SCHEDINA TECNICA - LS-S11

Interruttore di posizione, perno con cappa, Apparecchio base, espandibile, 1 contatto NA, 1 contatto NC, Morsetto a bullone, Giallo, materiale isolante, -25 - +70 °C

Tipo LS-S11
Catalog No. 106783
Alternate Catalog LS-S11
No.

Programma d	li 1	fornitura

Programma di tornitura		
Funzione di base		interruttore di posizione Interruttori di posizione di sicurezza
Rilevatore tipo		LS(M)
Assortimento		perno con cappa
Grado di protezione		IP66, IP67
Accessori		Apparecchio base, espandibile
Temperatura ambiente	°C	-25 - +70
Equipaggiamento contatti		
NA = norm. aperto		1 contatto NA
NC = norm. chiuso		1 contatto NC 🕣
Nota		⊖ = Funzione di sicurezza tramite apertura positiva secondo IEC/EN 60947-5-1
Simbolo circuitale		0-\frac{13}{14}\frac{1}{22}
Corsa contatto ■ = contatto chiuso □ = contatto aperto		0 4.3 6.1 13-14 NO 21-22 NC Zw = 4.5 mm
Apertura positiva (ZW)		Sì
Colore		
Coperchio custodia		Giallo
Coperchio custodia		
Custodie		materiale isolante
Tipo di collegamento		Morsetto a bullone

Dati tecnici Generalità

Contract		
Conformità alle norme		IEC/EN 60947
Idoneità ai climi		Caldo umido, costante secondo IEC 60068-2-78Caldo umido, ciclico secondo IEC 60068-2-30
Temperatura ambiente	°C	-25 - +70
Posizione di montaggio		facoltativa
Grado di protezione		IP66, IP67
Sezioni di collegamento	mm²	
Rigido	mm^2	1 x (0.5 - 2.5)
Flessibile con puntalino	mm ²	1 x (0.5 - 1.5)
Precisione di riproducibilità	mm	0.15

U_{imp}	V AC	4000
U_{i}	V	400
		III/3
I _e	Α	
I _e	Α	6
I _e	Α	6
l _e	Α	4
l _e	Α	3
I _e	Α	0.6
I _e	Α	0.3
H _F	Frequenz d'errore	^{2a} < 10 ⁻⁷ 7, < 1 interruzione su 10 ⁷ manovre
H _F	Frequenz d'errore	²⁸ < 10 ^{-6, <} 1 interruzione su 10 ⁶ manovre
	Hz	max. 400
	A gG/gL	6
	kA	1
Manovre	x 10 ⁶	8
	°C	≦ 100
	g	25
man/h		≦ 6000
	NET	1,0/8,0
	U _i I _e I _e I _e I _e I _e H _F H _F	Ui V Ie A Ie A

Verifiche di progetto secondo IEC/EN 61439

Max. velocità di avvicinamento per camme a norme DIN

Note

Dati tecnici per verifiche di progetto			
Corrente nominale d'impiego per i dati relativi alla dissipazione	In	Α	6
Dissipazione per polo, in funzione della corrente	P _{vid}	W	0.17
Dissipazione dell'apparecchio, in funzione della corrente	P _{vid}	W	0
Dissipazione statica, indipendente dalla corrente	P _{vs}	W	0
Potere di dissipazione	P _{ve}	W	0
Temperatura ambiente di servizio min.		°C	-25
Temperatura ambiente di servizio max.		°C	70
/erifiche di progetto IEC/EN 61439			
10.2 Idoneità di materiali e componenti			
10.2.2 Resistenza alla corrosione			l requisiti della norma di prodotto sono soddisfatti.
10.2.3.1 Resistenza dell'involucro al calore			l requisiti della norma di prodotto sono soddisfatti.
10.2.3.2 Resistenza dei materiali isolanti a livelli di calore normale			l requisiti della norma di prodotto sono soddisfatti.
10.2.3.3 Resistenza dei materiali isolanti a livelli di calore straordinari			l requisiti della norma di prodotto sono soddisfatti.
10.2.4 Resistenza all'irradiazione UV			l requisiti della norma di prodotto sono soddisfatti.
10.2.5 Sollevamento			Non pertinente dal momento che l'intero quadro elettrico deve essere valutato.
10.2.6 Prova d'urto			Non pertinente dal momento che l'intero quadro elettrico deve essere valutato.
10.2.7 Diciture			l requisiti della norma di prodotto sono soddisfatti.
10.3 Grado di protezione degli involucri			Non pertinente dal momento che l'intero quadro elettrico deve essere valutato.

1/0,5

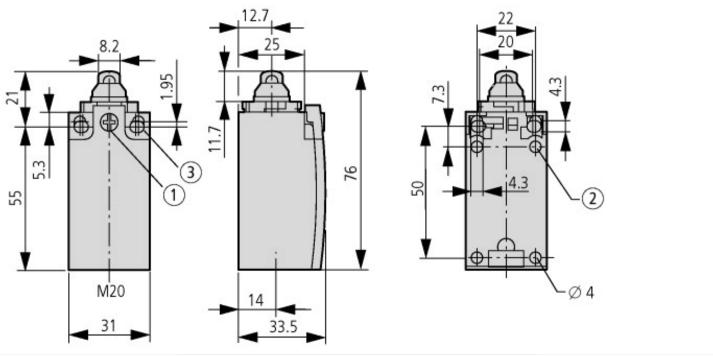
con angolo di avviamento $\alpha = 0^{\circ}/30^{\circ}$

m/s

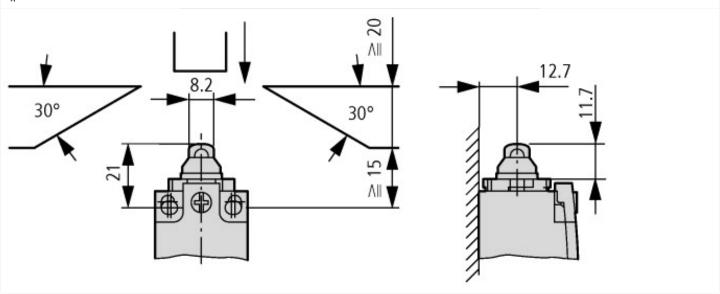
10.4 Vie di dispersione aerea e superficiale	l requisiti della norma di prodotto sono soddisfatti.
10.5 Protezione contro scosse elettriche	Non pertinente dal momento che l'intero quadro elettrico deve essere valutato.
10.6 Montaggio incassato di apparecchi	Non pertinente dal momento che l'intero quadro elettrico deve essere valutato.
10.7 Circuiti interni e collegamenti	Rientra nella responsabilità del costruttore del quadro elettrico.
10.8 Collegamenti per conduttori introdotti dall'esterno	Rientra nella responsabilità del costruttore del quadro elettrico.
10.9 Caratteristiche d'isolamento	
10.9.2 Rigidità dielettrica a frequenza di rete	Rientra nella responsabilità del costruttore del quadro elettrico.
10.9.3 Tensione di tenuta a impulso	Rientra nella responsabilità del costruttore del quadro elettrico.
10.9.4 Verifica di involucri in materiale isolante	Rientra nella responsabilità del costruttore del quadro elettrico.
10.10 Riscaldamento	Il calcolo del surriscaldamento rientra nella responsabilità del costruttore del quadro elettrico. Eaton fornisce i dati relativi alla dissipazione delle apparecchiature.
10.11 Resistenza al corto circuito	Rientra nella responsabilità del costruttore del quadro elettrico. Rispettare i valori predefiniti delle apparecchiature.
10.12 EMC	Rientra nella responsabilità del costruttore del quadro elettrico. Rispettare i valori predefiniti delle apparecchiature.
10.13 Funzione meccanica	Per l'apparecchio i requisiti sono soddisfatti rispettando le indicazioni delle istruzioni per il montaggio (IL).

Dati tecnici secondo ETIM 7.0

sensori (EG000026) / interruttore a posizione singola (EC000030)


Tecnica Di Ar., Elettr., Energia, Tecn. Di Comm., Rete E Proc. Di Conduttura / Rilevatore di misura / Commutatore Di Posizione Meccanico / Commutatore di posizione singolo (ecl@ss10.0.1-27-27-06-01 [AGZ382015])

(ecl@ss10.0.1-2/-2/-06-01 [AGZ382015])		
larghezza del sensore	mm	31
diametro del sensore	mm	0
altezza del sensore	mm	61
lunghezza del sensore	mm	33.5
corrente d'esercizio nominale le per AC-15, 24 V	Α	6
corrente d'esercizio nominale le per AC-15, 125 V	Α	6
corrente d'esercizio nominale le per AC-15, 230 V	Α	6
corrente d'esercizio nominale le per DC-13, 24 V	Α	3
corrente d'esercizio nominale le per DC-13, 125 V	Α	0.8
corrente d'esercizio nominale le per DC-13, 230 V	Α	0.3
funzione di commutazione		organo di comando lento
funzione di commutazione con bloccaggio a scatto		no
uscita elettronica		no
apertura forzata		sì
numero di contatti ausiliari di sicurezza		1
numero di contatti di riposo		1
numero di contatti di chiusura		1
numero di contatti invertitori		0
tipo di interfaccia		senza
esecuzione dell'interfaccia per comunicazione sicura		senza
forma della scatola		blocco
materiale della scatola		plastica
rivestimento scatola		altri
esecuzione dell'elemento di azionamento		pulsante a bottone
allineamento dell'elemento di azionamento		altri
esecuzione del collegamento elettrico		altri
con indicatore di stato		no
adatto per funzioni di sicurezza		sì
categoria di protezione antideflagrante per gas		senza
categoria di protezione antideflagrante per polvere		senza
temperatura ambiente durante il funzionamento		25 - 70
grado di protezione (IP)		IP67
tipo di protezione (NEMA)		4X


-									i
Δ	n	n	re	71	12	zi		n	ı
_	u	u		J١			u		н

ict Standards IEC/EN 60947-5; UL 5 e No. E29184 teggry Control No. NKCR	
	508; CSA-C22.2 No. 14; CE marking
tegory Control No. NKCB	
tagary control to	
ile No. 12528	
Class No. 3211-03	
America Certification UL listed, CSA certification	ied .
ee of Protection IEC: IP66, 67, UL/CSA	A Type 3R, 4X (indoor use only), 12, 13

Dimensioni

- ① Coppia di serraggio vite coperchio: 0,8 Nm ±0,2 Nm ② Solo con LS (esecuzione in materiale isolante) ③ Vite di fissaggio $2 \times M4 \ge 30$ $M_A = 1.5$ Nm

