

KERN & Sohn GmbH

Ziegelei 1 D-72336 Balingen E-mail: info@kern-sohn.com Тел.: +49-[0]7433- 9933-0 Факс: +49-[0]7433-9933-149 Интернет: www.kern-sohn.com

Руководство по эксплуатации Набор для определения плотности

KERN PBS-A03/A04

Версия 1.3 01/2012 RUS

KERN PBS-A03/A04

Версия 1.3 01/2012 Руководство по эксплуатации Набор для определения плотности для аналитических весов KERN PBJ/PBS

Содержание:

•	DDC	депие	ა
	1.1 1.2	Объем поставки Размеры	
2	MOH	ІТАЖ НАБОРА ДЛЯ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ	6
3	ПРИ	НЦИП ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ	8
	3.1	Влияющие величины и источники ошибок	9
4	ОПР	ЕДЕЛЕНИЕ ПЛОТНОСТИ ТВЕРДЫХ ТЕЛ	10
	4.1 4.2 4.3	Активация функцииВведение плотности измерительной жидкостиИзмерение плотности твердого тела	11
5	ОПР	ЕДЕЛЕНИЕ ПЛОТНОСТИ ЖИДКОСТИ	13
	5.1 5.2	ОПРЕДЕЛЕНИЕ ОБЪЕМА ПОГРУЖНОГО ГРУЗИКА	13 14
6	усл	ОВИЯ ПРЕЦИЗИОННЫХ ИЗМЕРЕНИЙ	16
	6.1 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.3 6.3.1 6.3.2	Проба твердого тела ЖидкостиПоверхность Стеклянный погружной грузик для выполнения измерений жидкости Общая информация Плотность / относительная плотность	17171717171818
7	ТАБ	лица плотности жидкости	19
8			
9	УКА	ЗАНИЯ, КОТОРЫХ СЛЕДУЕТ ПРИДЕРЖИВАТЬСЯ	21

1 Введение

KERN PBS-A03	KERN PBS-A04
• Набор для определения плотности для прецизионных весов серии KERN PBJ/PBS с большой платформой весов (180 x 170 мм).	• Набор для определения плотности для прецизионных весов серии KERN PBJ/PBS с малой платформой весов (105 x 105 мм).
• В случае использования набора для определения плотности возможности весов уменьшаются на порядка 100 г.	 В случае использования набора для определения плотности возможности весов уменьшаются на порядка 290 г.

- Для обеспечения надежной и беспроблемной эксплуатации следует внимательно прочесть руководство по эксплуатации.
- В настоящем руководстве описаны только те функции, которые выполняются с набором для определении плотности. Дальнейшая информация относительно обслуживания весов, изложена в руководстве по эксплуатации, приложенном к каждым весам.

1.1 Объем поставки

Рис. 1 Установленный набор для определения плотности **PBS-A04**

1. Держатель чаши весов

2. Универсальная чаша весов

3. Подставка контейнера

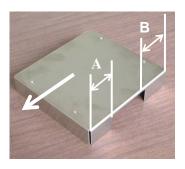
4. Контейнер

5. Кронштейн чаши весов, 4 штуки

6. Стеклянные погружной грузик

1.2 Размеры

2 Монтаж набора для определения плотности


- По необходимости перед установкой набора для определения жидкости следует провести требуемую юстировку.
- Если набор для определения плотности смонтирован нет возможности правильной юстировки.
- Для проведения юстировки следует снять набор для определения плотности и надеть стандартную платформу весов.
- На рисунках ниже показан набор для определения плотности KERN PBS-A03 на весах с большой платформой весов. Набор для определения плотности KERN PBS-A04 следует установить идентичным образом.
- 1. Выключить весы и отключить от питающего напряжения.
- 2. Удалить стандартную платформу весов.
- 3. Удалить кронштейны стандартной платформы весов и заменить их кронштейнами весов набора для определения плотности.

4. Установить держатель чаши весов в четырех кронштейнах чаши весов согласно рисунку. При этом следует обратить внимание на правильное позиционирование, отверстия в верхней части должны быть направлены вперед.

5. Подставку контейнера поставить так, чтобы она не прикасалась к держателю чаши весов

6. Установить контейнер посередине подставки контейнера.

7. Подвесить универсальную чашу весов согласно рисунку. При этом следует обратить внимание, чтобы она не прикасалась к контейнеру.

3 Принцип определения плотности

Три важные физические величины это: объем и масса тел, а также плотность вещества. Масса и объем сопряжены между собой посредством плотности:

Плотность [ρ] это отношение массы [m] к объему [V].

$$\rho = -\frac{m}{V}$$

Единица измерения плотности в системе SI это килограмм на кубический метр (кг/м 3). 1 кг/м 3 равен плотности однородного тела, которое с массой 1 кг занимает объем 1 м 3 .

Иные часто применяемые единицы измерения это:

$$1 \frac{g}{cm^3}$$
 $1 \frac{kg}{m^3}$ $1 \frac{g}{l}$

Благодаря применению нашего набора для определения плотности с нашими весами KERN можно быстро и надежно определить плотность твердых тел и жидкостей. В способе функционирования набора для определения плотности используется "принцип Архимеда":

ВЫТАЛКИВАНИЕ ПРЕДСТАВЛЯЕТ СИЛУ. ОНО ДЕЙСТВУЕТ НА ТЕЛО, ПОГРУЖЕННОЕ В ЖИДКОСТИ. ВЫТАЛКИВАНИЕ ТЕЛА ПРЯМО ПРОПОРЦИОНАЛЬНО К СИЛЕ ТЯЖЕСТИ, ВЫТАЛКИВАЕМОЙ НЕ ЖИДКОСТЬЮ. ВЫТАЛКИВАЮЩАЯ СИЛА НАПРАВЛЕНА ВЕРТИКАЛЬНО ВВЕРХ.

Благодаря этому плотность вычисляется по нижеследующим формулам:

Определение плотности твердых тел

При помощи наших весов, твердые тела можно взвешивать как в воздухе [A], так и в воде [В]. Если плотность выталкиваемого вещества [ρ_0] известная, плотность твердого тела [ρ] рассчитывается следующим образом:

$$\rho = \frac{A}{A-B} \rho_o$$

 ρ = Плотность образца

А = Масса образца в воздухе

В = Масса образца в измерительной (рабочей) жидкости

рс = Плотность измерительной (рабочей) жидкости

Определение плотности жидкости

Плотность жидкости определяется при помощи погружного грузика, объем которого [V] известен. Погружной грузик взвешивается как в воздухе [A], так и в исследуемой жидкости [В].

В соответствии с законом Архимеда на тело, погруженное в жидкость, действует выталкивающая сила [G]. Эта сила является прямо пропорциональной к силе тяжести (весу) жидкости, вытесненной объемом тела. Объем [V] погруженного тела равен объему вытесненной жидкости.

$$\rho = \frac{G}{V}$$

G = Выталкивающая сила погружного грузика

Выталкивающая сила погружного грузика = Масса погружного грузика в воздухе [A] - Масса погружного грузика в исследуемой жидкости [В]

Следовательно:

$$\rho = \frac{A-B}{V} + \rho_L$$

ρ = Плотность исследуемой жидкости

А = Масса погружного грузика в воздухе

В = Масса погружного грузика в пробной жидкости

В = Объем погружного грузика*

 ρ_{L} = Плотность воздуха (0,0012 г/см³)

* Если объем погружного грузика неизвестен, его можно определить, например, в воде и рассчитать следующим способом (см. раздел 5.1.).

$$V = \frac{A-B}{\rho_w}$$

В = Объем погружного грузика

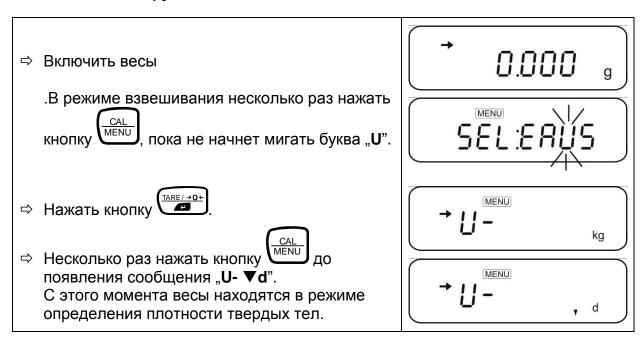
А = Масса погружного грузика в воздухе

В = Масса погружного грузика в воде

 $\rho_W = \Pi$ лотность воды

3.1 Влияющие величины и источники ошибок

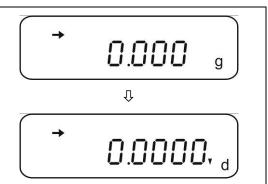
- ⇒ Давление воздуха
- ⇒ Температура
- \Rightarrow Отклонение объема погружного грузика (\pm 0,005 см³)
- ⇒ Поверхностное напряжение жидкости
- ⇒ Пузырьки воздуха
- ⇒ Глубина погружения чаши для проб относительно погружного грузика
- ⇒ Пористость твердого тела


4 Определение плотности твердых тел

При определении плотности твердых тел, твердое тело следует сначала взвесить в воздухе, а затем в измерительной жидкости. Из разницы масс следует выталкивание, которое программа пересчитывает на плотность.

- ⇒ Приготовить весы согласно способу, описанному в разд. 2, "Монтаж набора для определения плотности".
- ⇒ Влить измерительную жидкость в контейнер. Контейнер должен быть заполнен на приблизительно ¾ объема. Регулировать температуру измерительной жидкости до установления ее постоянного значения.

4.1 Активация функции

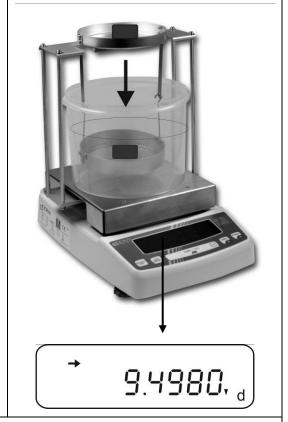

4.2 Введение плотности измерительной жидкости

⇒ Нажать кнопку , появится последнее 000000 сохраненное значение плотности измерительной жидкости. После изменения осуществленного при помощи кнопок стрелок сначала ввести количественное значение плотности с учетом актуальной температуры (см. раздел. 7), а затем установить десятичную запятую. Нажатие кнопки 🍱 вызывает увеличение цифрового значения мигающей цифры. Выбор цифры с правой стороны при помощи PRINT клавиши (каждый раз мигает активная) позиция). ⇒ Установить десятичную запятую. PRINT 🗩 перейти к При помощи кнопки последней позиции, а когда она мигает, снова PRINT 1000000. нажать кнопку \ Десятичная запятая высвечивается в виде символа "▼". Определить позицию десятичной запятой при UNIT помощи кнопки ⇒ Подтвердить, нажимая кнопку При этом следует обратить внимание на то, чтобы высвечивался индикатор стабилизации, в противном случае запись не будет принята. SEL ⇒ Несколько раз нажать или придержать 0.000 нажатой в течение 3 секунд кнопку g появится показание в граммах.

4.3 Измерение плотности твердого тела

UNIT

Несколько раз нажать кнопку до перехода весов в режим определения плотности твердых тел.
 Может появиться сообщение "dSP pL", однако на этом этапе это не является сообщением об ошибке и следует его проигнорировать.



- 2. Нажать кнопку (отсутствие изменения показания).
- 3. Положить пробу на верхней чаше для проб.
- 4. Подождать, пока не появится показатель стабилизации, а затем нажать

Может появиться сообщение "dSP pL", однако на этом этапе это не является сообщением об ошибке и следует его проигнорировать.

- 5. Положить пробу на нижней чаше для проб.
- 6. Высвечивается плотность образца.

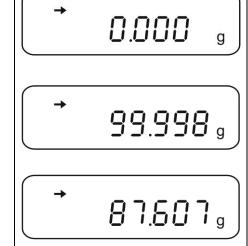
Для начала нового измерения переде удалением текущей пробы с нижней чаши

весов нажать кнопку

. Новое измерения будет запущено от шага 2.

В случае применения другой измерительной жидкости во время введения включить опцию «Плотность измерительной жидкости», см. раздел. 4.2.

После нажатия кнопки


весы возвращаются в режим взвешивания.

5 Определение плотности жидкости

5.1 Определение объема погружного грузика

- ⇒ Приготовить весы согласно способу, описанному в разд. 2 "установка набора для определения плотности".
- ⇒ Влить воду в контейнер. Контейнер должен быть заполнен на приблизительно ¾ объема. Регулировать температуру до установления ее постоянного значения.
- ⇒ Подготовить погружной грузик.
- ⇒ Включить весы, в случае необходимости несколько раз нажать кнопку пока весу не будут находиться в режиме взвешивания.
- □ Положить погружной грузик на верхней чаше для образцов. Подождать, пока не появится индикатор стабилизации, записать значения массы.
- □ Положить погружной грузик на нижней чаше для образцов. Подождать, пока не появится индикатор стабилизации, записать значения массы.

Объем погружного грузика рассчитывается на основании следующей формулы:

$$V = \frac{A - B}{\rho_w}$$

V = Объем погружного грузика

А = Масса погружного грузика в воздухе = 99,998 г

В = Masa погружного грузика в воде = 87,607 г

 ρ_{W} = Плотность воды (см. раздел. 7) при температуре 20°C = 0,9982 г/см³

$$V = \frac{99.998g - 87.607 g}{0.9982 g/cm^3} = 12.413 cm^3$$

5.2 Определение плотности при известном объеме погружного грузика

- ⇒ Подготовить весы способом, описанным в разделе 2 «Монтаж набора для определения плотности».
- ⇒ Влить исследуемую жидкость в контейнер. Высота наполнения должна составлять около ¾ объема. Регулировать температуру, пока она не станет постоянной.
- ⇒ Подготовить погружной грузик

⇒ Включить весы, в случае необходимости

несколько раз нажать кнопку , пока весу не будут находиться в режиме взвешивания.

- ⇒ Положить погружной грузик на верхней чаше для образцов. Подождать, пока не появится индикатор стабилизации, записать значения массы.
- □ Положить погружной грузик на нижней чаше для образцов. Подождать, пока не появится индикатор стабилизации, записать значения массы.

→ 90.068 g

Плотность исследуемой жидкости рассчитывается на основании следующей формулы:

$$\rho = \frac{G}{V}$$

G = Выпор погружного грузика

Выпор погружного грузика =

Масса погружного грузика в воздухе [А] - Масса погружного грузика в исследуемой жидкости [В]

А затем:

$$\rho = \frac{A-B}{V}$$

- ρ = Плотность исследуемой жидкости
- А = Масса погружного грузика в воздухе
- В = Масса погружного грузика в исследуемой жидкости
- V = Объем погружного грузика*

$$\rho = \frac{99.998g - 90.068 g}{12.413 cm^3} = 0.799 g/cm^3$$

6 Условия прецизионных измерений

В процессе определения плотности появляются многочисленные возможности ошибок.

С целью получения точных результатов при применении этого набора для определения плотности в совокупности с весами необходимо тщательно ознакомиться с настоящим руководством и осторожно обращаться с устройством.

6.1 Пересчет результатов

Во время определения плотности посредством весов результаты всегда высвечиваются с 4 знаками после запятой. Однако это не значит, что результаты точны до последнего высвечиваемого знака, как при определении стоимости. Поэтому к пересчету используемых результатов взвешивания следует подходить критически.

Пример определения плотности твердого тела:

Для гарантии наивысшего качества результатов как числитель, так и знаменатель нижеследующей формулы должны характеризироваться требуемой точностью. Если один из них является нестабильным или ошибочным, то результат тоже будет нестабильный или ошибочный.

$$\rho = \frac{A}{A - B} \rho_o$$

ρ = Плотность образца

А = Масса образца в воздухе

В = Масса образца в измерительной (рабочей) жидкости

рс = Плотность измерительной (рабочей) жидкости

Если проба тяжелая — это влияет на точность результата. Это вызывает увеличение значения счетчика. Если проба легкая — это также влияет на точность результата, потому что выталкивающая сила (A-B) больше. Результат в знаменателе увеличивается. Следует также обратить внимание на то, что точность плотности измерительной жидкости ρ_0 влияет на числитель и тем самым значительно влияет на точность результата.

Результат плотности пробы не может быть более точным, чем самые неточные из вышеупомянутых единичных значений.

6.2 Факторы, влияющие на погрешность измерения

6.2.1 Пузырьки воздуха

Один маленький пузырек, например 1 мм³, значительно влияет на измерение, если исследуемая проба маленькая. Он вызывает увеличение выталкивающей силы почти на 1 мг, что сразу приводит к показанию ошибочного результата 2 цифр. Поэтому следует предотвратить возможность прилипания пузырьков воздуха к твердому телу, погруженному в воде. Это же касается погружного грузика, погруженного в измерительной (рабочей) жидкости.

Если пузырьки воздуха можно удалить посредством вращения, следует выполнить это осторожно и обращать внимание на то, чтобы жидкость не ситечком подвеска разбрызгивалась. а чашки С замочилась влажной разбрызгиваемой Bec водой. подвески чашки ситечком увеличивается.

Не следует прикасаться голыми пальцами к пробам твердого тела или погружному грузику. При погружении исследуемого предмета в жидкости, жирные пятна на ее поверхности вызывают образование пузырьков воздуха.

Пробы в виде твердого тела (особенно плоские предметы) не следует размещать на чашке с ситечком прежде, чем она будет погружена в жидкость потому, что во время совокупного погружения образуются пузырьки воздуха. Дополнительно, после погружения исследуемого предмета в жидкости, следует проверить дно чашки, относительно образования пузырьков воздуха.

6.2.2 Проба твердого тела

Если погруженная в жидкости проба имеет очень большой объем, уровень жидкости в стеклянной мензурке повышается. Это приводит к тому, что часть подвески чашки с ситечком будет погружена, а выталкивающая сила увеличивается. В результате этого масса пробы в жидкости уменьшается.

Пробы с изменяющимся объемом или впитывающие жидкость не подлежат измерению.

6.2.3 Жидкости

Следует также принять во внимание температуру воды. Плотность воды изменяется на примерно 0,01% на градус Цельсия. Если измерение температуры содержит ошибку 1 градуса Цельсия, 4. позиция результата измерения неточная.

6.2.4 Поверхность

Подвеска чашки с ситечком пробивает поверхность жидкости. Это состояние изменяется непрерывно. Если проба или погружной грузик относительно маленькие, поверхностное напряжение приводит к ухудшению повторяемости результатов. Добавление небольшого количества средства для мытья посуды дает возможность обойти поверхностное напряжение и увеличить повторяемость результатов.

6.2.5 Стеклянный погружной грузик для выполнения измерений жидкости

Для экономии исследуемой жидкости при определении плотности жидкости, следует использовать маленькие стеклянные мензурки и соответствующие стеклянные погружные грузики. В действительности следует обратить внимание, что чем больше стеклянный погружной грузик тем более точный результат.

Желательно чтобы выталкивающая сила и объем стеклянного погружного грузика были по возможности определены наиболее точно. Эти результаты используются при пересчете плотности жидкости, как в знаменателе так и в числителе формулы

6.3 Общая информация

6.3.1 Плотность / относительная плотность

Относительная плотность — это масса исследуемого тела, разделенная на массу воды (при 4°С) такого же объема. Поэтому относительная плотность не имеет никакой единицы измерения. Плотность — это масса, разделенная на объем.

Если вместо плотности жидкости в формуле используется относительная плотность, получается ошибочный результат. Для жидкости достоверной является только ее плотность.

6.3.2 Дрейф показаний весов

Дрейфование (постоянное изменение результатов в определенную сторону) не имеет никакого влияния на конечный результат определения плотности, хоть высвечивающееся показание массы относится к взвешиванию в воздухе. Точные значения требуются только при определении плотности жидкости посредством погружного грузика.

В случае измерения температуры окружающей среды или локализации требуется юстировка весов. Для этого следует снять набор для определения плотности и провести юстировку весов со стандартной платформой весов (см. руководство по эксплуатации, приложенное к весам).

7 Таблица плотности жидкости

Температура	Плотность ρ [г/см³]					
[°C]	вода	этиловый спирт	метиловый спирт			
10	0,9997	0,7978	0,8009			
11	0,9996	0,7969	0,8000			
12	0,9995	0,7961	0,7991			
13	0,9994	0,7953	0,7982			
14	0,9993	0,7944	0,7972			
15	0,9991	0,7935	0,7963			
16	0,9990	0,7927	0,7954			
17	0,9988	0,7918	0,7945			
18	0,9986	0,7909	0,7935			
19	0,9984	0,7901	0,7926			
20	0,9982	0,7893	0,7917			
21	0,9980	0,7884	0,7907			
22	0,9978	0,7876	0,7898			
23	0,9976	0,7867	0,7880			
24	0,9973	0,7859	0,7870			
25	0,9971	0,7851	0,7870			
26	0,9968	0,7842	0,7861			
27	0,9965	0,7833	0,7852			
28	0,9963	0,7824	0,7842			
29	0,9960	0,7816	0,7833			
30	0,9957	0,7808	0,7824			
31	0,9954	0,7800	0,7814			
32	0,9951	0,7791	0,7805			
33	0,9947	0,7783	0,7896			
34	0,9944	0,7774	0,7886			
35	0,9941	0,7766	0,7877			

8 Неточность измерений при определении плотности твердых тел

В нижеследующей таблице указана приблизительная точность показаний весов в совокупности с набором для определения плотности. При этом следует помнить, что эти значения были определены исключительно математически и не учитывают влияющих на них значений, описанных в разделе 6.

Приближенное показание при измерениях плотности									
(с применением весов с точностью отсчета 0,01 г)									
Масса пробы (г)									
	1	10	50	100	500	1000	2000	3000	4000
Плотность пробы (г/см³)									
1	0,1	0,01	0,003	0,002	0,0005	0,0003	0,0003	0,0002	0,0002
3	0,4	0,04	0,01	0,005	0,001	0,001	0,0005	0,0004	0,0004
5	0,7	0,07	0,01	0,008	0,002	0,001	0,001	0,001	0,0006
8	1,2	0,1	0,02	0,01	0,003	0,002	0,001	0,001	0,001
10	1,5	0,1	0,03	0,02	0,004	0,002	0,001	0,001	0,001
12	1,7	0,2	0,04	0,02	0,004	0,002	0,002	0,001	0,001
20	2,9	0,3	0,06	0,03	0,01	0,004	0,003	0,002	0,002

^{*}Используя весы с точностью отсчета 0,1 г, числа в этой таблице следует умножить на 10. В случае весов с точностью отсчета 0,0001 г числа следует разделить на 10.

Пример отсчета с таблицы:

В случае весов с разрешением $0,001\,\mathrm{r}$, пробы массой $10\,\mathrm{r}$ и плотности составляющей $5\,\mathrm{r/cm^3}$, шаги показания составляют $0,007\,\mathrm{r/cm^3}$.

9 Указания, которых следует придерживаться

- Для создания повторяющегося среднего значения, обязательными являются несколько измерений плотности.
- Пробу/погружной грузик/стеклянную мензурку устойчивые на действие растворителя следует обезжирить.
- Чашки для проб/ погружной грузик/стеклянную мензурку следует регулярно чистить, не притрагиваться руками к погружаемой части.
- Пробу/ погружной грузик/пинцет после каждого процесса измерения следует высушить.
- Величину пробы следует приспособить к чашке для проб (идеальная величина пробы > 5 г).
- Использовать только дистиллированную воду.
- При первом погружении легко встряхнуть чашкой для проб и погружным грузиком с целью освобождения от возможных пузырьков воздуха.
- Обязательно обращать внимание на то, чтобы при повторном погружении в жидкости не появлялись дополнительные пузырьки воздуха; лучше всего вкладывать пробы с помощью пинцета.
- Плотно прилегающие пузырьки воздуха стягивать при помощи пинцета или иного вспомогательного средства.
- Чтобы избежать прилегания пузырьков воздуха, пробу с шероховатой поверхностью следует ранее выгладить.
- Обращать внимание на то, чтобы в процессе взвешивания "пробы в измерительной (рабочей) жидкости" на верхнюю чашку для проб не капала вода с пинцета.
- Чтобы уменьшить поверхностное напряжение воды и трение воды о проволоку, к измерительной жидкости добавить три капли доступного в продаже поверхностно-активного средства (средство для мытья посуды) (изменение плотности дистиллированной воды в результате добавления поверхностно-активного средства можно не принимать во внимание).
- Овальные пробы можно легко взять пинцетом за контур надреза.
- Плотность пористых твердых веществ можно определить только приблизительно. В процессе погружения в измерительную жидкость не весь воздух выталкивается из пор, что приводит к ошибкам выталкивания.
- Чтобы избежать сильных сотрясений весов, следует осторожно вкладывать пробу.
- Избегать статических разрядов, например, погружной грузик чистить только с помощью хлопчатобумажной тряпочки.
- Если плотность твердого тела незначительно отличается от дистиллированной воды, в качестве измерительной жидкости можно использовать этиловый спирт. Но перед тем следует проверить, устойчива ли проба к растворителям. Кроме этого в процессе работы с этиловым спиртом следует придерживаться действующих правил безопасности.