

KIT D'OSCILLOSCOPE ÉDUCATIF POUR PC

SZÁMÍTÓGÉPES OSZCILLOSZKÓP TANULÓ KÉSZLET

KIT EDUCATIVO CON OSCILOSCOPIO PARA PC

= | | | | ()

(9)

California de Carena				and the second s	100V 101V
İnn		μĪ		h Am h Amateria b Met d Len h Anatoria b Met d Len h Anatoria b Method h Methodd h Methodd	1177 1277 1277 1277 1277 1277 1277 1277
				Di Companya	3 25 67

าตุโรกอออกการวิกาตาเลกา

		Tradition	-	
(*************************************	.**			
are realized				

- Idő mérték: 20ms/div 2000s/div
- max. Felvételi idő: 9,4 óra képernyő tartalmanként
- Automatikus adatmentés
- A kijelző mentése és megjelenítése
- Automatikus 1 éves felvétel

- DEDERGINOFE
 - Sávszélesség: DC max. 200 kHz
 - +3dB Bemeneti impedancia: 100 kohm / 20 pF

max. Bemeneti feszültség: 30V (AC + DC) · Felvétel hossza: 1k minták

Időbázis: 10us ... 500ms / osztás Bemeneti tartomány: 100mV ... 5V/osztás Tartomány mintavételezés áttekintés funkció automatikus kiválasztása

- · Kijelzett adatok: True RMS, dBV, dBm, p to p, Duty cycle. Fre- quency...
- Letapogatási frekvencia: 62.5 Hz 1.5 MHz
- Pre-triggerelési funkció tartomány: 0.1 ms/osztás .. 500 ms/osztás
- Utánvilágítás: Színfokozatos, beállítható vagy végtelen
- Bemeneti érzékenvség: 3 mV Kijelző felbontás

pektrumanalvsator

- max, letapogatási sebesség: 100/s
- min. letapogatási sebesség: 1 minta/20 mp
- Frekvenciatartomány: 0 ... 150Hz ... 75kHz
- Működési mód: FFT (Fast Fourier Transform)
- FET felbontás: 512 sor

Allgemaine Aufermation

- Jelölések amplitúdó/feszültséghez és frekvencia/időhöz.
- Szakértői vagy alap mód a szoftverben
- Bemeneti csatolás: DC és AC
- 8 bites felbontás
- A képernyő vagy adatok mentése
- Tápellátás USB-n keresztül: +/- 200mA
- · Mivel a Microsoft® Human Interface Device (HID)meghajtót használja, nincs szüksége külső meghajtóra.
- Méret: 94 x 94mm

Systemvoraussetzung

- · IBM kompatibilis számítógép
- Windows[™] XP. Vista, 7, 8 *
- SVGA kijelző kártya (min.1024 x 768)
- Egér

- 17 -

Szabad USB port 1.1 vagy 2.0.

Windows™ a Microsoft Corporation vállalat bejegyzett márkája

SZÁMÍTÓGÉPES OSZCILLOSZKÓP TANULÓ KÉSZLET

MIELŐTT HOZZÁKEZDENE: Tekintse meg az általános útmutatásokat a forrasztáshoz, és más általános

információkat is. Az összeállításhoz szükséges anyag:

»K is forrasztópáka, legfeljebb 40 W-os.

- » V é k o n y , 1 m m e s , forrasztózsír mentes forrasztóón.
- » Egy kis csípőfogó.
- 1. Szerelje az alkatrészeket megfelelő irányban a nyomtatott áramköri lapra, lásd az ábrát.
- 2. Szerelje az alkatrészeket a darabjegyzékben feltüntetett helyes sorrendben.
- 3. Kipipálással regisztrálja az előrehaladását a szerelésben.
- 4. Vegye figyelembe az esetleges szövegközti megjegyzéseket.

I. FELSZERELÉS

Ne kövesse vakon az elemek sorrendjét a szalagon. Ellenőrizze mindig az értéküket a darabjegyzék alapján!

Tanács: A fotók a csomagoláson használhatók segítségként, amikor a szerelést végzi. Bizonyos módosítások miatt mindenesetre lehetséges, hogy a fotók nem egyeznek meg 100%-ban a valósággal.

- 1. Szerelje be a kerámia kondenzátorokat, amik a szalagra vannak rögzítve.
- 2. Szerelje be a diódákat. Ügyeljen közben a polaritásra.
- 3. Szerelje be a Zener diódát. Ügyeljen közben a polaritásra.
- 4. Szerelje be a HF (nagyfrekvenciás) tekercseket.
- 5. Szerelje be az IC foglalatokat. Ügyeljen a bütyök pozíciójára!
- 6. Szerelje be a trimmer potenciométert.
- 7. Szerelje be a kerámia kondenzátorokat.
- Szerelje be a függőleges ellenállásokat.
- 9. Szerelje be a tranzisztorokat.
- 10. Szerelje be a feszültségszabályozót. Vegye figyelembe az illusztrált alkatrész listát a helyes beszereléshez. 11. Szerelje be a relét.
- 12. Szerelje be az USB csatlakozót.
- 13. Szerelje be az elektrolit kondenzátorokat (elko-kat). Figyeljen a polaritásra!
- 14. Szerelje be a kristályt.

SZÁMÍTÓGÉPES OSZCILLOSZKÓP

- 15. Dugja be az IC-t a foglalatába. Ügyeljen a bevágás pozíciójára.
- 15. Kövesse a következő lépéseket a LED beépítéséhez.
 - 1. lépés: Szerelje be a LED-et, ügyeljen a polaritásra! Még ne forrasszon!
 - 2. lépés: Szerelje be az egységet. Azonban még ne húzza meg a csavarokat. Úgy pozícionálja a LED-et, hogy az pontosan a borító lemez alatt helyezkedjen el.
 - 3. lépés: Forgassa el az egységetl 180°-kal.
 - 4. lépés: Először egy vezetéket forrasszon be, majd ellenőrizze a pozíciót. Ha helyes a pozíció, forrassza be a második csatlakozót.
 - 5. lépés: Szerelje ki az egységet.
- 17. Szerelje be a teszt vezetéket
 - 1. lépés: Válassza le a banándugót a teszt vezetékről.
 - 2. lépés: Ügyeljen arra, hogy mindkét kábelvéget lecsupaszolja és összesodorja őket.
 - 3. lépés: Forrassza be a vezetékeket.

4. lépés: Szerelje be mindkét vezetéket (ld. az ábrát). <u>Megjegyzés:</u> Előszöraz egyik vezetéket szerelje be. Majd csak ezután szerelje be a második vezetéket.

5. lépés: Forrassza be a vezetékeket a nyáklapra

II. A SZOFTVER TELEPÍTÉSE

Miután megépítette a nyomtatott áramkört, telepítse a szoftvert.

1. lépés: Töltse le az EDU09 szoftvert a weboldalunkról vagy a QR kód segítségével.

2. lépés: Nyissa meg a fájlt és válassza ki a szoftvert. 3. lépés:

Válassza a "next" lehetőséget a szoftver telepítéséhez. 4. lépés:

Fogadja el a liszensz szerződést.

5. lépés: Válassza ki a számítógépen a cél könyvtárt.

6. lépés: Válassza ki a kívánt mappát, a kapcsolatok telepítéséhez. 7. lépés: Válassza

ki a kívánt mellék feladatokat. Ezután nyomja meg a "next" gombot. 8. lépés: Válassza

ki az "install" lehetőséget a szoftver telepítéséhez.

9. lépés: Kattintson a "finish"-re a konfiguráció elhagyásához.

10. lépés Csatlakoztassa az EDU09-et a számítógéphez.

SZÁMÍTÓGÉPES OSZCILLOSZKÓP TANULÓ KÉSZLET

III. KALIBRÁLÁS

- ! Nincs szükség külső meghajtóra. Az EDU09 egy belső Microsoft Windows HID meghajtót használ, ami automatikusan betöltődik.
- · Állítsa az RV1-et a középső helyzetbe.
- Csatlakoztassa az EDU09 oszcilloszkópot a számítóép USB csatlakozójához. A piros LED folyamatosan világít.
- · Indítsa el a telepített EDU09.EXE szoftvert.
- · Az első csatlakozáskor a kalibrálási folyamat automat ikusan elindul.
- Ha nem indul el automatikusan a kalibrálási folyamat: Az "Options" menüben válassza ki a "Calibrate" menüpontot majd az OK megnyomásával indítsa el a kalibrációt. Várja meg, amíg befejeződik a kalibráció. Szerelje fel a borítő lemezt. A készülék ezzel használatra kész.

Haladó felhasználók számára: A bemeneti erősítő finombeállítása (1 db 1,5V-os elemre van szükség)

! Csak akkor kalibrálja a készüléket, ha magasabb mérési pontosságot szeretne elérni

- · Az "Options" menüben válassza ki az "Expert Settings" menüpontot.
- · A "View" menüben válassza ki a « Waveform Parameters...» menüpontot.
- · A "Waveform Parameters ablakban jelölje ki a "DC Mean" lehetőséget.
- · Mérje meg az elem kimenetet egy multiméter segítségével és írja fel a mért értéket.
- Csatlakoztassa az elemet az oszcilloszkóp bemenetéhez.
- Állítsa be a Volts/Div-et « 0,5V »-ra és kattintson a « Run »-ra.
- Szabályozza az RV1 trimmer potenciométert mindaddig, amíg a "DC Mean érték" a « Waveform Parameters » ablakban a mért értékkel meg nem egyezik.
- · Távolítsa el az elemet

IV. ÖSSZESZERELÉS

Szerelje össze ekkor az egészet (ld.az ábrát). Az oszcilloszkóp ekkor használatra kész.

KÍSÉRLETEZZEN AZ EDUKIT EDU06 KÍSÉRLETEZŐ KÉSZLETTEL

Tekintse meg az EDU6 oszcilloszkóp kísérletező készletet is.

Sok informácót és kísérletet tartalmaz, hogy megismerkedh essünk egy oszcilloszkóp működésének alapelvével.

velleman <u>ki</u>

SZÁMÍTÓGÉPES OSZCILLOSZKÓP

V. OSZCILLOSZKÓP TERMINOLÓGIA

- 1. Volts/div: (Volt pro Division) Meghatározza, hány volttal kell változtatnunk a bemenő jelet ahhoz, hogy a jelet egy osztással eltoljuk.
- 2. Time/div: (Idő pro Division) Meghatározza azt az időt, ammenyire a jelnek szüksége van arra, hogy az osztás megfelelő oldalára érjen.
- 3. Division: Képzett vagy látható rács az oszcilloszkóp képernyőjén. Arra szolgál, hogy egy jel amplitúdóját és periódusát megbecsülhessük.
- 4. Periódus (T): Egy AC hullámforma egy ciklusának időtartama (= 1/f)
- 5. Frekvencia (f): Az AC hullámforma ciklusainak száma másodpercben
- 6. Sugár (Trace): Az a sugár, ami az oszcilloszkóp kijelzőjén látható, a bemenő jelet mutatja.
- 7. Amplitúdó: Milyen távolságban változik a jel egy irányban mV-ban vagy V-ban van kifejezve. Ismétlődő jelhez: Vpeak.
- 8. Csúcs-csúcs: Különbség a jel leg pozitívabb és leg negatívabb vébpontja között. Szinuszformájú jelekhez: 2xVpeak.

AC coupling (AC-csatolás) Az oszcilloszkóp csak egy jel AC összetevőit mutatja. A DC összetevő generálódik.

AC voltage (Váltófeszültség): (AC: Alternating Current, váltakozó áram) Váltakozó áram esetén az áram periódikusan megfordul, ezzel ellentétben az egyenáram esetén (DC) az áram egy irányba folyik. Egy AC forrásnak nincs polaritása.

Analog (analóg) Analóg oszcilloszkópok arra használják a bemenő jelet, hogy eltérítsenek egy elektron sugarat a képernyőn, ami balról jo bbra halad. Az elektron sugár egy képet hagy vissza a kijelzőn. Ez a kép állítja elő azt a jelet, amit Ön alkalmazott. Az analóg jelek folyamatosan módosíthatók. További információk a 'Digital' (digitális) bejegyzésben.

'Auto-setup' mode (automatikus beállítás üzemmód): Az oszcilloszkóp automatikusan választja ki a beállítást a Volts/div-hez és Time/div-hez, úgy hogy a jel egy vagy több periódusa helyesen jelenjen meg.

Clipping: Egyik jel felső oldala, mindkét jel alsó oldala levágásra kerül ('clipped'), pl. azért, mert a jelet az áramellátás korlátozása miatt nem lehet tovább kitéríteni. Az erősítők nem kívánt tulajdonsága, amit felül lehet bírálni.

DC coupling (DC csatolás): Az oszcilloszkóp egy jel AC- valamint DC összetevőjét is mutatja.

Digital (digitális) A digitális oszcilloszkópok az analóg bemenő jeleket digitálissá alakítják át és összes számítást és megjelenítést a di gitális tartományban végzik el. A digitális jelek csak két fix szintből állnak, többnyire 0V és +5V. További információk az 'Analog' (analóg) bejegyzésben.

Distortion (torzítás) Egy jel nem kívánt módosulása külső okok miatt, pl. olyan kapcsolások miatt, amik túlterheltek vagy rosszul vannak kialakítva stb.

Noise (zaj): Nem kívánt, tetszőleges jel-kiegészítések.

Ripple (lüktetés) Az egyenfeszültség nem kívánt, periodikus módosulása.

Signal (jel): Alkalmazott feszültség az oszcilloszkóp bemenetén. A mérés elvégzésének célja.

Sine wave (szinuszhullám): Matematikai funkció, ami egy azonos ismétlődő rezgést ábrázol. Jelen szószedet elején található hullám form átum egy szinuszhullám.

Spikes (csúcsok): Egy jel gyors rövid változásai.

Bandwidth (sávszélesség): Többnyire MHz-ben kifejezve. Ez az a frekvencia, ami egy alkalmazott szinuszhullámnál megjelenik, az eredeti amplitúdó k b. 70%-os amplitúdójával. Drágább oszcilloszkópok magasabb sávszélességgel rendelkeznek. Szabály: Egy oszcilloszkóp sávszélességének leg alább 5-ször nagyobbnak kell lennie, mint az oszcilloszkóp bemenetén lévő jelnek. Az EDU09 sávszélessége 200 kHz-ig terjed.

DC reference (DC referencia): A DC mérések mindig egy referencia szinthez képest történnek (Null szint, föld). Ezt a referencia szintet előre meg kell határozni. Ha ezt nem teszi meg, a kijelzett érték hibás lehet. A legtöbb esetben a referencia szint a kijelző közepén található. Ez azonban n em kötelező.

DC voltage (Egyenfeszültség): (DC: Direct Current, egyenáram) Az egyenáram esetén az áram egy irányban folyik és nem fordul vissza. Egy DC forrás polaritással rendelkezik, (+) és (-).

Input coupling (bemenő csatolás): Az ábrán az oszcilloszkóp egy tipikus bemeneti áramköre látható. 3 lehetséges beállítást kínál:

AC csatolás, DC csatolás és GND. AC csatolásnál a bemeneti jellel sorba van állitva egy kondenzátor. Ez a kondenzátor blokkolja a jel DC összetevőit és csak az AC-t engedi át. DC csatolásnál a kondenzátorral áthidalhatókká válnak így a DC és az AC összetevők is. Az alacsony frekvenciájú jeleket (<20Hz) mindig egy DC csatolás alkalmazásával kell megjeleníteni. Ha az AC csatolást használja, akkor a belső kondenzátor zavarni fogja a jelet, így az helytelenül jelenik meg.

Sample rate (lüktetés) Egy egyenfeszültség nem kívánt periodikus változása. Sample rate (mintavételi ráta): Többnyire Sampes vagy Megasamples/sban kifejezve, néha MHz-ben. Ez annak a száma másodpercenként, ahányszor az oszcilloszkóp a bemeneti jelet megnézi.

Minél többször "tekinget" az oszcilloszkóp, a hullámformának annál valósághűbb képe látható a kijelzőn. Elméletileg a letapogatási rátána k a duplájának kell lennie a mérendő jel legmagasabb frekvenciájánál. A valóságban a legjobb eredményt a legmagasabb frekvenciánál 5-ször nagyobb letapogatási rátával lehet elérni. Az EDU09 letapogatási rátája 1,5Ms/s vagy 1,5MHz.

Sensitivity (érzékenység): A bemenő jel legkisebb rezgését mutatja, amire szükség van ahhoz, hogy a sugár a kijelzőn felfele vagy lefele moz ogjon. Leggyakrabban mV-ban van kifekjezve. Az DU09 érzékenysége 0,1mV.

Slope (lejtés) Meghatározza, hol triggerelődik az oszcilloszkóp. Ez a jel növekvő vagy csökkenő szakaszában lehet.

Vrms: Egy AC feszültségforrás RMS feszültsége azt a szükséges egyenfeszültséget jelzi, amivel egy ellenállásban ugyanaz a mennyiségű hő gener álódik, amit az AC forrás generálna. Szinusz formájú jelekhez: Vrms = Vpeak / sqrt(2)

LOSCOPIO PARA PC

- Oscilloscopio
- i npedancia de entrada: 100 kohm / 20 pF
- t insión de entrada máx.: 30V (AC + DC)
- base de tiempo: de 10us a 500ms / división
- orango de entrada: 100mV a 5V/div
- selección automática del rango
- función de historial de los muestreos duración de la grabación: 1k muestreos

erabador de señales transitorias

- escala de tiempo: de 20ms/div a 2000s/div tiempo de grabación máx.: 9.4h / pantalla
- almacenamiento automático de los datos
- grabación y visualización de las pantallas
- · grabación automática durante más de un año
- número máx de muestreos: 100/s
- número mín de muestreos: 1 muestreo/20s

osciloscopio: ancho de banda: DC a 200 kHz +3dB • visualizaciones: True RMS, dBV, dBm, p to p, Duty cycle, Frequency...

- frecuencia de muestreo: 62 5Hz a 1 5MHz
- alcance de la función de predisparo (trigger): 0.1 ms/div 500 ms/osztás
- modos de persistencia : tono, variable e infinito.
- sensibilidad en la entrada; resolución de la pantalla de 3mV

Analikación de espectro

 principio de funcionamiento: FFT (Fast Fourier Transform) resolución EET: 512 líneas.

Información seneral

- · puntos de referencia (marcadores) para: amplitud/tensión y frecuencia/tiempo
- · es posible seleccionar entre el modo 'basic' y el modo 'expert'
- · conexión en la entrada: DC v AC
- resolución de 8 bits
- almacenamiento de los datos y las pantallas
- alimentación por USB: +/- 200mA
- utiliza el driver Human Interface Device (HID) de Microsoft®, no necesita un driver externo
- dimensiones: 94 x 94mm

Ismeicie lei saminima afonecite

- PC compatible IBM
- Windows[™] XP. Vista, 7, 8 *
- tarjeta de vídeo SVGA (mín.1024 x 768)
- ratón
- puerto USB libre 1.1 ó 2.0

v vollomannrojocte o

^{*} A Windows™ a Microsoft Corporation vállalat bejegyzett