweihandsteuerung Typ IIIA* gemäß EN 574 / ISO 13851	 Überwacht zwei Eingänge für zwei Drucktaster, die zur Erstellung einer Zweihandsteuerung, Typ IIIA, angeschlossen sind. Die Synchronzeit wird auf ≤500 ms festgesetzt. Bis Kategorie 1, PL b gemäß EN ISO / ISO 13849.
Zweihandsteuerung, Typ IIIC, gemäß EN 574 / ISO 13851	 Überwacht 4 Eingänge, zum Anschluss von zwei Drucktastern mit einem NO- und NC-Kontakt, um mit jedem eine Zweihandsteuerung vom Typ IIIC zu erstellen. Die Synchronzeit wird auf ≤500 ms festgesetzt. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.

HINWEIS: Funktionen, die durch ein Sternchen [*] gekennzeichnet sind, sind mit der Firmwareversion 2.40 und höher verfügbar.

Überwachungsbau- steine	Kurzbeschreibung
Schaltmatte	 Überwacht eine Schaltmatte, die einen Kurzschluss bildet. Die maximale Eingangskapazität der Matte sollte 120 nF nicht überschreiten. Bis Kategorie 3, PL d, gemäß EN ISO / ISO 13849.
Stillstandserkennung	 Für die Stillstandserkennung müssen zwei Näherungsschalter an die Sicherheitseingänge i01 und i02 angeschlossen werden. Zwei Sensoren ermitteln die Bewegung durch Überwachung der Zähne an einem Zahnrad, das mit einer rotierenden Welle verbunden ist. Der Ausgang wird nicht aktiviert, bis eine Frequenz festgestellt wird, die unter dem vom Benutzer eingestellten Schwellwert liegt. Der Schwellwert kann für eine Frequenz von 0,05 bis 20 Hz (Toleranz bis zu 15 %) konfiguriert werden. Ein in der Konfigurationssoftware XPSMCWIN integrierter Frequenz-Rechner bietet die Möglichkeit, auf einfache Weise die Frequenz ausgehend von den U/min und der Anzahl der Zähne in bezug auf Toleranz, Inkremente usw. zu berechnen. Die maximal zulässige Geberfrequenz ist 450 Hz. Das Gerät kann nicht zusammen mit einer Wellen-/Kettenbruch-Überwachung in derselben Konfiguration verwendet werden. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.
Schutzeinrichtung für Spritzgieß- oder Blasformmaschinen	 Überwachung der Schutztür für den Werkzeugbereich (2 Positionsschalter) und eines dritten Positionsschalters zur Überwachung des Hauptsperrventils Die Synchronzeit kann konfiguriert werden. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.
Ventilkontrolle für Hydraulikpresse (mit drei Ventilen)	 Überwachung der Sicherheitsventile von Hydraulikpressen mithilfe von Endschaltern oder Näherungsschaltern. Die Synchronzeit (Reaktionszeit) der Ventilschalter kann konfiguriert werden. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.
Erweiterte Hydraulikpresse (2)	 Überwachung der Hydraulikpressen mit Ventilkontrolle und optionaler Nachlaufwegüberwachung. Es sind mehrere optionale Einstellungen möglich. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.
Exzenterpresse	 Überwachung der Zyklen der Exzenterpresse. Die Sicherheitsventile können optional überwacht werden. Die Synchronzeit der Ventile kann konfiguriert werden. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.

33003277 01/2012 121

Firmwareversion 2.40 und höher verfügbar.

Überwachungsbau- steine	Kurzbeschreibung
Erweiterte Exzenterpresse (2)	 Überwachung der Zyklen der Exzenterpresse. Start und Schutzmaßnahmen können getrennt zugeordnet werden. Das Verhalten der Überwachungsbausteine ist weitgehend über Optionen konfigurierbar. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.
Wellen-/Kettenbruch- Überwachung	 Überwachung der Bewegung einer Welle oder Kette durch Impulserfassung mithilfe eines Näherungsschalters. Der Schalter muss an Eingang i01 oder i02 angeschlossen werden. Das Gerät kann daher nicht in derselben Konfiguration mit Stillstandserkennung verwendet werden. Die Wellen-/Kettenbruch-Überwachung kann in Verbindung mit dem Exzenterpresse-2-Baustein verwendet werden, um die Übertragung der Exzenterwelle an die Nocke zu überwachen.
Sitzventilkontrolle	 Überwacht den Betrieb eines Ventils. Es ist ein Eingang für das Startsignal der Ventilbewegung vorhanden und ein Eingang für den Ventilkontakt, der die Position des Ventils bereitstellt. Der Ventilkontakt zwischen Öffner/Schließer (NO und NC) ist wählbar. Die Synchronzeit zwischen dem Start- und dem Ergebnissignal kann überwacht werden.
HINWEIS: Funktionen, die durch ein Sternchen [*] gekennzeichnet sind, sind mit der Firmwareversion 2.40 und höher verfügbar.	

EDM-Baustein

Kurzbeschreibung des EDM-Bausteins

EDM-Baustein	Kurzbeschreibung
Kontaktüberwachung externer Geräte (EDM)	 Der Baustein wird zur Überwachung der Öffner (NC-Kontakte) externer Relais eingesetzt, um Rückmeldungen zum Schaltzustand zu erhalten. Die zulässige Reaktionszeit der externen Kontakte kann konfiguriert werden. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.

Start-Bausteine

Kurzbeschreibung der Start-Bausteine

Start-Baustein	Kurzbeschreibung
Automatischer Start	Es ist kein Starttaster vorhanden. Der Start erfolgt unmittelbar mit dem Erfüllen der jeweiligen Eingangsbedingungen.
Nicht überwachter Start	Die Startbedingung ist gültig, wenn der Eingang geschlossen ist.
Überwachter Start	 Die Startbedingung ist nur gültig, wenn ein Übergang des Signals erkannt wurde. Der Übergangstyp kann gewählt werden, entweder negative oder positive Flanke.

Zustimm-Bausteine

Kurzbeschreibung der Zustimm-Bausteine

Zustimm-Baustein	Kurzbeschreibung
Zustimmschalter zweikanalig	 Ein dreistufiger Zustimmschalter mit zwei Kontakten wird überwacht. Eine maximale Zustimmdauer ist einstellbar. Bis Kategorie 1, PL b gemäß EN ISO / ISO 13849.
Zustimmschalter dreikanalig	 Ein dreistufiger Zustimmschalter mit drei Kontakten wird überwacht. Eine maximale Zustimmdauer ist einstellbar. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.

33003277 01/2012 125

Sonstige Bausteine

Kurzbeschreibung der sonstigen Bausteine

Sonstige Bausteine	Kurzbeschreibung
Zeitglied	Mit der Zeitgliedfunktion steht zur Verfügung: Einschaltverzögerung Ausschaltverzögerung Einschaltwischer Ausschaltwischer Impulsgenerator*
Merker*	 Ein Merker kann wie ein Ausgang verwendet werden, jedoch ohne physische Darstellung. Es stehen bis zu 8 Merker zur Verfügung.
Basisschalter*	 Folgende Basisschalter stehen zur Verfügung: Einzelkontakt Doppelkontakt Doppelkontakt, antivalent (NC / NO)
	 Für die Schalter ist optional eine Anlaufsperre verfügbar. Bei den 2-kanaligen Schaltern kann die Synchronzeit der Kontakte überwacht werden. Die Kontakte können über Kontrollausgänge oder die Versorgung gesteuert werden. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.
Logik-Verknüpfungen	 Verfügbare Logik-Verknüpfungen sind: AND* OR XOR* NOT (Negation)* RS-flip-flop*, optionales Setzen oder Rücksetzen dominant
	 Verwenden Sie Logik-Verknüpfungen mit Vorsicht, da diese leicht die Sicherheit beeinträchtigen können. Speziell die NOT-Funktion kann "sicher" in "nicht sicher" umwandeln. Die Verwendung von Negierungen ist auf Ausgänge und andere Logik begrenzt. Die Logik-Verknüpfungen können aus bis zu 255 Eingängen bestehen (die jeweilige maximale Anzahl Bausteine pro Controller kann diesen Wert eingrenzen).

126 33003277 01/2012

Firmware-Version 2.40 und höher verfügbar.

A WARNUNG

UNERWARTETER GERÄTEBETRIEB

Stellen Sie sicher, dass die erforderliche Sicherheitsstufe der Anwendung nicht durch die Verwendung des NOT-Bausteins eingeschränkt wird.

Analysieren Sie die zu invertierenden Eingänge und Ausgänge mit Vorsicht und verdeutlichen Sie sich, inwieweit die Invertierung die Anwendung beeinträchtigt, insbesondere hinsichtlich der Sicherheit. Vergessen Sie nicht, dass "sicher" in "NICHT sicher" umgewandelt werden kann.

Nur Personal, das umfangreiche Kenntnis hinsichtlich Maschine, Anwendung und Auswirkungen auf die Anwendung hat, sollte eine Verwendung des NOT-Bausteins in Erwägung ziehen.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Körperverletzungen oder Sachschäden zur Folge haben.

Sonstige Bausteine	Kurzbeschreibung
Wahlschalter	 Die Funktion wird verwendet, um einen Satz anderer Bausteine (1 von max. 6) auszuwählen. Der Schalter liest den Zustand eines Hardware-Wahlschalters. Der Schalter verfügt über maximal 6 Positionen. Er kann gewählt werden, wenn zugehörige Bausteine nach einem Wechsel der Position erneut betätigt werden müssen*.
Fußschaltersteuerung	 Der Baustein überwacht einen Öffner und Schließer (NO- und NC-Kontakt), die beide von demselben Kontrollausgang gesteuert werden, da dies bei Fußschaltern üblich ist. Bis Kategorie 4, PL e, gemäß EN ISO / ISO 13849.
Sicheres Werkzeug	 Der Baustein "Sicheres Werkzeug" stellt ein stabiles aktives Signal bereit. Er sollte nur in Verbindung mit einem Wahlschalter bei Pressen verwendet werden. Durch Wahl der Schalterposition "Sicheres Werkzeug" wird angezeigt, dass aufgrund der Verwendung von "Sicheres Werkzeug" keine Schutzmaßnahmen erforderlich sind (siehe EN 692, EN 693).
HINWEIS: Funktionen, die durch ein Sternchen [*] gekennzeichnet sind, sind mit der	

33003277 01/2012 127

Firmwareversion 2.40 und höher verfügbar.

Ausgabe-Bausteine

Kurzbeschreibung der Ausgabe-Bausteine

Ausgabe-Baustein	Kurzbeschreibung
Stoppkategorie 0 (EN / IEC 60204)	 Die Sicherheitsausgänge werden unverzögert nach Ende der Freigabebedingung abgeschaltet. Alle vier Relais- und alle sechs Halbleiterausgänge können in Stoppkategorie 0 betrieben werden.
Stoppkategorie 1 (EN / IEC 60204)	 Die Sicherheitsausgänge werden zeitverzögert (konfigurierbar von 0,1 bis 300 s) nach Ende der Freigabebedingung abgeschaltet. Alle vier Relais- und alle sechs Halbleiterausgänge können in Stoppkategorie 1 betrieben werden.

HINWEIS: Die jeweiligen Daten der Sicherheitskategorien und Leistungsstufen gemäß EN ISO / ISO 13849 bezieht sich auf die maximal erreichbaren Kategorien. Zum Erreichen der gewünschten Kategorie ist die gesamte Maschinensteuerung entsprechend auszulegen.

Anwendungsbeispiele

B

Übersicht

Dieses Kapitel enthält Anwendungsbeispiele.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Anwendungsbeispiel - Lichtgitter mit Muting	130
Anwendungsbeispiel - Schutztür mit Zustimmschalter	132
Anwendungsbeispiel für mehrere Funktionen - Not-Aus, Zweihandsteuerung, Schaltmatte	

Anwendungsbeispiel - Lichtgitter mit Muting

Einführung

Im nachfolgenden Anschlussbeispiel wird eine BWS mit Muting gezeigt. Folgende Bausteine sind angeschlossen:

- · Lichtgitter (BWS) mit Muting
- überwachte Muting-Anzeige
- Starttaster
- Relaisausgang (230 VAC)

Beispiel für Lichtgitter mit Muting

A GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

- Trennen Sie alle Geräte, einschließlich der angeschlossenen Komponenten, vor der Entfernung von Abdeckungen oder Türen sowie vor der Installation oder Entfernung von Zubehörteilen, Hardware, Kabeln oder Drähten von der Spannungsversorgung, ausgenommen unter den im jeweiligen Hardware-Handbuch für dieses Geräte angegebenen Bedingungen.
- Verwenden Sie stets ein genormtes Spannungsprüfgerät, um festzustellen, ob die Spannungsversorgung wirklich abgeschaltet ist.
- Bringen Sie alle Abdeckungen, Zubehörteile, Hardware, Kabel und Drähte wieder an, sichern Sie sie und vergewissern Sie sich, dass eine ordnungsgemäße Erdung vorhanden ist, bevor Sie die Stromzufuhr zum Gerät einschalten.
- Betreiben Sie diese Geräte und jegliche zugehörigen Produkte nur mit der angegebenen Spannung.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schwerer Körperverletzung.

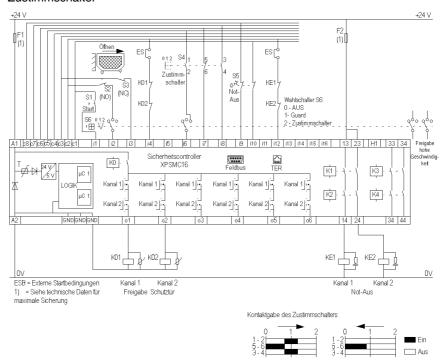
230 V~ 230 V ~ +24 V +24 V F2 (1) ESI S4 S6 Mutinglampe 🙏 K01 BWS = 8 0 BWS-Ausgang BWS Muting Freifah **Muting** K02 ren S3 95 0SSD1 0SS OSSD2 KE1 Muting ! ہے \ Muting S1 KE2 B1 Βž Start i9 i10 i11 i12 i13 i14 i15 i16 A1 c8 c7 c6 c5 c4c3 c2 c1 i1 li3 i4 i6 13 23 H1 33 34 i2 Sicherheitscontroller TER (**:::::**) KO XPSMC16 K1] K3 Kanal 1 Kanal 1 .-Kanal 1 -LOGI K2 K4 μC 1 Kanal 2 Kanal 2 Kanal 2 Kanal 2 Kanal 2 Kanal 2 GND GND GND A2 04 14 24 34 44 0V ESB = Externe Startbedingungen Kanal 1 Kanal 2 Kanal 1 Kanal 2 BWS-Freigabe (24V c) BWS-Freigabe (230V a) 1) = Siehe technische Daten für

Das nachfolgende Schaltbild zeigt die Verdrahtung einer BWS mit Muting:

HINWEIS: Die Verdrahtung der 32-Eingangsversion ist identisch für die zusätzlichen für die Konfiguration verfügbaren Eingänge.

maximale Sicherung

Anwendungsbeispiel - Schutztür mit Zustimmschalter


Einführung

Im nachfolgenden Anschlussbeispiel wird eine Schutztür mit Zustimmschalter gezeigt. Folgende Bausteine sind angeschlossen:

- Not-Aus
- Zustimmschalter
- Wahlschalter

Beispiel für Schutztür mit Zustimmschalter

Das nachfolgende Schaltbild zeigt die Verdrahtung einer Schutztür mit Zustimmschalter

HINWEIS: Die Verdrahtung für die 32-Eingangsversion ist identisch, mit Ausnahme der zusätzlichen für die Konfiguration verfügbaren Eingänge.

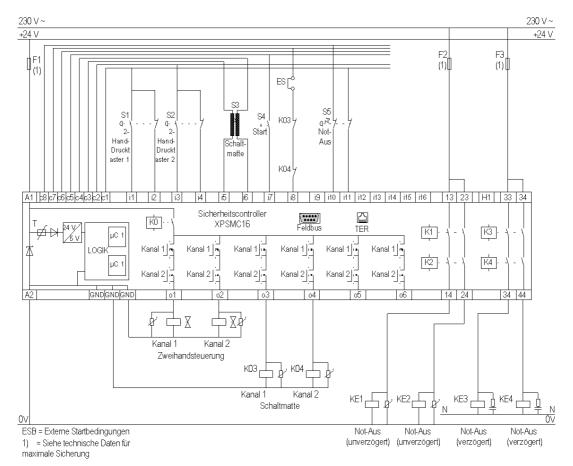
Anwendungsbeispiel für mehrere Funktionen - Not-Aus, Zweihandsteuerung, Schaltmatte

Einführung

Im nachfolgenden Anschlussbeispiel wird die Verdrahtung mehrerer Funktionen gezeigt. Folgende Bausteine sind angeschlossen:

- Zweihandsteuerung
- Schaltmatte
- Not-Aus
- Relaisausgänge (24 VDC und 230 VAC)

Anwendungsbeispiel


A GEFAHR

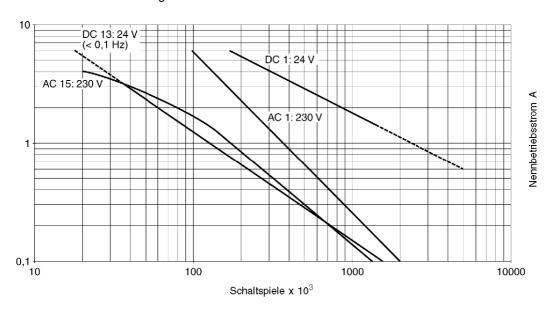
GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENS

- Trennen Sie alle Geräte, einschließlich der angeschlossenen Komponenten, vor der Entfernung von Abdeckungen oder Türen sowie vor der Installation oder Entfernung von Zubehörteilen, Hardware, Kabeln oder Drähten von der Spannungsversorgung, ausgenommen unter den im jeweiligen Hardware-Handbuch für dieses Geräte angegebenen Bedingungen.
- Verwenden Sie stets ein genormtes Spannungsprüfgerät, um festzustellen, ob die Spannungsversorgung wirklich abgeschaltet ist.
- Bringen Sie alle Abdeckungen, Zubehörteile, Hardware, Kabel und Drähte wieder an, sichern Sie sie und vergewissern Sie sich, dass eine ordnungsgemäße Erdung vorhanden ist, bevor Sie die Stromzufuhr zum Gerät einschalten.
- Betreiben Sie diese Geräte und jegliche zugehörigen Produkte nur mit der angegebenen Spannung.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schwerer Körperverletzung.

Das nachfolgende Schaltbild zeigt die Verdrahtung mehrerer Bausteine (siehe obige Liste):

HINWEIS: Die Verdrahtung für die 32-Eingangsversion ist identisch, mit Ausnahme der zusätzlichen für die Konfiguration verfügbaren Eingänge.


Elektrische Lebensdauer der Ausgangskontakte

C

Diagramm der elektrischen Lebensdauer

Diagramm

Elektrische Lebensdauer der Ausgangskontakte gemäß EN / IEC 60947-5-1 / Anhang C.3

Buskonfigurationsbeispiele

Übersicht

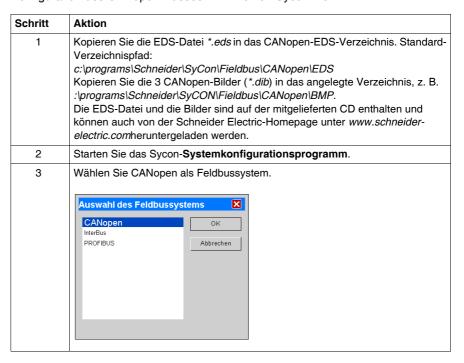
Dieses Kapitel enthält eine Beschreibung der Buskonfiguration für Profibus und CANopen.

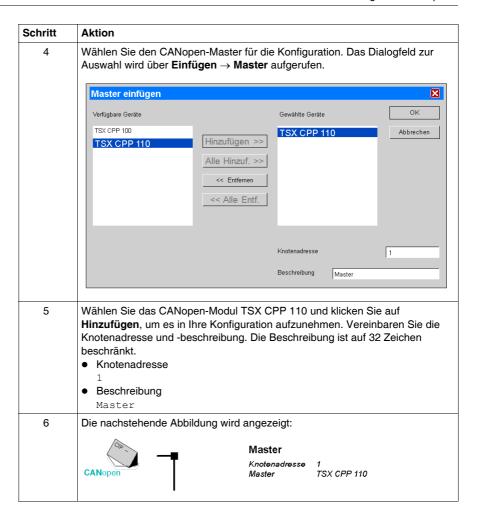
Inhalt dieses Kapitels

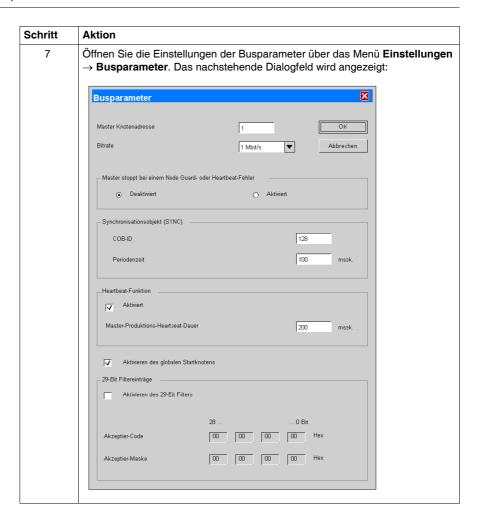
Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Anschluss des XPSMC mit CANopen und Sycon 2.8	138
Anschluss des XPSMC mit CANopen und Sycon 2.9	146
Konfiguration von Unity Pro für CANopen	154
Anschluss des XPSMC mit Profibus und Sycon 2.9	157

Anschluss des XPSMC mit CANopen und Sycon 2.8

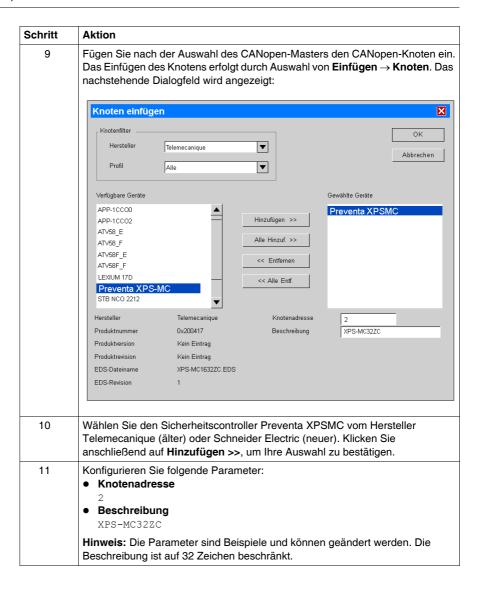

Einführung

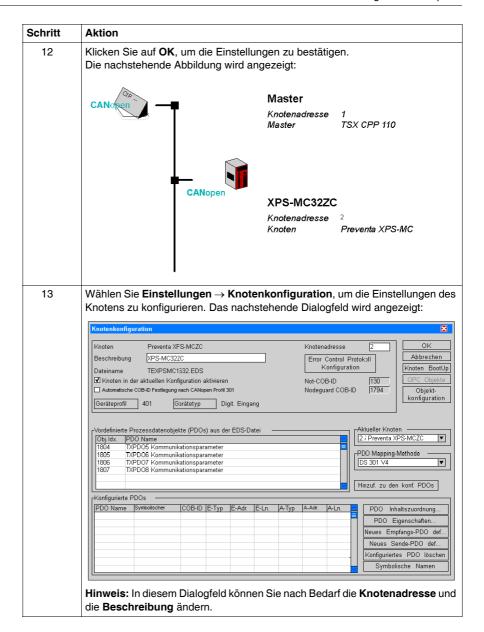

In diesem Beispiel wird der Sicherheitscontroller XPSMC über CANopen mit dem CANopen-Master verbunden (z. B. Premium TSX mit einer CANopen-Schnittstelle TSX CPP110 von Schneider Electric). Der Feldbus wird mit Hilfe von Sycon 2.8 von Schneider Electric und der Controller mit Hilfe von Unity Pro, ebenfalls von Schneider Electric, konfiguriert.

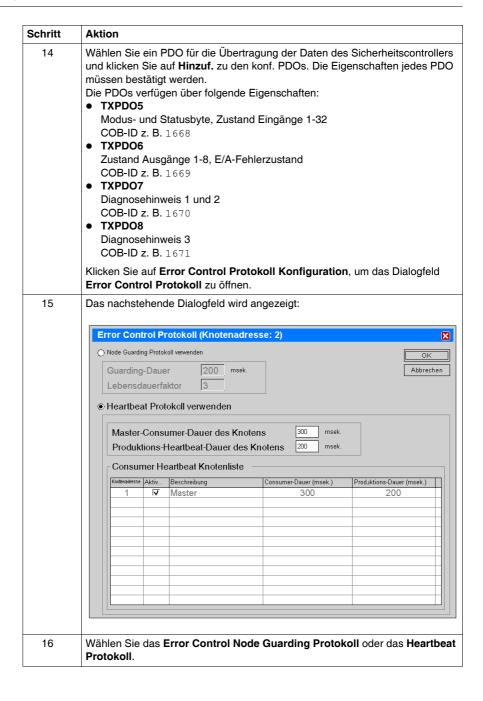

HINWEIS: Die Kabel, Steckverbindungen und Widerstände für CANopen müssen dem Standard CiA DRP 303-1 entsprechen.

Konfiguration mit Sycon 2.8

Die nachstehende Tabelle beschreibt die verschiedenen Arbeitsschritte für die Konfiguration des CANopen-Busses mit Hilfe von Sycon 2.8:





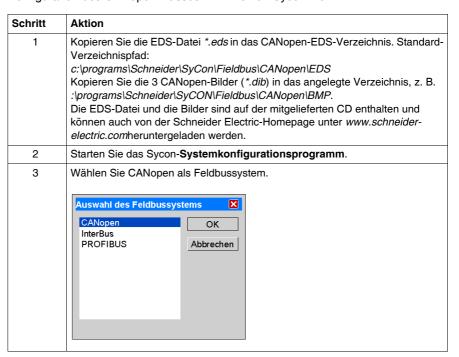

Schritt	Aktion
8	Konfigurieren Sie folgende Parameter: • Master Knotenadresse 1 • Bitrate 1 MBit/s • Master stoppt bei einem Node Guard- oder Heartbeat-Fehler • Deaktiviert
	 Synchronisationsobjekt (SYNC) COB-ID 128 Periodenzeit 100 ms
	 Heartbeat-Funktion Aktiviert Master-Produktions-Heartbeat-Dauer 200 ms
	 Aktivieren des globalen Startknotens 29-Bit Filtereinträge Nichts
	Klicken Sie auf OK , um die Einstellungen zu bestätigen.

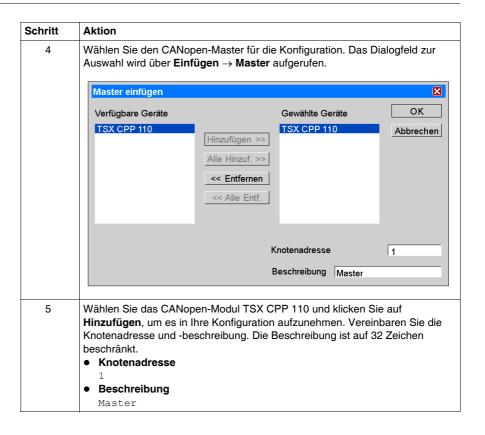
33003277 01/2012 141

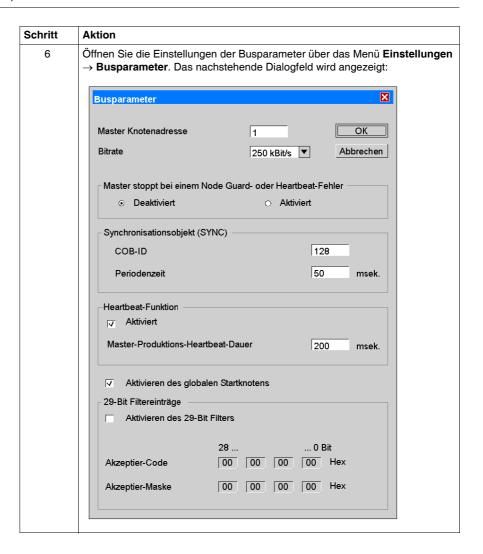
33003277 01/2012 143

Schritt	Aktion
17 Konfigurieren Sie folgende Parameter: Für das Node Guarding Protokoll Guarding-Dauer 200 ms Lebensdauerfaktor 2 Für das Heartbeat Protokoll Master-Consumer-Dauer des Knotens 220 ms	
	 Produktions-Heartbeat-Dauer des Knotens 200 ms Consumer Heartbeat Knotenliste Aktivieren Sie den spezifischen Master.
18	Klicken Sie auf OK , um die Einstellungen für das Error Control Protokoll zu bestätigen.
19	Klicken Sie auf OK , um die Einstellungen für die Knotenkonfiguration zu bestätigen.

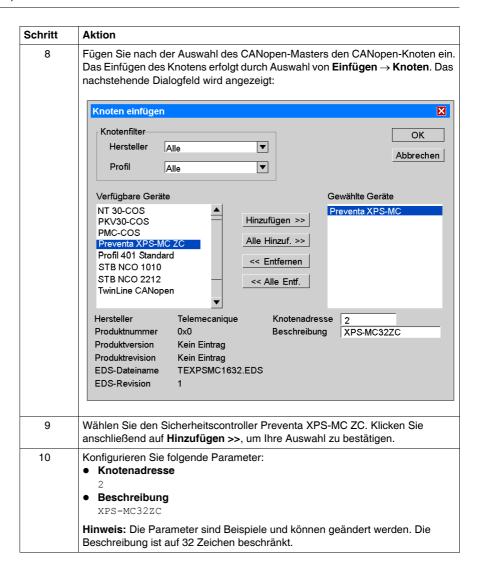
Anschluss des XPSMC mit CANopen und Sycon 2.9

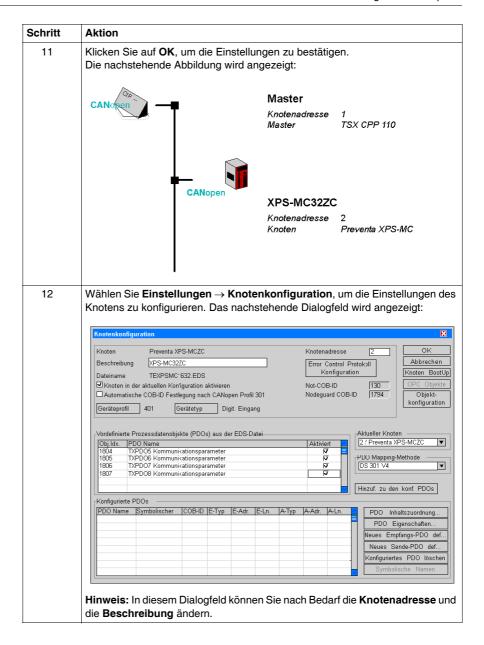

Einführung


In diesem Beispiel wird der Sicherheitscontroller XPSMC über CANopen mit dem CANopen-Master verbunden (z. B. Premium TSX mit einer CANopen-Schnittstelle TSX CPP110 von Schneider Electric). Der Feldbus wird mit Hilfe von Sycon 2.9 von Schneider Electric und der Controller mit Hilfe von Unity Pro, ebenfalls von Schneider Electric, konfiguriert.


HINWEIS: Die Kabel, Steckverbindungen und Widerstände für CANopen müssen dem Standard CiA DRP 303-1 entsprechen.

Konfiguration mit Sycon 2.9

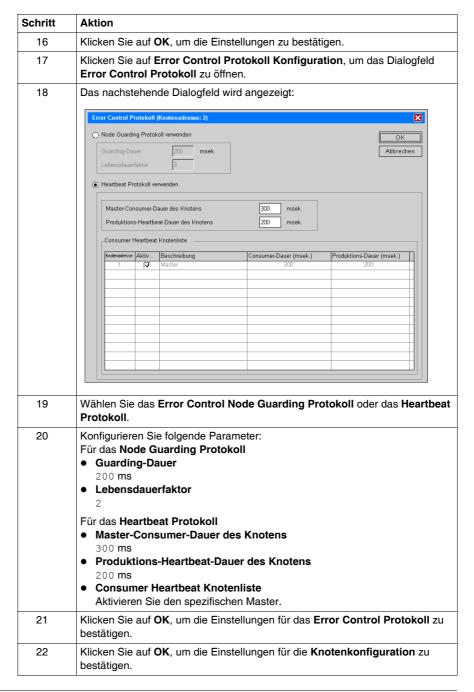

Die nachstehende Tabelle beschreibt die verschiedenen Arbeitsschritte für die Konfiguration des CANopen-Busses mit Hilfe von Sycon 2.9:



Schritt	Aktion
7	Konfigurieren Sie folgende Parameter: • Master Knotenadresse 1 • Bitrate 250 kBit/s • Master stoppt bei einem Node Guard- oder Heartbeat-Fehler • Deaktiviert
	 Synchronisationsobjekt (SYNC) COB-ID 128 Periodenzeit 50 ms
	 Heartbeat-Funktion Aktiviert Master-Produktions-Heartbeat-Dauer 200 ms
	 Aktivieren des globalen Startknotens 29-Bit Filtereinträge Nichts
	Klicken Sie auf OK , um die Einstellungen zu bestätigen.

Schritt

Aktion

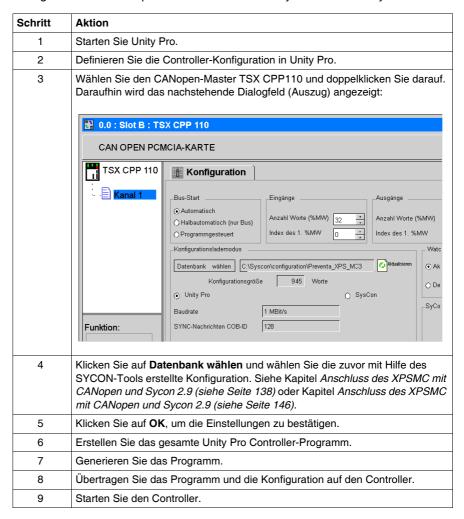

Schritt	Aktion	
13	Wählen Sie ein PDO für die Übertragung der Daten des Sicherheitscontrollers und klicken Sie auf Hinzuf. zu den konf. PDOs. Die Eigenschaften jedes PDO müssen bestätigt werden. Die PDOs verfügen über folgende Eigenschaften: • TXPDO5 Modus- und Statusbyte, Zustand Eingänge 1-32 COB-ID z. B. 1668 • TXPDO6 Zustand Ausgänge 1-8, E/A-Fehlerzustand COB-ID z. B. 1669 • TXPDO7 Diagnosehinweis 1 und 2 COB-ID z. B. 1670 • TXPDO8 Diagnosehinweis 3 COB-ID z. B. 1671	
14	Klicken Sie auf PDO Eigenschaften, um das Dialogfeld zu öffnen.	
15	Das nachstehende Dialogfeld wird angezeigt: Sende PDO-Eigenschaften des Knotens, Master-Eingabeprozessdaten Übertragungsmodus Knoten soll eine Synchronisationsmeldung als Auslöser zum azyklischen Senden der Sende-PDO verwenden Knoten muss die Sende-PDO bei jeder Knoten nuss die Sende-PDO bei jeder Knoten soll eine Synchronisationsmeldung als Auslöser zum Senden der Sende-PDO bei vorausgegangener dezentraler Anforderung durch den Master verwenden Knoten soll die Sende-PDO auf dezentrale Anforderung hin senden Übertragungsereignis der Sende-PDO vollständig Knotenhersteller-spezifisch Übertragungsereignis der Sende-PDO im Geräteprofil des Knotens definiert Resultierender CANopen-spezifischer Übertragungstyp Z55 Kommunikationsdauer-Knoten Ereigniszeit 200 ms	

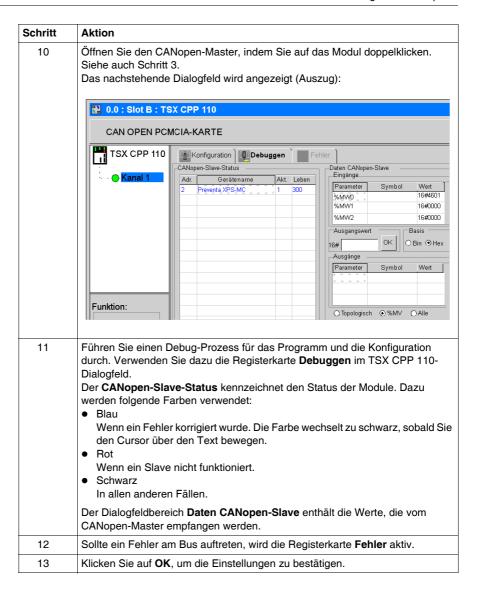
Stellen Sie das **Ereignis-Zeitglied** für jedes PDO auf den Wert 200 ms ein. **Hinweis:** Wenn das **Ereignis-Zeitglied** auf 0 steht und **Übertragungsmodus** den Wert 255 aufweist (Standardeinstellungen), dann wird das PDO nur einmal beim Start übertragen, und wenn eine Datenänderung (Eingänge, Ausgänge, erfasste Fehler oder Diagnose) erfolgt ist, mit Ausnahme einer Dezentralen Übertragungsanforderung. Wenn das **Ereignis-Zeitglied** auf 0 steht, wird der zyklische Datenaustausch deaktiviert.

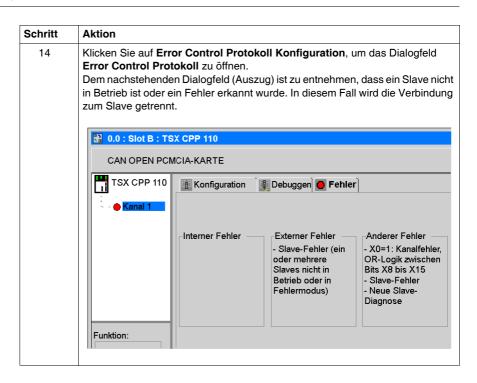
. Master-Periodenintervall (Anforderungsverlangsamung)

152 33003277 01/2012

-Fernanforderungsbedingung CANopen-Master


Konfiguration von Unity Pro für CANopen

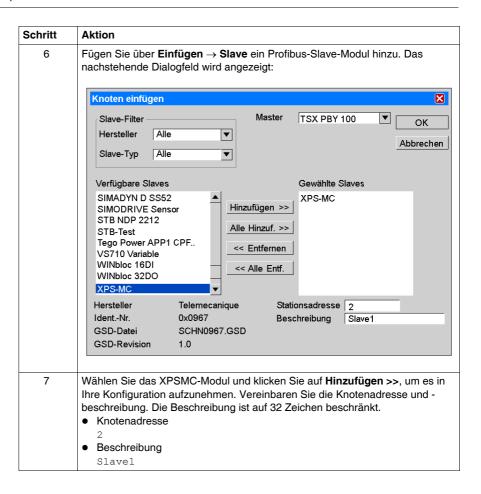

Einführung

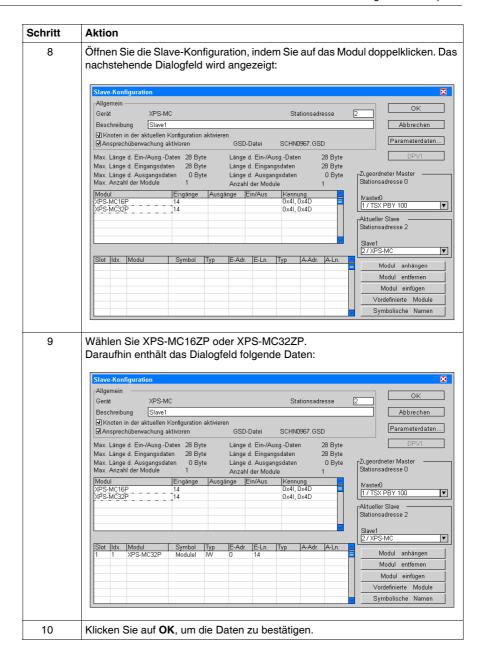

Dieses Beispiel illustriert die Konfiguration von Unity Pro (z. B. für Premium TSX mit einer CANopen-Schnittstelle TSX CPP110).

Konfigurieren von Unity Pro

Die nachstehende Tabelle beschreibt die verschiedenen Arbeitsschritte für die Konfiguration des CANopen-Busses mit Hilfe von Sycon 2.9 und Unity Pro:

Anschluss des XPSMC mit Profibus und Sycon 2.9


Einführung


In diesem Beispiel wird die Sicherheitssteuerung XPS-MC über Profibus mit dem Profibus-Master verbunden (z. B. Premium TSX mit einer Profibus-Master-Schnittstelle TSX PBY100 von Schneider Electric). Der Feldbus wird mit Hilfe von Sycon 2.9 von Schneider Electric und der Controller mit Hilfe von Unity Pro, ebenfalls von Schneider Electric, konfiguriert.

Konfiguration mit Sycon 2.9

Die nachstehende Tabelle beschreibt die verschiedenen Arbeitsschritte für die Konfiguration des Profibus-Busses mit Hilfe von Sycon 2.9 und Unity Pro:

Schritt	Aktion	
1	Kopieren Sie die verfügbare <i>GSD</i> -Datei in folgendes Verzeichnis:\SyCon\Fieldbus\Profibus\GSD.	
2	Kopieren Sie die verfügbare <i>DIB</i> -Datei in folgendes Verzeichnis:\SyCon\Fieldbus\Profibus\BMP.	
3	Starten Sie das Sycon-Systemkonfigurationsprogramm.	
4	Erstellen Sie eine neue Profibus-Konfiguration über $\textbf{Datei} o \textbf{Neu}$.	
5	Fügen Sie über Einfügen → Master ein Profibus-Master-Modul hinzu und wählen Sie Profibus als Feldbussystem. Das nachstehende Dialogfeld wird angezeigt (Auszug):	
	Master1 Stationsadresse 1 DP Master TSX PBY 100	

Schritt	Aktion	
11	Speichern Sie Ihre Konfiguration über Datei → Speichern unter . Nach dem Speichervorgang wird die nachstehende Abbildung angezeigt:	
	Master1	
	Stationsadresse 1 DP Master TSX PBY 100	
	Slave1	
	Stationsadresse 2 DP Slave XPS-MC	
12	Exportieren Sie Ihre Konfiguration über $\mathbf{Datei} \to \mathbf{Exportieren} \to \mathbf{ASCII}$.	
13	Importieren Sie die Konfiguration in Ihre Profibus-Master-Software, z. B. Unity Pro.	

Konformitätserklärung

EG-Konformitätserklärung

Übersetzung der Original-Konformitätserklärung

(Deutsche Übersetzung der original EG-Konformitätserklärung, Dokument-Nr.: S1A4492300.01)

EG-KONFORMITÄTSERKLÄRUNG FÜR SICHERHEITSBAUTEILE

Schneider Electric Industries SAS / 35, rue Joseph Monier / 92506 Rueil Malmaison, France

erklären hiermit, daß das nachstehend aufgeführte Sicherheitsbauteil

MARKE: SCHNEIDER ELECTRIC

NAME, TYP: Sicherheitscontroller Konfigurationssoftware MODELL: XPS-MC16Z / XPS-MC32Z / XPSMCWIN2

XPS-MC16ZC / XPS-MC32ZC / XPS-MC16ZP / XPS-MC32ZP

SERIENNNUMMER: 21YYXXZZZZZ (YY: 10...99, XX: 01...53, ZZZZZ: 00001...99999)

FERTIGUNGSDATUM: siehe Typenschild

allen wesentlichen Schutzanforderungen, die in den nachfolgenden bezeichneten Richtlinien festgelegt sind, entspricht.

Weiterhin wird die Konformität mit folgenden harmonisierten Europäischen Normen erklärt:

DATIERTE FUNDSTELLE:	RICHTLINIENBEZUG:
EN 60947-01:2007 (DIN EN 60947-01:2008-04)	RICHTLINIE 2004/108/EG DES
EN 61000-6-02:2005 (DIN EN 61000-6-2:2006-03)	EUROPÄISCHEN PARLAMENTS UND DES RATES vom 15. Dezember 2004
EN 61000-6-4:2007 (DIN EN 61000-6-4:2007-09)	zur Angleichung der Rechtsvorschriften der
EN 60947-5-1:2004 (DIN EN 60947-5-1:2005-02)	Mitgliedstaaten über die elektromagnetische
	Verträglichkeit und zur Aufhebung der Richtlinie 89/336/EWG
EN 60204-01:2006 (DIN EN 60204-01:2007-06)	RICHTLINIE 2006/42/EG DES
EN 62061:2005 (DIN EN 62061:2005-10)	EUROPÄISCHEN PARLAMENTS UND DES RATES
EN ISO 12100-2:2003 (DIN EN ISO 12100-2:2004-04)	Lüber Maschinen und zur Änderung
EN ISO 13849-1:2008 (DIN EN ISO 13849-01:2008-12)	der Richtlinie 95/16/EG (Neufassung)
EN ISO 13849-2:2008 (DIN EN ISO 13849-2:2008-09)	
EN ISO 13850:2008 (DIN EN ISO 13850:2009-08)	
EN 574:1996+A1:2008 (DIN EN 574:2008-12)	
EN 692:2005+A1:2009 (DIN EN 692:2009-10)	
EN 693:2001+A1:2009 (DIN EN 693:2009-11)	

Folgende benannte Stelle hat eine positive Erklärung im Sinne der Richtlinie 2006/42/EG ausgestellt:

KENNNUMMER DER BENANNTEN STELLE:	NUMMER DER PRÜFBESCHEINIGUNG:	NAME, ANSCHRIFT:
0044		TÜV NORD CERT GMBH Langemarckstr. 20 D-45141 Essen

Falls es gemäß seiner Bestimmung, den geltenden Vorschriften, Normen und Herstelleranweisungen entsprechend installiert, verwendet und gewartet wird.

Dokumentationsbevollmächtigter:

Eric Léon Barry / Schneider Electric Automation GmbH / Steinheimer Straße 117 / 63500 Seligenstadt, Germany

Frankreich - Rueil Malmaison 25 - Mai - 2010

i. V. François Mondino OEM R&D Vice-President

Die original EG-Konformitätserklärung ist auf unserer Webseite erhältlich: www.schneider-electric.com

Glossar

Α

Anlaufsperre

Nach dem Einschalten der Versorgungsspannung verhindert die Anlaufsperre einen Start so lange, bis bereits bestehende Eingangssignale abgeschaltet und erneut erzeugt werden (z. B. Schutztür öffnen und wieder schließen).

C

CAN

Controller Area Network

Das CAN-Protokoll (ISO 11898) für serielle Bus-Netzwerke wurde für die Verbindung intelligenter Geräte (unterschiedlicher Hersteller) in intelligenten Systemen für industrielle Echtzeit-Anwendungen konzipiert. In CAN-Multimaster-Systemen lässt sich durch die Implementierung eines Broadcast-Nachrichtendienstes sowie fortschrittlicher Fehlerbehandlungsmechanismen eine hohe Datenintegrität gewährleisten. Ursprünglich wurde das CAN-Protokoll zwar für den Einsatz in Automobilen entwickelt, kommt heute aber in einer Vielzahl verschiedener industrieller Umgebungen zur Automatisierungssteuerung zum Einsatz.

CANopen-Protokoll

Offenes Industriestandard-Protokoll, das auf einem internen Kommunikationsbus eingesetzt wird. Das Protokoll ermöglicht die Anbindung jedes beliebigen CANopen-Standardgeräts an den Insel-Bus.

Ε

EDM

Kontaktüberwachung externer Geräte

ESPE

Berührungslos wirkende Schutzeinrichtungen

F

Freigabekreis

Schaltet die Steuerspannung für den Maschinenteil, der die gefahrbringende Bewegung erzeugt.

K

Konfigurationsmodus

Betriebszustand des XPSMC, in dem keine gültige Konfiguration im Controller verfügbar ist und eine Konfiguration übertragen werden kann.

Kontrollausgang

Mit einem Testsignal belegter Ausgang, der ausschließlich zur Versorgung der Sicherheitseingänge des XPSMC dient. Da jeder Kontrollausgang mit einem anderen Testsignal arbeitet, können Querschlüsse zwischen Sicherheitseingängen erkannt werden, die an unterschiedlichen Kontrollausgängen angeschlossenen sind. Auch die Einspeisung von Fremdspannung oder Masseschluss wird so erkannt.

0

OSSD

Ausgangsschaltelement (Output Signal Switching Device)

Ρ

PDO

Prozessdatenobjekt (Process Data Object)

In CAN-basierten Netzwerken werden PDOs als nicht quittierte Broadcast-Nachrichten übertragen oder von einem Herstellergerät an ein Verbrauchergerät gesendet. Das Sende-PDO vom Herstellergerät verfügt über eine spezifische Kennung, die dem Empfangs-PDO der Verbrauchergeräte entspricht.

Profibus-DP

Dezentrales Profibus-Peripheriesystem (Profibus Decentralized Peripheral)

Offenes Bussystem, das auf ein elektrisches Netzwerk aus geschirmten 2-Draht-Leitungen oder auf ein optisches Netzwerk aus Glasfaserkabeln zurückgreift. DP-Übertragungen ermöglichen einen zyklischen Datenaustausch bei hoher Geschwindigkeit zwischen der Controller-CPU und den dezentralen E/A-Geräten.

R

RUN-Modus

Betriebszustand des XPSMC, in dem die angeschlossenen Schaltelemente überwacht und die Sicherheitsausgänge geschaltet werden.

S

Sicherheitsausgang

Von der Logik des XPSMC betätigtes und überwachter Relais- oder Halbleiterausgang, der zur Freigabe der Sicherheitsstromkreise verwendet werden kann.

Sicherheitseingang

Kurzschlüsse zwischen Eingängen und Kurzschlüsse von Eingängen zur Masse oder zur externen Versorgung können erfasst werden, wenn die Kontrollausgänge (c1...c8) zur Steuerung der Sicherheitseingänge verwendet werden.

Synchronzeit

Maximal zulässiger Zeitraum zwischen dem Auftreten zweier Eingangssignale.

Т

TER (Steckverbinder für Terminal)

8-poliger RJ45-Steckverbinder für die Anschlüsse eines PCs zur Konfiguration oder Diagnose (Bussystem mit Modbus-Protokoll) oder für den Anschluss an ein anderes Modbus-fähiges Modul (Controller, Bedienterminals usw.)

Index

A	В
Abbildung, 24	Beispiel
Abmessungen, 26	CANopen, 138, 146, 154
Allgemeine Beschreibung	Profibus, 157
XPS-MC16/32, 42	Sycon 2.8, <i>138</i>
Anfangsbetrieb, 37	Sycon 2.9, 146, 157
Anschluss	Unity Pro, 154
CANopen-System, 99	
Modbus-System, 50	
Profibus DP-System, 92	C
seriell, 48	CANopen, 43, 98
USB, <i>49</i>	Fehlerstatus, 101
Anschlüsse, 61	Knoten, 142, 150
Anschlussklemmen, 45	Kommunikationsanschluss, 99
Anschlussschema, 54	Konfiguration, 138, 146, 154
Anwendung, 32	Master, 139, 147, 154
Anwendungsbeispiel	Parameter, 98
Lichtgitter mit Muting, 130	Sycon 2.8, <i>138</i>
Not-Aus, 133	Sycon 2.9, <i>146</i>
Schaltmatte, 133	Unity Pro, 154
Schutztür mit Zustimmschalter, 132	Verdrahtung, 99
Zweihandsteuerung, 133	CANopen-/Profibus DP-LEDs, 46
Anzeigeelemente und Systemdiagnose, 52	CANopen-Anschluss, 45
Ausgabe-Bausteine, 128	CANopen-Netzwerk und Stichleitungslänge 102
	CANopen-Parameter, 104
	Codierung, 44

33003277 01/2012 167

D DIB, *157*

E	Klemmenleisten, 62
EDM-Baustein, 123	Kommunikationsanschlüsse TER, 47
EDM-Bausteine, 118	Konformitätserklärung, 161
EDS, 138, 146, 154	
Eingangskreise, 61	L
Einstellungen	_
CANopen, 98	Länge von Netzwerken und Stichleitungen
Profibus DP, 91	CANopen, <i>102</i> LED, <i>52</i>
Einzelleiteranschlüsse, 56	LEDs für CANopen, 101
Elektrische Lebensdauer der Ausgangskon-	LEDs für Profibus DP, 94
takte, 135	LEDs zur Anzeige des Betriebszustands, 52
Error Control Protokoll, 144, 153	,,,,,,,
F	М
	Mechanische Struktur, 58
Fehlercodes, <i>63</i> Fehlerstatus, <i>94</i> , <i>101</i>	Mehrleiteranschlüsse, 56
Funktion, 33	Modbus-Parameter, 90
i diktion, 55	Modelle XPSMC, 22
	Montage, 27
G	
GSD, 157	N
	Netzwerklänge
Н	CANopen, 102
	Node Guarding Protokoll, 144, 153
Heartbeat, 141, 149 Heartbeat Protokoll, 144, 153	
Tleatibeat Flotokoli, 144, 133	0
	•
	Objektverzeichnis des Sicherheitscontrollers
IEC 61508	XPSMC ZC, 106
Emergency Shutdown (ESD), 16	ODER-Funktion, <i>126</i>
ESD (Emergency Shutdown), 16	
Safety Integrity Level (SIL), 16	Р
Sicherer Zustand, 16	Parameter
SIL (Safety Integrity Level), 16	CANopen, 98
IEC61508	Profibus DP, 91
Funktionale Sicherheit, 16	Periodenzeit, 141, 149
	Premium SPS-Kommunikationskarten, 68
K	Profibus, 43
Kabel, 66	Konfiguration, 157
Klemmenbeschreibung, 55	Sycon 2.9, <i>157</i>
Klemmenleiste, 62	

Profibus DP, 91
Fehlerstatus, 94
Kommunikationsanschluss, 92
Parameter, 91
Verdrahtung, 92
Profibus DP - Austausch der Eingangszustände, 95
Profibus DP-Anschluss, 45
Profibus DP-Parameter, 97

R

Relais-Sicherheitsausgänge, 59

S

Selbsttest, 37 Spannungsversorgung, 58 Start-Bausteine, 118, 124 Steckverbindung, 44 Stichleitungslängen CANopen, 102 Sycon, 138, 146, 157 Sycon 2.8, 138 Sycon 2.9, 146, 157 Synchronisation, 141, 149

Т

Technische Kenndaten, 56 TER-Anschluss, 45, 47 TSX SCY 11601, 68 TSX SCY 21601 Spezifikationen, 68

U

Überwachungsbausteine, 118, 119 Unity, 71 Unity Pro, 154, 154

٧

Vorderansicht des XPSMC, 43

W

Wahlschalter, 127

X

XPS-MC16/32, 42 Allgemeine Beschreibung, 42 XPSMC• Klemmen, 56

Z

Zeitglied, 126 Zustimm-Bausteine, 118, 125