

NAVODILA ZA UPORABO Učni paket Conrad Components Arduino™ razumeti in uporabljati 10174 od 14. leta starosti naprej

Kataloška št.: 138 41 45

Kazalo	
1. Zgoščenka za učni paket	3
1. 1 Vsebina zgoščenke	3
1. 2 GPL (Splošna javna licenca)	3
1. 3 Sistemske zahteve	3
1. 4 Posodobitve in podpora	3
2. Vsebina učnega paketa	3
2. 1 Informacije o varnosti	4
3. Sestavni deli in njihove funkcije	4
3. 1 Maketna plošča	4
3. 2 Skakalci	5
3. 3 Tipke	5
3. 4 Uporniki	6
3. 5 Senzor temperature	7
3. 6 Fototranzistor	8
3. 7 LCD zaslon	8
4. Test prvih funkcij	. 9
5. Nastavitev in delovanie LCD zaslona	15
5. 1 Polarizacija zaslonov	15
5. 2 Statični nadzor, multipleksno delovanje	15
5. 3 Kot gledanja 6:00 ali 12:00	16
5 4 Odsev transprosoini prepustni	16
5 5 Krmilnik I CD zaslona	16
5. 6 Tako je zaslon nadzorovan s pomočio krmilnika zaslona	16
5. 7 Nastavitev kontrasta na zaslonu	17
5. 8 Nahor znakov	18
5. 9 Določitev ninov pogostih I CD	20
6 ABDUINO™ LIQUITCBYSTAL knjižnica	21
6.1 LiquidCrystal	21
6. 2 hegin()	22
6.3 clear()	22
6 4 home()	22
6.5 setCursor()	22
6.6 write()	23
6. 7 print()	23
6. 8. cursor()	20
6.9 poCursor()	20
6. 10. blink()	20
6.11 poBlink()	24
6. 12 noDim()	24
6. 12 Dipplay()	24
6. 14. corollDisplay()	24
6. 15. corollDisplayLett()	24
6. 16. autoporall ()	24
6. 17 $\operatorname{poAutoporell}()$	24
6. 19. loftTaDiaht()	20
	20
6. 19 .rightToLett()	20
6. 20 .CreateUnar()	20
7. LOD IUTIKCIJE	20
0. Ustvarjanje lastnik znakov	20 20
9. Zatemiliev 02a0ja	3U 20
10. Ura malinchega LOD	32
11. I Costovijenje merijelje zmesiljevst	35
11. I Sestavijanje merilnika zmogljivost	35
II. ∠ Umerjanje vasega meriinika zmogijivosti	36

12. Naključna števila – generator loterijskih števil	8
13. Zaslon za izpis stolpčnega diagrama 4	1
14. Merilec svetlobe – fotometer 4	6
15. Alarmni sistem	2
16. Digitalni voltmeter z zaslonom za stolpčni diagram in USB vmesnikom	3
16.1 Razširitev merilnega območja 6	2
17. Temperaturni zaslon v stopinjah Celzija in Fahrenheit	3
18. Ploter za temperaturo z USB vmesnikom	7
19. Ura Websynchronous	8
20. Dodatek	0
20. 1 Merske enote za elektriko	0
20. 2 ASCII tabela	1
21. Vir naročanja	3
Garancijski list	4

1. Zgoščenka za učni paket

Učni paket ima priloženo zgoščenko, ki vsebuje različne programe in primere. Zgoščenka vam olajša delo s to knjigo. Primere, ki so natisnjeni tukaj, lahko najdete tudi na zgoščenki.

1. 1 Vsebina zgoščenke

- Arduino[™] razvojno okolje (IDE)
- Primer programske kode za učni paket

1. 2 GPL (Splošna javna licenca)

Svoje programe lahko izmenjujete z ljudmi preko spleta. Programski primeri so predmet odprtokodne licence GPL (Splošna javna licenca). Zato lahko spreminjate, objavljate ali ponudite programe drugim uporabnikom pod pogoji GPL, med drugim da vsebino programov na voljo tudi GPL.

1. 3 Sistemske zahteve

Za Windows 7/8/8.1, 32 in 64 bit ali višje, Linux 32 in 64 bit, Mac OS X, pogon za zgoščenke, Java.

Opomba

Učni paket vsebuje VB. NET programe, ki delujejo samo v okolju Windows. Osnovni Arduino™ programi za te poskuse delujejo tudi v drugih operacijskih sistemih. Samo .NET-PC programi potrebujejo operacijski sistem Windows z .NET ogrodjem za poskuse.

1. 4 Posodobitve in podpora

Arduino[™] je predmet nenehnega razvoja. Posodobitve si lahko brezplačno naložite s spletne strani <u>http://arduino.cc</u>.

2. Vsebina učnega paketa

Učni paket vsebuje vse dele, ki jih potrebujete za poskuse. Prosimo preverite, če so deli poškodovani, preden začnete s poskusi.

Opomba

Arduino[™]-UNO-micro krmilnik PCD ni vključen v dostavo. Ker je to učni paket namenjen naprednim Arduino[™] programerjem, morate na delovnem mestu že imeti Arduino[™] UNO ali MEGA. Plošče so na voljo po nizki ceni pri Conrad Electronics, v franšiznih prodajalnah ali drugih spletnih trgovinah.

Seznam delov:

1x maketna plošča, 1x LCD 16 x 2 moder, 1 x pin trak 16 pinov za spajkanje, 1 x tipka, 1 x NTC 72, 1 x foto tranzistor, 1 x 10 k Ω , 1 x 330 Ω , 14 x skakalci.

2. 1 Informacije o varnosti

Arduino[™] PCB in zaslon sta večinoma zaščitena pred napakami, tako da je skoraj nemogoče poškodovati računalnik. Priključki USB vtičnice niso izolirani na spodnji strani PCB. Če namestite PCD na kovinski prevodnik lahko pride do višjega el. toka, kar lahko poškoduje računalnik in PCB.

Upoštevajte naslednja varnostna pravila!

- Izogibajte se kovinskim predmetom pod PCB ali izolaciji celotnega spodnjega dela z neprevodno zaščitno ploščo ali izolirnim trakom.
- Držite glavne enote, kot so viri prenapetosti ali živi prevodniki z več kot 5 volti (V), stran od eksperimentalnega PCD.

3. Sestavni deli in njihove funkcije

Sestavni deli učnega paketa so na kratko predstavljeni tukaj. Naslednji poskusi bodo ponudili praktične izkušnje s tehnologijo vezja v elektroniki.

3. 1 Maketna plošča

Na maketni plošči lahko nastavite vezje brez da bi bilo potrebno spajkanje. Naša maketna plošča je sestavljena iz 15 kolon in 5 vrst. Kolone, vsaka s 5 kontakti, so povezane med seboj v seriji (od zgoraj navzdol, glejte sliko). Ločilni most v sredini maketne plošče označuje da ni povezave z drugimi polji 17 kolon in 5 vrst. Kot koristno se je izkazalo odvitje povezovalnih žic najprej po diagonali, da se ustvari nekakšen klin na koncih žic. To omogoča lažjo priključitev delov v maketno ploščo. Težko je priključiti dele, najbolje je uporabiti majhne visoko natančne mehanske klešče za potiskanje delov v maketno ploščo in pri tem uporabiti več pritiska.

Mini maketa

3. 2 Skakalci

Učni paket vsebuje več posebej prilagojenih skakalcev. Uporabljajo se za povezavo med maketno ploščo in Arduino[™]-PCB. Skakalci imajo majhne pine na obeh koncih, ki jih lahko enostavno potisnete v Arduino[™]-PCB. Vendar bodite kljub temu previdni, da po nesreči ne odlomite ali zvijete pina!

Skakalci.

3.3 Tipke

Tipka ima podobno funkcijo kot stikalo. Stikala že poznate iz vaših domov, kjer z njim vklapljate ali izklapljate luči. Ko potisnete stikalo navzdol, se luč vklopi. Ko potisnete stikalo navzgor, se luč ponovno ugasne. Stikalo ostane v svojem položaju. V tem se razlikuje od tipk. Ko pritisnemo tipko, je vezje sklenjeno. Sklenjeno bo ostalo dokler ponovno ne pritisnemo tipke. Ko tipko spustimo, se bo vezje ponovno razklenilo in luč se bo ugasnila. Tipka se bo samodejno vrnila v svoje prvotno stanje ali stanje počivanja, s pomočjo mehanizma ki ga vsebuje.

Obstajajo tipke ki sklenejo vezje ko so aktivirane in takšne ki vezje razklenejo. Tipke, ki vezje sklenejo so pogosto imenovani »N.O.« (normalno odprte) in tisti ki vezje razklenejo »N.C.« (normalno zaprte). Primer prikazuje tipko, ki je priložena učnemu paketu. Ob pritisku tipka sklene vezje in tok lahko teče skozi iz stika 1 na 2. Druga dva kontakta sta medsebojno povezana.

Tipka.

3. 4 Uporniki

Uporniki so potrebni za omejitev toka in da nastavijo točke delovanja ali kot delilci napetosti v električnih vezjih. Enota za električno upornost je Ohm (Ω). Predpona kilo (k, tisoč) ali mega (M, milijon) omogočata okrajšavo velikih upornosti.

 $\begin{array}{l} 1 \ k\Omega = 1000 \ \Omega \\ 10 \ k\Omega = 10.000 \ \Omega \\ 100 \ k\Omega = 100.000 \ \Omega \\ 1 \ M\Omega = 1.000.000 \ \Omega \\ 10 \ M\Omega = 10.000.000 \ \Omega \end{array}$

V diagramih vezja je simbol Ω po navadi izpuščen in 1 k Ω je ponavadi okrajšan na 1 k. Vrednost upornika je po navadi označena z barvo. Običajno so trije barvni obroči in dodaten četrti obroč, ki označuje natančnost upornika. Kovinski uporniki imajo po navadi toleranco 1 %. To je označeno z rjavim tolerančnim obročem, ki je širši od ostalih štirih obročev. To zmanjšuje možnost napake za normalne vrednosti obročev s pomenom »1«.

Upornik z označbami.

Uporniki s toleranco +/-5 % so na voljo v vrednosti E24 različice, kjer vsaka dekada vsebuje 24 vrednosti na približno enaki razdalji do sosednje vrednosti.

Uporniki E24 standardne različice so sledeči:

1,0 / 1,1 / 1,2 / 1,3 / 1,5 / 1,6 / 1,8 / 2,0 / 2,2 / 2,4 / 2,7 / 3,0 / 3,3 / 3,6 / 3,9 / 4,3 / 4,7 / 5,1 / 5,6 / 6,2 / 6,8 / 7,5 / 8,2 / 9,1

Barvna oznaka se začne brati z obroča ki je bližje robu upornika. Prva dva obroča predstavljata dve številki, tretji obroč je množitelj vrednosti upora v Ohm. Četrti predstavlja toleranco.

Smer branja vrednosti na uporniku.

Upornik z barvami rumena, vijolična, rjava in zlata, ima vrednost 470 Ω s toleranco 5 %. Poskusite sedaj prepoznati upornike priloženemu učnemu paketu.

Barva	Obroč 1	Obroč 2	Obroč 3 (faktor)	Obroč 4 (toleranca)
Srebrna	-	-	1x10 ⁻² =0,01 Ω	+/-10 %
Zlata	-	-	1x10 ⁻¹ =0,1 Ω	+/-5 %
Črna	0	0	1x10 ⁰ =1 Ω	-
Rjava	1	1	1x10 ¹ =10 Ω	+/-1 %
Rdeča	2	2	1x10 ² =100 Ω	+/-2 %
Oranžna	3	3	1x10 ³ =1 kΩ	-
Rumena	4	4	1x10 ⁴ =10 kΩ	-
Zelena	5	5	1x10 ⁵ =100 kΩ	+/-0,5 %
Modra	6	6	1x10 ⁶ =1 MΩ	+/-0,25 %
Vijolična	7	7	1x10 ⁷ =10 MΩ	+/-0,1 %
Siva	8	8	1x10 ⁸ =100 MΩ	-
Bela	9	9	1x10 ⁹ =1000 MΩ	

Tabela za upore s štirimi barvnimi obroči.

Nasvet

Vstavljanje iskalnega izraza »Resistance code calculator« (računanje vrednosti upornikov) na spletu, vam bo našlo računala za računanje, na primer: http://www.ab-tools.com/de/software/resistancesrechner/

ali

http://www.dieelektronikerseite.de/Tools/resistancesrec hner.htm.

V primeru spodaj je prikazana tudi starejša različica. Ta merilnik upora ali vitrometer dovoljuje hitro določitev upora, brez uporabe računalnika, samo z vrtenjem koles. Na ta način si boste hitreje zapomnili vrednosti barvnih oznak v računalniški različici.

Merilni upora (vitrometer).

3. 5 Senzor temperature

Za spremljanje temperature je priložen senzor temperature. Oznaka NTC pomeni (negativni temperaturni koeficient) in pomeni, da bo upornost padla z naraščanjem temperature. To je vroč prevodnik. NTC učnem paketu ima vrednost upora 4,7 k Ω pri 25 °C / 298,15 K (Kelvin).

NTC senzor temperature in skica kako se priključi.

3. 6 Fototranzistor

Za določitev svetlosti uporablja sodobna elektronika pogosto fototranzistorje. Učni paket vsebuje dele, ki izgledajo zelo podobno kot dioda ki oddaja belo barvo, vendar je foto tranzistor. Izgleda drugače kot normalni bipolarni tranzistor, vendar nima tudi nobene povezave. Podstavek, to je vhod za normalni trazistor, ki je odgovoren za nadzor toka med prevodnikom in oddajnikom, kjer svetloba pada v ohišje na foto tranzistor. Svetloba tam pade na silikon in ustvari manjši ali večji tok med prevodnikom in oddajnikom glede na moč svetlobe.

Fototranzistor in njegova priključitev.

3.7 LCD zaslon

Glavni del tega učnega paketa je modro beli LCD. Učni paket vsebuje zaslon z dvema vrstama 16 kolon z 5 x 8 pikami vsak. Ta zaslona lahko sedaj kupite tudi ločeno v katerikoli trgovini z elektroniko ali spletni trgovini, za samo nekaj eurov. Na voljo so v zeleni, modri, rumenorjavi, rumeni in tudi v posebnih barvah, ki pa so po navadi dražje. V našem primeru je naložen moder LCD. Naložen LCD krmilnik je KS0066/HD44780, ki ga izdeluje več proizvajalcev – več o tem kasneje.

LCD zaslon z dvema vrstama 16 kolon.

Preden lahko uporabite LCD za vaše poskuse morate spajkati priložen 16 pinski trak v stike na LCD. Zato vtaknite pinski trak s kratkimi stiki v LCD od zadaj in spajkajte najprej samo en stik. Na ta način lahko poravnate pinski trak pod kotom 90°. Ko je trak poravnan, lahko spajkate tudi ostale pine. Če še nimate pištole za spajkanje, si dobite stroškovno učinkovito ročno pištolo za spajkanje z izhodom med 20 in 30 W in električni spajkalnik. Ta naložba se vam bo izplačala, ko se boste ukvarjali z Arduino[™] in drugo elektroniko.

Pinski trak po koncu spajkanja.

4. Test prvih funkcij

Povežite poskus kot je prikazano na sliki spodaj. Bodite pazljivi da ne zvijete ali zlomite pinov skakalcev.

Eksperimentalna povezava z LCD.

Na koncu natančno preverite vezje, da se izognete morebitnim poškodbam delov.

Priključni načrt za povezavo z LCD.

Informacije

Če prvič delate z Arduino[™] morate najprej naložiti Arduino[™] razvojno okolje. Najdete ga na uradni Arduino[™] spletni strani <u>http://www.arduino.cc</u>.

Tukaj lahko izberete vaš operacijski sistem in določite ali želite uporabiti program za nameščanje ali ZIP različico. V programski različici za nameščanje, namestite Arduino[™] kot normalen program. V ZIP različici ne potrebujete nameščanja. Razširite ZIP datoteko in jo shranite na želeno mesto na vašem računalniku. To je koristno, če želite na primer shraniti Arduino[™] na USB ključek in ga odnesti s seboj.

Pozor!

Arduino shranite samo tam kjer imate vse pravice za branje, pisanje itd.!

Za prvi test funkcij, naložite sledeč program na Arduino™ ploščo. Programske primere lahko najdete na priloženi zgoščenki v mapi Examples.

Program bo ustvaril tekst in prikazal se bo nekakšen števec na LCD, kar je zelo primerno za prvi test funkcij, saj preveri če vse deluje pravilno, ker je zelo majhen in dobro strukturiran.

```
Primer kode: LCD
```

001	// LCD-Library einbinden
002	<pre>#include <liquidcrystal.h></liquidcrystal.h></pre>
003	
004	// LCD-Pins festlegen
005	// RS, E, D4, D5, D6, D7
006	LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007	
800	void setup()
009	{
010	// LED-Hintergrundbeleuchtung
011	analogWrite(9, 150);
012	
013	// LCD Ausgabe
014	lcd.begin(16, 2);
015	<pre>lcd.setCursor(0, 0);</pre>
016	<pre>lcd.print("**ARDUINO LCD**");</pre>
017	<pre>lcd.setCursor(0, 1);</pre>
018	<pre>lcd.print("CNT:");</pre>
019	}
020	
021	void loop()
022	1
023	<pre>lcd.setCursor(5, 1);</pre>
024	lcd.print(millis() / 1000);
025	

V prvi vrstici programa lahko vidite, da je za delovanje LCD potrebna integracija Arduino[™] knjižnice z imenom LiquidCrystal.h. Vsebuje bolj kompleksno kodo, ki je potrebna za nadzor zaslona. Lahko pogledate v mapo Arduino[™], ki se nahaja v Arduino\libraries\LiquidCrystal, in pregledate LiquidCrystal.h in LiquidCrystal.cpp datoteki, da dobite idejo funkcij knjižnice. Priporočamo da za odprtje teh datotek uporabite program Notepad++. Lahko si ga brezplačno naložite s spletne strani http://www.notepad-plus-plus.org.

Videli boste da bo ta knjižnica opravila veliko dela namesto vas. V našem Arduino™ programu, smo integrirali samo naslovno datoteko LiquidCrystal.h. Arduino™ bo sedaj samodejno poznal vse LCD funkcije.

V naslednji vrstici seznanimo Arduino[™] kateri pini na LCD so priključeni na Arduino[™]-PCD.

001 L1qu1dCrystal lcd(11, 10, 2, 3, 4, 5)

Naslednji ukaz določi svetlost osvetlitve zaslona. LED LCD je povezana z Arduino[™] digitalnim/PWM-vrati P9. Lahko so uporabljena kot preprosta digitalna vrata ali PWM (vrata z modularno širino pulza). V našem testu je uporabljen kot PWM-vrata. Tako lahko postopoma nastavljamo svetlost osvetlitve zaslona. Vrednost 150 naredi LED dovolj svetel. Če je izbrana nižja PWM vrednost, bo LED temnejša. Poskusite spreminjati vrednost in opazujte kaj se dogaja.

001 analogWrite(9, 150)

Namestitev je skoraj končana. Sedaj morate nastaviti koliko kolon in vrstic ima LCD: 16 kolon/posamezni znaki in 2 vrstici.

001 lcd.begin(16, 2)

Osnovno nameščanje je sedaj končano. Sedaj lahko uporabimo lcd.setCursor, za določitev položaja kazalke in tako teksta za izpis.

001 lcd.setCursor(0, 0)

Prvi parameter določa položaj znotraj kolone, to je 0 do 15 v tem primeru. Drugi parameter določa številko vrstice, to je od 0 do 1.

Sedaj lahko izpišemo tekst na tej določeni lokaciji na LCD z ukazom commandlcd.print.

001 lcd.print("**ARDUINO LCD**")

Lahko vidite da je vedno potrebno napisati ».lcd« preden zapišete pravo funkcijo LCD izpisa. To določi da uporabimo razred lcd, ki smo ga integrirali z #include <LiquidCrystal.h>. Sedaj je Arduino[™] seznanjen od kod prihaja klic in kateri razred je odgovoren za »prevajanje«, ali kot to imenujejo strokovnjaki »zbiranje« (compiling).

Če ste se kdaj prej ukvarjali s programskim jezikom C++, boste prepoznali, s končnico *.cpp, da so to C** razredi. Arduino[™] v osnovi temelji v C++. To je dober način za programiranje lastnih razredov ali knjižnic in jih ponuditi drugim Arduino[™] uporabnikom.

Po tej kratki C++ ekskurziji, se vrnimo nazaj na naš primer. Do sedaj smo bili vedno znotraj funkcije Setup(), ki se izvede vsaj enkrat ko zaženete program in se večinoma uporablja za začetne nastavitve. Znotraj nje lahko nastavimo spremenljivke v naprej, preden se zažene dejanski program in nastavimo v naprej tudi strojno opremo.

Sledeče funkcija Loop() je neskončna zanka, ki se ne konča. To je hkrati glavna Arduino™ zanka za naš program. Tukaj kličemo izvajanje v milisekundah v vsakem izvajanje s funkcijo millis(). Delitev s 1000 vodi v izpis v sekundah. Na LCD zaslonu bomo prikazali izvajanje v sekundah.

001 lcd.setCursor(5, 1) 002 lcd.print(millis() / 1000)

Ker je funkcija millis() zelo zanimiva, bomo poskusili še en eksperiment, preden se ukvarjamo z LCD zaslonom bolj podrobno, ker lahko funkcijo millis() uporabimo za izmero časa izvajanja programa, kot je prikazano v sledečem primeru.

```
Primer kode: TIME_DIFF
```

a. a	
001	// LCD-Library einbinden
002	#include <liquidcrystal.h></liquidcrystal.h>
003	
004	// LCD-Pins festlegen
005	// RS, E, D4, D5, D6, D7
006	LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007	
800	long time_diff, diff;
009	
010	void setup()
011	1
012	<pre>// LED-Hintergrundbeleuchtung</pre>
013	analogWrite(9, 150);
014	
015	// LCD Ausgabe
016	lcd.begin(16, 2);
017	<pre>lcd.setCursor(0, 0);</pre>
018	<pre>lcd.print("**ARDUINO LCD**");</pre>
019	<pre>lcd.setCursor(0, 1);</pre>
020	<pre>lcd.print("TIME DIFF: ");</pre>
021)
022	
023	void loop()
024	1
025	diff = millis();
026	
027	// Mein Programm Start
028	
029	<pre>lcd.setCursor(11, 1);</pre>
030	<pre>lcd.print(diff - time_diff);</pre>
031	delay(100);
032	
033	// Mein Programm Ende
034	<pre>time_diff = diff;</pre>
035]

Ta primer kode prikazuje kako določiti čas izvajanja programa. Zato beremo trenutno stanje števca funkcije millis() v vsakem novem izvajanju programa in odštejemo zadnjo števko, ki je bila shranjena, na koncu programa. Ukaz Delay(100) na programu simulira daljši čas izvajanja. Vaša programska koda mora biti med »// My program start and // My program end«, da se določi dovoljen čas izvajanja vaše kode.

Prvi poskus in s tem tudi test funkcij je s tem končan. Pustite vezje povezano tako kot je. Potrebovali in razširili ga boste v naslednjih primerih. V naslednjem poglavju se boste naučili več o LCD zaslonu in njegovih lastnostih.

5. Nastavitev in delovanje LCD zaslona

LCD se v glavnem uporabljajo v mnogih elektronskih napravah, kot so zabavna elektronika, merilnih napravah, mobilnih telefonih, digitalnih urah in žepnih računalnikih. Head-up-Displays in video projektorji tudi uporabljajo to tehnologijo. Sledeči primeri prikazujejo LCD ki je del učnega paketa. To je standarden 5 x 8 matrični zaslon z 2 vrstama s 16 znaki v vsaki.

16 x 2 LCD zaslon v uporabi.

LCD je na splošno sestavljen iz 2 individualnih steklenih panelov in posebne tekočine med njima. Posebna lastnost te tekočine je, da obrne polarizacijski nivo svetlobe. Na ta učinek vpliva uporaba električnega polja. Na te dve plošči je tako nanesena tanka plast kovine. Da dobite polarizirano svetlobo, polariziran film obtiči na zgornji stekleni ploščici. Ta se imenuje polarizator. Še en tak film mora biti uporabljen na spodnji stekleni ploščici, vendar je tam polarizacija zasukana za 90°. To je analizator.

Ko ne deluje, tekočina zasuka polarizacijski nivo vpadne svetlobe za 90°, tako da lahko preide skozi analizator neovirano. LCD je tako prosojen. Uporaba specifične napetosti na uplinjeni kovinski plasti bo povzročila spremembo kristalov v tekočino. To bo spremenilo polarizacijski nivo svetlobe, na primer za dodatnih 90°: Analizator blokira svetlobo, LCD postane neprosojen.

5. 1 Polarizacija zaslonov

Polarizacija v LCD zaslonu ne pomeni polarnosti v električni napetosti, ampak strukturo plina, tekočine in filtra zaslona. Večina LCD so TCN zasloni (zasukan nematski zaslon). Vsebujejo tekočino, ki zasuče polarizacijski nivo za 90°. STN (super zasukana nemacija) zasuče polarizacijski nivo svetlobe za vsaj 180°. To izboljša kontrast zaslona. Vendar ta tehnika vodi do določene obarvanosti zaslona. Najpogostejša obarvanost se imenujejo rumeno-zelen in moder način. Siv način se pojavi bolj moder kot siv v praksi. Za nadomestitev neželenega barvnega učinka, FSTN tehnologija uporablja še eno zunanjo folijo. Rezultat izgubljene svetlobe naredi to tehnologijo smiselno samo za zaslone z osvetljenim ozadjem. Različne barve se pojavijo v neosvetljenih ali belo osveteljnih zaslonih. Ko je enkrat osvetlitev obarvana (na primer LED osvetlitev rumeno-zeleno), se ustrezna barva zaslona pomakne v ozadje. Vsi modri načini LCD z rumeno zeleno LED osvetlitvijo, bodo vedno izgledali rumeno zeleno.

5. 2 Statični nadzor, multipleksno delovanje

Majhni zasloni z nizkim dometom delovanja so po navadi nadzorovani statično. Statični zasloni imajo najboljši kontrast in maksimalni mogoč kot. TN tehnologija tukaj doseže svoj polni namen (črno beli zasloni, stroškovno učinkoviti). Vendar ko se zasloni večajo, več in

več vrstic potrebuje statično delovanje (na primer 128 x 64 grafično = 8192 segementov = 8192 vrstic). Ker se tako veliko število vrstic ne bi prilegalo na zaslon, niti na IC krmilnika, je izbrano Multipleks delovanje. Zaslon je strukturiran v vrsticah in kolonah in segment se nahaja na vsakem križišču (128 + 64 = 192 vrstic). Tukaj je skenirana vrstica za vrstico (64x, to je multipleks stopnja 1 : 64). Ker je naenkrat aktivna samo 1 vrstica, vendar se kontrast in kot gledanja slabšata z povečevanjem števila multipleks stopnje.

5. 3 Kot gledanja 6:00 ali 12:00

Vsak LCD zaslon ima priporočen kot gledanja. Gledanje iz te smeri pomeni da ima zaslon najboljši kontrast. Večina zaslonov je narejenih za gledanje iz smeri 6:00 (tudi: gledanje od spodaj, BV). Ta kot se sklada s tistim od žepnega računalnika, ki leži ravno na mizi. Zasloni 12:00 (pogled od zgoraj, TV) so najbolje integrirani iz sprednje strani mize. Iz vseh zaslonov lahko gledamo navpično od spredaj.

5. 4 Odsev, transprosojni, prepustni

Odsevni (neosvetlejeni) zasloni imajo 100 % odsevnost ozadja. Osvetlitev od zadaj ni mogoča. Transprosojni zasloni imajo delno preprustno odsevnost ozadja. Lahko se jih bere brez osvetlitve. To jih naredi neosvetljene, vendar malo zamegljene kot odsevno različico. Kljub temu je najboljši kompromis za osvetljen LCD. Prepustni zasloni nimajo nobene odsevnosti. Iz njih se lahko bere samo s pomočjo osvetlitve, vendar so zelo svetli. LCD priložen učnemu paketu je transprosojni LCD.

5. 5 Krmilnik LCD zaslona

Matrični zasloni so narejeni s strani različnih proizvajalcev na svetu (še posebno v Tajvanu). Zraven velikih proizvajalcev, kot je Data-Vision, obstajajo tudi manjši, neznani, proizvajalci zaslonov. Na srečo je delovanje in povezava zaslonov vedno enaka. V tem učnem paketu, se bomo ukvarjali z zasloni, ki uporabljajo tip krmilnika HD44780 (ali združljivo različico), na primer KS0066. Da se vsi zasloni dosledno obnašajo je to zaradi čipa krmilnika ki je postal vzpostavljen kot standard med vsemi proizvajalci. To je HD44780 Hitachi.

5. 6 Tako je zaslon nadzorovan s pomočjo krmilnika zaslona

Naslednji primeri kažejo kako je krmilnik zaslona (KS0066) priključen na zaslon. Ta vezja ne potrebujete ustvariti sami. So že prisotna v LCD modulih.

Dvovrstični 5 x 8 matrični zaslon (Vir: podatkovni list Samsung).

Krmilniki so delno različno povezani na zaslon in so lahko vklopljeni drugače, glede na proizvajalca. Tako je mogoče da je enovrstični 16 znakovni zaslon narejen iz 2 x 8 znakov. Za te informacije morate preveriti liste s podatki. Večji zasloni velikokrat uporabljajo dva krmilnika, ki imajo Chipselect (CS) ali dve Enable vrstici. Razlog zato je, da ima krmilnik znakovni spomin 80 znakov. S priključitvijo večjega števila krmilnikov zaslona, se bo znakovni spomin povečal za dodatnih 80 znakov. Zasloni imajo tudi druge priključke in jih je možno dokaj enostavno ločiti od standardnih LCD modulov. Lahko predvidevate, da ima zaslon brez osvetlitve 14 pinov in tisti z osvetlitvijo 16 pinov.

5. 7 Nastavitev kontrasta na zaslonu

Kot na drugih zaslonih, lahko tudi na LCD modulih nastavite kontrast. To naredite tako da 10 k Ω potenciometer priključite kot spremenljivi distributer napetosti. Ker imajo LCD zelo nizko razpršitev električnih lastnosti, je bila tehnologija uporabljena v učnem paketu z enim stalnim upornikom. Za to smo uporabili 2,2 k Ω upornik, ki je nameščen ozemljitvijo in kontrastno Vee povezavo LCD, tako da je kontrast dobro nastavljen.

Ko uporabljate potenciometer brez dodatnega balasta je območje prilagoditve, ki vpliva na kontrast, zelo nizka. Za boljšo razpršitev območja kontrasta, je priporočeno povezati ustrezni balast med Vcc (+5V) in enim koncem potenciometra.

Enostavna nastavitev kontrasta s potenciometrom (Vir: podatkovni list Electronic Assembly).

Napetost na pinu Vee bi morala biti prilagodljiva med 0 in 1,5 V. To vezje je primerno za uporabo na sobni temperaturi 0 do 40 °C. Če prilagoditveno območje ni optimalno (nekateri LCD od tega odstopajo) morate zamenjati balast. Praktične vrednosti so na območju med 10 do 22 k Ω .

Temperaturno nadzorovana nastavitev kontrasta (Vir: podatkovni list Electronic Assembly).

Če uporabljate zaslon izven normalnega temperaturnega območja (0 do 40 °C), je priporočeno izvesti ožičenje kot je prikazano na diagramu vezja, zgoraj. To vezje prilagodi kontrast sobnim pogojem. Temperatura bo izmerjena s temperaturnim senzorjem NTC (negativni temperaturni koeficient sonde), ki bo pomaknila kontrastno napetost proti PNP tranzistorju. LCD moduli ne morajo biti brani pravilno pri temperaturah nižjih od 0 °C. Kontrast je temperaturno odvisen.

5. 8 Nabor znakov

Zasloni imajo nabor znakov, ki je trdno integriran v krmilnik zaslona. Z zaporedjem zgornjih in spodnjih 4 bitov, bo ustvarjen podatkovni bajt za ustrezni ASCII znak. Na primer za ASCII znak A: 01000001.

Louis Upper a	0000	0001	0010	0011	0100	0101	0110	0111	1040	1001	1010	1011	1100	1101	1110	1111
хээхх0000	1000			0	a	Ρ	`	P				-	9	ξ	α	p
100010001	(2)		!	1	A	Q	а	9				7	¥	4	ä	q
xxxx0010	(3)		п	2	в	R	Ь	r			r	1	ŋ	×	P	θ
20030011	(4)		#	3	С	S	С	s			L	ゥ	Ŧ	ŧ	ε	67
001000	(5)		\$	4	D	Т	d	t			1	I	ŀ	Þ	μ	Ω
10000101	(6)		Ζ	5	Ε	U	e	u				7	t	l	G	ü
хэжж0110	(7)		8.	6	F	Û	f	V			7	ħ	_	Э	ρ	Σ
11108080	(8)		,	7	G	W	9	ω			7	ŧ	7	5	q	π
xxxx1000	(1)		<	8	Η	Х	h	×			4	2	ネ	IJ	5	X
200021001	(2)		>	9	Ι	Ŷ	i	Э			Ċ	ን	J	ıb	-1	ч
xxxx1010	(3)		*	:	\mathbf{J}	Ζ	j	z			I	J	ñ	V	.i	Ŧ
200001011	(4)		+	5	K	C	k	{			7	Ŧ	F		x	Б
xxxx1100	(5)		,	<	L	¥	1	Ι			Þ	9	7	7	¢	m
xxxx1101	(6)		-	=	М]	m	}			л	Z	γ	2	ŧ	÷
011123003	(7)			>	Ν	^	n	÷			Э	t	.	~	ñ	
xxxx1111	(8)		1	?	0	_	0	÷			ŋ	9	7		ö	

Nabor znakov na LCD (Vir: podatkovni list Samsung).

Naredimo primer z LCD naborom znakov. Sledeča programska koda prikazuje kako lahko zapišete znake iz tabele znakov na zaslon. Posebni znaki, kot je znak za stopinje ali Ohm simbol, niso mogoči s pomočjo močnega izpisa. Ker je to razširjen nabor znakov LCD, moramo uporabiti znakovno tabelo.

001 lcd.write(B11110100)

Tukaj bomo zapisali binarno vrednost v krmilnik zaslona, za izpis znaka Omega. B, na začetku zaporedja primera, označuje da je to zaporedje številk v binarnem zapisu. Zgornji (upper) in spodnji (lower) 4 biti za znak Omega so narejeni sledeče:

001	upper	=	1111	
002	lower	=	0100	

Prav tako poskusite izpisati druge znake, s preverjanjem tabele znakov.

Nalaganje

Poskus potrebuje osnovno ožičenje LCD, ki ste ga nastavili že v testu funkcij.

Primer kode: Nabor znakov

001	// LCD-Library einbinden
002	#include <liquidcrystal.h></liquidcrystal.h>
003	
004	// LCD-Pins festlegen
005	// RS, E, D4, D5, D6, D7
006	LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007	
800	void setup()
009	£
010	// LED-Hintergrundbeleuchtung
011	analogWrite(9, 150);
012	
013	// LCD-Ausgabe
014	lcd.begin(16, 2);
015	<pre>lcd.setCursor(0, 0);</pre>
016	lcd.write(B11110100);
017	
018	1
019	
020	void loop()
021	(
022	// Nix zu tun
023	1

5. 9 Določitev pinov pogostih LCD

Večina zaslonov brez osvetlitve ima pine dodeljene kot je zapisano v naslednji tabeli. Če kasneje uporabite drug LCD, kot priloženega v učnem paketu, priporočamo da si najprej pogledate liste s podatki, da se izognete poškodbam LCD.

Pinbelegung											
Pin	Pin Symbol Pegel Beschreibung										
1	VSS	L	Versorgung 0V, GND								
2	VDD	н	Versorgung +5V								
3	VEE	÷.	Displayspg. 01,5V Kontrasteinstellung								
4	RS	H/L	Register Select								
5	R/W	H/L	H: Read / L: Write								
6	E	н	Enable								
7	DO	H/L	Datenieitung 0 (LSB)								
8	D1	H/L	Datenieitung 1								
9	D2	H/L	Datenleitung 2								
10	D3	H/L	Datenieitung 3								
11	D4	H/L	Datenieitung 4								
12	D5	H/L	Datenleitung 5								
13	D6	H/L	Datenleitung 6								
14	D7	H/L	Datenleitung 7 (MSB)								

Določitev pinov na LCD brez osvetlitve (Vir: podatkovni list Electronic Assebmly).

LCD moduli z osvetlitvijo vedno potrebujejo malo več nege. Nekateri proizvajalci ne dajo stike LED osvetlitve na pina 15 in 16, ampak na pina 1 in 2. Še enkrat, preverite podatkovni list proizvajalca preden priključite LCD.

Informacija

LCD v učnem paketu ima LED povezavo na pina 15 (+=anoda) in 16 (-=katoda).

Če nimate pri roki podatkovnega lista LCD, na primer če ste zaslon kupili na elektronskem boljšem trgu, morate vseeno slediti prevodnikom in najti povezave za osvetlitev. Po navadi so nekoliko debelejše od ostalih prevodnikov. Ko se prepričate katere povezave so odgovorne za osvetlitev, lahko uporabite multimeter za določitev polarnosti. Vrnjena napetost mora znašati 2 do 4 V. Druga možnost za prepoznavo LED pinov in polarnosti, ko LED zasveti z glavno enoto ali baterijo približno 5 V v zelo visokem balastu (približno 1–4,7 k Ω). Visok balast predstavlja majhno nevarnost za uničenje LCD.

Pinbelegung									
Pin	Symbol	Beschreibung							
1	VSS	L	Versorgung 0V, GND						
2	VDD	н	Versorgung +5V						
3	VEE		Displayspannung 00,5V						
4	RS	H/L	Register Select						
5	R/W	H/L	H: Read / L: Write						
6	E	н	Enable						
7	DO	H/L	Datenleitung 0 (LSB)						
8	D1	H/L	Datenleitung 1						
9	D2	H/L	Datenieltung 2						
10	D3	H/L	Datenleitung 3						
11	D4	H/L	Datenleitung 4						
12	D5	H/L	Datenleitung 5						
13	D6	H/L	Datenleitung 6						
14	D7	H/L	Datenleitung 7 (MSB)						
15	LED +		LED-Versorgung Plus /Vorwiderstand!						
16	LED -		LED-Versorgung Minus						

Določitev pinov na LCD z osvetlitvijo (Vir: podatkovni list Electronic Assembly).

6. ARDUINO™ LIQUITCRYSTAL knjižnica

Kot ste se že naučili v testu funkcije, ima Arduino™ LiquidCrystal knjižnica številne funkcije, ki so določene za izpis na LCD. Sedaj se boste naučili več o LCD funkcijah.

6. 1 LiquidCrystal

LiquidCrystal določi kateri Arduino[™] pin je povezan z LCD. LCD je lahko nastavljen v 4- ali 8-bitnem načinu. Za uporabo 8-bitnega načina morate pokazati osem namesto štiri podatkovne pine (D0 do D7) in jih priključiti na Arduino[™]-PCB.

Arduino[™] sintaksa

001	LiquidCrystal	lcd(rs	, enat	ole, d	4.	d5,	d6.	d7)			
002	LiquidCrystal	lcd(rs	, rw,	enabl	e,	d4,	d5,	d6,	d7)		
003	LiquidCrystal	lcd(rs,	enab1e	, d0,	d1.	d2,	d3,	d4,	d5,	d6,	d7)
004	LiquidCrystal	lcd(rs	, rw,	enabl	e,	d0,	d1,	d2,	d3,	d4,	
	20 - CO	11						(15,	d6,	d7)

Naš učni paket uporablja naslednjo konfiguracijo:

001	H	RS,	Ε.	D4.	D5,	D6.	D7					
002	Li	quid	Crys	stal	lcd	(11,	10,	2,	3,	4,	5);	

 $\begin{array}{l} RS = \ Arduino^{\mathsf{TM}}\text{-Pin D11} \\ E = \ Arduino^{\mathsf{TM}}\text{-Pin D10} \\ D4 = \ Arduino^{\mathsf{TM}}\text{-Pin D2} \\ D3 = \ Arduino^{\mathsf{TM}}\text{-Pin D3} \\ D2 = \ Arduino^{\mathsf{TM}}\text{-Pin D4} \\ D1 = \ Arduino^{\mathsf{TM}}\text{-Pin D5} \end{array}$

6. 2 .begin()

.begin() sproži LCD z navedbo vrstic in kolon. Naš LCD ima 2 vrstici in 16 kolon. Nastavljanje mora zato biti sledeče:

Arduino[™] sintaksa

	131220	
001 lcd.begin(16,	2)	

6. 3 .clear()

.clear() izbriše izpisane znake in postavi kazalec v levi zgornji kot.

Arduino™ sintaksa	
001 lcd.clear()	

6.4 .home()

.home() postavi kazalec v zgornji levi kot. Noben znak se ne izbriše.

Arduino™ sintaksa			
001 lcd.home()			

6. 5 .setCursor()

.setCursor postavi kazalec na določen položaj. Kot pogosto v informatiki se to štetje začne z nič. Zgornji levi kot, to je prvi znak v vrstici 1, je sledeč:

Arduino[™] sintaksa

001	1cd	setCursor	·(0)·	0)
Ph 25. T	1.2422	1 CHC 642 (01 CH2)	J. 26. 4	10.2

Prvi parameter je položaj znaka, drugi parameter je vrstica.

6.6.write()

.write() zapiše en znak na LCD. To lahko uporabite za izpis posebnih znakov iz tabele znakov ali prikaz ASCII kode za znak.

Arduino[™] sintaksa

001 lcd.write(64)

Znak @ ima digitalno število 64 v ASCII kodi. Posamezni ASCII znaki so označeni z opuščajem. Lahko ga zapišete tudi sledeče:

Arduino[™] sintaksa

001 lcd.write('@')

6.7.print()

S .print() lahko izpišete celotno zaporedje znakov imenovanih nizi (Strings). Na ta način je možno izpisati tudi spremenljivke. Za to obstaja število parametrov za oblikovanje (BASE), ki so navedeni kot drugi parametri.

Arduino[™] sintaksa

001	lcd.print(data, BASE)	
002		
003	<pre>lcd.print("Arduino") // es wird nur ein Text ausgeben</pre>	
004		
005	int variable1 = 100	
006	<pre>lcd.print(variablel) // es wird der Wert der "Variablen1"</pre>	•
	ausgeben	
007		
008	<pre>lcd.print(40 + 2) // es wird die Summe aus 40 + 2</pre>	
	ausgegeber	ŋ
009		
010	<pre>lcd.print(3.1415, 2) // es wird nur 3.14 ausgeben</pre>	
011		
012	<pre>lcd.print(42, BIN) // es wird die 42 binar ausgeben</pre>	

6. 8 .cursor()

.cursor() vklopi kazalec. Kazalec je bil izklopljen, sedaj je spet viden.

Arduino[™] sintaksa 001 lcd.cursor()

6.9.noCursor()

.noCursor izklopi kazalec (neviden).

```
Arduino<sup>™</sup> sintaksa
001 1cd.noCursor()
```

6.10.blink()

.blink() vklopi kazalec in kazalec utripa.

Arduino[™] sintaksa

001 lcd.blink()

6.11.noBlink()

.noBlink() izklopi kazalec in ta preneha utripati.

Arduino[™] sintaksa 001 lcd.noBlink()

6. 12 .noDisplay()

.noDisplay izklopi zaslon. Položaj znaka in kazalca je shranjen.

Arduino[™] sintaksa 001 lcd.noDisplay()

6.13.Display()

.display ponovno vklopi LCD po .noDisplay(). Zadnje vrednosti so obnovljene.

```
Arduino™ sintaksa
```

```
001 lcd.display()
```

6. 14 .scrollDisplayLeft()

.scrollDisplayLeft() pomakne vsebino zaslona na levo za en znak vsakič ko je klicana.

```
Arduino<sup>™</sup> sintaksa
001 lcd.scrollDisplayLeft()
```

6. 15 .scrollDisplayRight()

.scrollDisplayRight() pomakne vsebino zaslona na desno za en znak vsakič ko je klicana.

Arduino[™] sintaksa 001 lcd.scrollDisplayRight()

6. 16 .autoscroll ()

.autoscroll() pomakne vsebino zaslona iz desne proti levi. Ko je dosežen konec niza znakov, se smer pomikanje zamenja. Pomaknjena je 1x na vsak klic.

```
Arduino<sup>™</sup> sintaksa
```

```
001 lcd.autoscroll()
```

6.17.noAutoscroll ()

.noAutoscroll() prekine .autoscroll() funkcijo.

```
Arduino<sup>™</sup> sintaksa
001 lcd.noAutoscroll()
```

6. 18 .leftToRight()

.leftToRight() določi smer izpisa znakov. Zapisani so od leve proti desni.

Arduino™ sintaksa 001 lcd.leftToRight()

6. 19 .rightToLeft()

.rightToLeft() določi smer izpisa znakov. Zapisani so od desne proti levi.

Ardui	Arduino™ sintaksa					
001	1cd	.ri	ght	Tol	eft	()

6. 20 .createChar()

.createChar() ustvari namenski znak. Za to moramo ustvariti Array z osmimi podatkovnimi polji, z določitvijo naših znakov. lcd.createChar določi znakom serijsko številko s prvim parametrom. Lahko je ustvarjenih do osem lastnih znakov, ki so klicani z 0 do 7.

Arduino	тм	sinta	ksa

001	<pre>byte myChar[8] = {</pre>
002	B00000.
003	B10001.
004	B00000,
005	B00000.
006	B10001,
007	B01110,
800	B00000.
009	1
010	
011	void setup()
012	1
013	lcd.createChar(0, myChar)
014	lcd.begin(16, 2)
015	<pre>lcd.write(byte(0));</pre>
016	1

7. LCD funkcije

Sledeč primer povzame LCD funkcije, ki so pojasnjene v zgornjem daljšem primeru. Poglejte programsko kodo in zamenjajte nekaj opisanih parametrov, da boste popolnoma razumeli funkcije.

Nalaganje

Za poskus potrebujete osnovni zapis LCD, ki ste ga že nastavili v testu funkcij.

Prim	er kode: Funkcije
001	// LCD-Library einbinden
002	#include <liquidcrystal.h></liquidcrystal.h>
003	
004	// LCD-Pins festlegen
005	// RS, E, D4, D5, D6, D7
006	LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007	
800	#define Backlight 9
009	
010	int i;
011	
012	void setup()
013	1
014	analogWrite(Backlight, 200);
015	
016	lcd.begin(16, 2);
017	<pre>lcd.setCursor(0, 0);</pre>
018	<pre>lcd.print(*ARDUINO LCD");</pre>
019	delay(1000);
020	lcd.clear();
021	1
022	
023	void loop()
024	1
025	<pre>// Cursor blinken und Position wechseln</pre>
026	lcd.clear();
027	<pre>lcd.setCursor(0, 0);</pre>
028	<pre>lcd.print(*blink/setCursor*);</pre>
029	delay(1000);
030	<pre>lcd.clear();</pre>
031	

032	<pre>lcd.setCursor(0, 0);</pre>
033	<pre>lcd.blink();</pre>
034	delay(1500);
035	
036	<pre>Icd.setCursor(15, 0);</pre>
037	delay(1500);
038	
039	<pre>lcd.setCursor(0, 1);</pre>
040	delay(1500);
041	
042	<pre>lcd.setCursor(15, 1);</pre>
043	delay(1500);
044	
045	
046	// Cursor on/off
047	<pre>lcd.noBlink();</pre>
048	<pre>lcd.clear();</pre>
049	<pre>lcd.setCursor(0, 0);</pre>
050	<pre>lcd.print("cursor on/off");</pre>
051	delay(1000);
052	lcd.clear();
053	<pre>lcd.home();</pre>
054	lcd.cursor();
055	
056	char txt[6] = {"HALLO"};
057	for(1 - 0; 1 < 5; 1++)
058	1
059	<pre>lcd.print(txt[i]);</pre>
060	delay(500);
061	
062	
063	<pre>lcd.noCursor();</pre>
064	delay(2000);
065	
066	
067	// Scroll LCD
068	<pre>lcd.clear();</pre>
069	<pre>lcd.noBlink();</pre>
070	<pre>lcd.setCursor(0, 0);</pre>
071	<pre>lcd.print("scroll LCD");</pre>
072	delay(1000);
073	<pre>lcd.setCursor(0, 0);</pre>
074	
075	for($i = 0$; $i < 16$; $i + +$)
076	1
077	<pre>lcd.scrollDisplayLeft();</pre>

078		<pre>lcd.setCursor(0, 0);</pre>
079		<pre>lcd.print("FRANZIS ARDUINO IST MEGA SPITZE!");</pre>
080		delay(350);
081		1
082		
083		delay(1500);
084		
085		for($i = 0$; $i < 16$; $i + +$)
086		1
087		<pre>lcd.scrollDisplayRight();</pre>
880		<pre>lcd.setCursor(0, 0);</pre>
089		<pre>lcd.print("FRANZIS ARDUINO IST MEGA SPITZE!");</pre>
090		delay(350);
091		1
092		
093		delay(1500);
094)	

Novo je to da navedemo pin za osvetlitev z #define backlight. To je predprocesorski ukaz, ki bo zamenjal vsa imena, ki se pojavijo v izvorni kodi z oznako Backlight vrednosti 9. Na ta način lahko naredite spremembe na parametrih zelo hitro, brez da bi morali preiskati celotno izvorno kodo.

Nasvet

Za več informacije na temo predprocesorjev si poglejte spletno stran: <u>http://www.mikrocontroller.net/articles/C-Pr%C3%A4prozessor</u>

Sledeča programska točka ponuja možnost izpisa posameznih znakov kot v starem pisalnem stroju:

001	char txt[6] = {"HALLO"};
002	for(i = 0; i < 5; i++)
003	1
004	<pre>lcd.print(txt[i]);</pre>
005	delay(500);
006	J

Tukaj je Array z 6 znaki nastavljen in že v naprej določen z nizom (string) »HELLO«. Vedno morate nastaviti Array večji kot 1, ker je nevidna prekinitev niza (\0) dodana samodejno. For() zanka izpiše vsak posamezen znak iz Arraya s kratkim premorom. Za vso operacijo je kazalnik vklopljen, da zgleda bolj kot pisalni stroj.

8. Ustvarjanje lastnih znakov

Ustvarjanje lastnih znakov, kot je že bilo opisano z uporabo .createChar(), je pogosto potrebno ko uporabljate matrični LCD, ker veliko znakov potrebnih v praksi ni vključenih v tabelo znakov LCD. Obstaja možnost ustvarjanja lastnih znakov piko za piko in jih lahko

izpišete. Če potrebujete na primer smeška, ga lahko definirate preko Array in ga pošljete na LCD.

Obstaja možnost zapolnitve do osmih znakov v RAM (spomin) na LCD. Array naših posebnih znakov mora biti velik 8 bajtov in je najbolje zapisan kot je prikazano v poskusni kodi. Znaki so lahko na primer ustvarjeni na preverjeni risbi pad. Vidite lahko, da je sestavljena iz 8 vrstic in vsaka iz 5 vrednosti, kar odraža 5 x 8 pik v LCD. Kjer nastavimo 1 v binarni kodi, se kasneje pojavi bela pika. Z lcd.write(byte(0)) zapišemo znak na LCD.

Primer naredi celotno stvar jasnejšo. Poskusite ustvariti simbol za baterijo ali termometer.

Samodejno narisan smeško.

Nalaganje

Za poskus potrebujete osnovni zapis LCD, ki ste ga že nastavili v testu funkcij.

001	// LCD-Library einbinden
002	<pre>#include <liquidcrystal.h></liquidcrystal.h></pre>
003	
004	// LCD-Pins festlegen
005	// RS, E, D4, D5, D6, D7
006	LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007	
800	<pre>byte myChar[8] = {</pre>
009	B00000,
010	B10001.
011	B00000,
012	B00000,
013	B10001,
014	B01110,
015	B00000,
016	1:
017	
018	void setup()
019	1
020	<pre>// LED-Hintergrundbeleuchtung</pre>
021	analogWrite(9, 150);
022	
023	<pre>lcd.createChar(0, myChar);</pre>
024	lcd.begin(16, 2);
025	<pre>lcd.write(byte(0));</pre>
026	1
02/	
028	void loop()
029	1
030	
031	// Nix zu tun
032	
033]

9. Zatemnitev ozadja

Sledeč primer prikazuje kako lahko samodejno nastavite LCD osvetlitev na svetlejšo ali temnejšo. S spremembo PWM vrednosti na pinu D9 se svetlost osvetlitve prilagaja postopoma. Če izberete višjo PWM vrednost bo LED svetlejši. Z nižjo vrednosti PWM zatemnite osvetlitev. S spremembo PWM vrednosti boste spremenili razmerje plus-pause med trajanjem aktivacije in deaktivacije 5 V signala na D9. To prikazuje sledeč primer.

Majhna PWM vrednost pomeni krajši čas vklopa in s tem temnejšo osvetlitev.

Prenesite program in opazujte LCD. Zgleda tako kot da bi zaslon oživel.

Nalaganje

Za poskus potrebujete osnovni zapis LCD, ki ste ga že nastavili v testu funkcij.

Prim	er kode: LCD_LED
001	// LCD-Library einbinden
002	#include <liquidcrystal.h></liquidcrystal.h>
003	
004	// LCD-Pins festlegen
005	// RS, E, D4, D5, D6, D7
006	LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007	
800	#define Backlight 9
009	
010	byte i = 0;
011	byte flag - 0;
012	unsigned long previousMillis - 0;
013	const long interval = 10;
014	
015	void setup()
016	(
017	analogWrite(Backlight, 0);
018	
019	<pre>lcd.begin(16, 2);</pre>
020	<pre>lcd.setCursor(0, 0);</pre>
021	<pre>lcd.print("**ARDUINO LCD**");</pre>
022	}
023	
024	void loop()
025	1
026	unsigned long currentMillis - millis();
027	if(currentMillis – previousMillis ≻= interval)
028	
029	if(flag==0)i++;
030	if(flag==1)i;
031	
032	if(i-255)flag-1;
033	else if(i0)flag-0;
034	
035	analogWrite(Backlight, i);
036	
037	<pre>previousMillis = currentMillis;</pre>
038	}
039	}

Primer prikazuje kako deluje samodejni števec gor/dol v praksi. Pomembno je da spremenljivka imenovana flag sprejme določeno začetno vrednost 0. Ko zaženete program se spremenljivka i šteje do 255. Če želite začeti s polno svetlostjo morate določiti spremenljivko flag z 1 in spremenljivko i z 255.

Ko doseže vrednost števca i 255 ali 0, bo spremenljivka flag vedno nastavljena od 0 do 1 in smer števca se bo spremenila (i++ povečuje stanje števca za 1, i— zmanjšuje stanje števca za 1). V Loop() funkciji tokrat ne rabimo uporabiti break, ampak določiti čas s pomočjo funkcije millis(). Šele ko bo razlika, ki smo jo določili v spremenljivki previousMillis, potekla se bo osvetlitev spremenila na eno stopnjo. Na ta način bo program nadaljeval s polnim delovanjem izven If() funkcije. Samo če je PWM vrednost zamenjana se bo čas delovanja malo zamenjal, ker bodo klicane nekatere funkcije, ki potrebujejo časovno spremembo. Tukaj lahko poskusite določiti različne čase delovanje s funkcijo Millis(), ki ste se jo že naučili uporabljati.

10. Ura matričnega LCD

V veliko aplikacijah je ura potrebna za nadzor programa – kot preprost časovnik, nadzor nad točno določenim urnikom ali kot delujoči števec ur. Aplikacije ki potrebujejo uro so različne. Poskus prikazuje kako lahko sami programirate zelo preprosto uro. Program se izvaja v loop() funkciji, je končen in šteje v ciklih dolgih 10 ms. Če števec prebere cnt=100 se izpiše čas. To se zgodi vsako sekundo. LED L bo zasvetil vsako sekundo. Spremljajte delovanje programa da zagotovite, da se še vedno izvaja in če je slučajno prišlo do napake. Vendar lahko opazite da ura ni tako natančna kot dejanska guartz ura, ker je cikel in odstopanje mikrokrmilnika quartz pri 16 MHz veliko višje, kot pri večji quartz uri z kilohertz dosegom (quartz ura =32,768 kHz). Odstopanje za več kot eno minuto na dan ni nič nenavadnega. Natančnost je odvisna tudi od sobne temperature. Če močno niha s časom, bo ura imela veliko časovno napako. Časovno odstopanie lahko popravimo z ukazom delav(). Za še boljšo popravilo napake lahko uporabite delayMicroseconds(). Za to nastavite digitalne pine kot izhod in preklopite ob vsakem izvajanju programa, zamenjajte pogoje enkrat na izvajanje. Za signal je lahko natančno naravnan na izhodni čas 10 ms s pomočjo osciloskopa. Lahko določite odstopanje čez razširjeno časovno periodo, s primerjavo časa z različno, bolj natančno uro, na primer DCF uro (1 ali dva dni), računate razliko in jo nato popravite odstopanje z delavMicroseconds().

Ura v uporabi.

Spremenljivke so nato uporabljene za nastavitev ure:

001	Sekunde = 12
002	Minute = 0
003	Stunde = 0

Nasvet

Za več informacij o quartz uri si oglejte spletno stran: <u>http://de.wikipedia.org/wiki/Uhrenguarz</u>

Nalaganje

Za poskus potrebujete osnovni zapis LCD, ki ste ga že nastavili v testu funkcij.

Primer kode: RTC

0.01	
001	// LUD-Library einbinden
002	<pre>#include <liquidcrystal.h></liquidcrystal.h></pre>
003	
004	// LCD-Pins festlegen
005	// RS, E, D4, D5, D6, D7
006	LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007	
008	#define Backlight 9
009	
010	<pre>int cnt, Sekunde, Minute, Stunde=0;</pre>
011	int LED=13;
012	
013	void setup()
014	{
015	pinMode(LED, OUTPUT);
016	analogWrite(Backlight, 200);
017	<pre>lcd.begin(16, 2);</pre>
018	
019	// Zeitvorgabe
020	Sekunde = 12;
021	Minute = 0;
022	Stunde = 0;
023	}
024	
025	void loop()
026	{
027	
028	cnt++;

029	if(cnt == 50)digitalWrite(LED, LOW);
030	
031	if(cnt == 100)
032	{
033	digitalWrite(LED, HIGH);
034	
035	<pre>lcd.setCursor(3, 0);</pre>
036	
037	if(Stunde < 10) lcd.print("0");
038	<pre>lcd.print(Stunde);</pre>
039	<pre>lcd.print(":");</pre>
040	
041	if(Minute < 10) lcd.print("0");
042	<pre>lcd.print(Minute);</pre>
043	<pre>lcd.print(":");</pre>
044	
045	if(Sekunde < 10) lcd.print("0");
046	<pre>lcd.print(Sekunde);</pre>
047	
048	Sekunde++;
049	if(Sekunde == 60)
050	{
051	Sekunde = 0;
052	Minute++;
053	if(Minute == 60)
054	{
055	Minute = 0;
056	Stunde++;
057	if(Stunde == 24)
058	{
059	Stunde = 0;
060	}
061	}
062	}
063	cnt = 0;
064	}
065	
066	delay(10);
067	}

Če bi želeli izpisati števčeve izpise enega za drugim na zaslon, bi izpisi števca pod 10 izgledali nenavadno, ker vodilna ničla ne bi bila izpisana. Da ima ura znano obliko zapisa »00:00:00«, morate preveriti vrednost, ki mora bit nižja od 10 pred izpisom.

001 if(Sekunde < 10) lcd.print("0")</pre>

Če je vrednost pred izpisom nižja od 10, bo preprost izpis prikazal, na primer »12:1:8«. Vendar preverite, če je vrednost nižja in dodajte »0« ročno, da zapolnite desetice.

11. Merilnik zmogljivosti

Izgradnja lastnih merilnikov s preprostimi stvarmi je vedno zanimiva in zabavna. Arduino™ dovoljuje programiranje merilnika zmogljivosti za manjše kondenzatorje v območju 1 nF do približno 100 µF za vaše laboratorije po zelo nizki ceni in z malo truda. Tukaj lahko vidite kako deluje kondenzator s samodejnim območjem:

Pričetek meritve, spremenljivka c_time je določena z nič. Vrata D12 so nastavljena kot izhod in nato nemudoma preklopljena na nizko (GND), da se izprazni kondenzator (testni del) pred dejansko meritvijo.

Po kratkem premoru 1 sekunde ko se praznjenje konča, bodo vrata 12 konfigurirana kot vhod in zvišanje notranjega upora bo aktivirano. Notranji upor bo sedaj polnil kondenzator, ki bo testiran, dokler vrata D12 ne bodo prepoznala visoko. Meja nad katero digitalna vrata prepoznajo visoko je približno 3,5 V pri delovni napetosti 5 V. Ta nivo je zato odvisen od delovne napetosti, kot je napisano na podatkovnem listu mikrokrmilnika, Vcc x 0,7.

	001	HIGH	= 5V x	0.7
--	-----	------	--------	-----

Preden je še prepoznana visoka vrednost na digitalnem vhodu, mine nekaj časa. Merimo znotraj Do-while zanke z uporabo spremenljivke c_time. c_time se približno ujema s kapaciteto kondenzatorja, to pomeni ko je c_time zelo velik, je tudi izmerjena kapaciteta zelo velika.

Da dobite pravilno meritev, morate pretvoriti v spremenljivko (c_time x factor). Vrednost (factor) mora biti določena s pomočjo eksperimenta z nekaj že umerjenimi kondenzatorji, ker bo prepoznava visokega nivoja odstopala med različnimi krmilniki, kljub informaciji Vcc x 0,7 v podatkovnem listu, in frekvenca oscilatorja 16 MHz ni 100 % enaka na vsaki plošči (quartz toleranca). Končno je izmerjena vrednost deljena v Nanofarad (nF) in Mikrofarad (μ F) s preprostim if() stavkom in izpisom na LCD pred novo meritvijo.

11. 1 Sestavljanje merilnika zmogljivost

Kondenzator je priključen na pin D12 in GND. Poskrbite da dodatno izpraznite kondenzator, ko ga priključite na Arduino[™]-PCB s stikom dveh žic kondenzatorja. Tudi če program izprazni kondenzator pred začetkom meritve, je mogoče da je kondenzator, ki ste ga prej izbrali, deloval na višji napetosti od 5 V. To lahko poškoduje vašo Arduino[™] ploščo.

Sestavljanje merilnika.

11. 2 Umerjanje vašega merilnika zmogljivosti

Najdite različne kondenzatorje – vedno uporabite kondenzatorje katerih kapaciteto natančno poznate. Lahko pustite da vam jo izmeri strokovnjak za elektroniko. Novi kondenzatorji imajo po navadi odtisnjeno vrednosti +/-20 %, odvisno od tipa.

V tej meritvi vstavite faktor 1 (c_time=1.0). Priključite enega od kondenzatorjev v merilnik in odčitajte vrednost, ko se ta pojavi za zaslonu. Delite vrednost priključenega kondenzatorja z izmerjeno vrednostjo na LCD in vstavite rezultat kot faktor, na primer 1 μ F/ 19,55 μ F = 0,0511.
Primer kode: CAPA

001	// LCD-Library einbinden
002	<pre>#include <liquidcrystal.h></liquidcrystal.h></pre>
003	
004	// LCD-Pins festlegen
005	// RS, E, D4, D5, D6, D7
006	LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007	
008	#define Backlight 9
009	
010	int messPort=12;
011	<pre>float c_time=0.0;</pre>
012	float kapazitaet=0.0;
013	
014	void setup()
015	{
016	analogWrite(Backlight,200);
017	
018	<pre>lcd.begin(16, 2);</pre>
019	<pre>lcd.setCursor(0,0);</pre>
020	<pre>lcd.print("C-MESSGERAET");</pre>
021	}
022	
023	void loop()
024	
025	// Entladen
026	pinMode(messPort,OUTPUT);
027	digitalWrite(messPort,LOW);
028	c_time=0.0;
029	delay(1000);
030	
031	// Laden
032	pinmode(messPort,INPUI);
033	digitaiwrite(messPort,HIGH);
034	// Maaaan
035	// Messen
030	do
037	
020	C_LINNETT;
0.39	;willie(:urgitarReau(inessPort));
040	// Ilmnochnon
041	// Unit ectiment kapazitaot-(c timot(06162)*10 0.
042	<pre>kapazitaet=(t_time=0.00102)=10.0;</pre>
043	// Ronoich
044	

045	if(kapazitaet<999)
046	{
047	<pre>lcd.setCursor(0,1);</pre>
048	<pre>lcd.print(kapazitaet);</pre>
049	<pre>lcd.print("nF ");</pre>
050	}
051	else
052	{
053	<pre>lcd.setCursor(0,1);</pre>
054	<pre>lcd.print(kapazitaet/1000);</pre>
055	<pre>lcd.print("uF ");</pre>
056	}
057	
058	delay(1000);
059 }	

12. Naključna števila - generator loterijskih števil

Med zapisovanjem, merjenjem, nadzorom, regulacijo in izvajanjem programa je pogosto koristno ustvarjanje naključnih števil, na primer ko se luči vklapljajo in izklapljajo v hiši ob različnih časih. Za ta namen lahko uporabite funkcijo Arduino[™]-random(). To dovoljuje ustvarjanje preprostega generatorja loterijskih števil. Ne boste rabili več razmišljati katerega števila izbrati, ko boste izpolnjevali vaš loterijski listek.

Za nastavitev generatorja loterijskih števil potrebujete tipko in anteno. Tipka se znotraj programa odbija. Tipka in stikalo ne zapreta stika 100 % naenkrat, ampak sta namenjena sprožitvi večkrat zapored po pritisku. To lahko primerjate z metom žoge ob tla. Nekajkrat se bo odbila, preden bo obležala na tleh. To se zgodi veliko hitreje s tipko, vendar je Arduino[™] mikrokrmilnik tako hiter, da bo zaznal te milisekundne skoke. Da se temu izognete, se tipka odbije, s tem da je prebrana dvakrat zapored v presledku 50 ms, kar je dovolj za odbojno rutino v praksi. Edino če je druga ocena še vedno prepoznala nizko stanje izhoda D7, se bo navodilo med oklepaji izvršilo.

Na začetku programa preklopimo vrata D7 na izhod in aktiviramo notranji dvig upornosti s pomočjo digitalWrite() z zapisom 1 za visoko stanje vhoda. Sedaj napetost približno 5 V čaka na vhodu v stanju mirovanja. Sedaj lahko usmerite vhod proti GND (ozemljitvi) s tipko. Ta dvig upornosti je integriran v mikrokrmilniku in ima vrednost približno 20 do 50 k Ω . Kar se tiče funkcije, je enako kot da bi priključili zunanji upornik iz vhoda D7 na +5 V. V stanju mirovanja bo program vedno prepoznal visoko vrednost na vratih D7 in nizko stanje ko bo pritisnjena tipka. Zato je stavek tipke zapisan v programu z vprašajem. To se imenuje NOT-operator v programskem jeziku C. Ker je znano da If() stavek preverja za TRUE, bo vse drugo interpretirano kot FALSE. Če je bil If() stavek izveden brez tega operatorja, bo pogoj vedno TRUE. Izvedel se bo še pred pritiskom tipke. NOT-operator obrne stanje tipke. 1 obrne v 0 in 0 obrne v 1 in If() stavek je sedaj samo TRU, če je tipka bila dejansko pritisnjena.

Sestavljanje generatorja loterijskih števil. Kot anteno lahko uporabite kos žice. Pritisnite tipko, da dobite izpisane zmagovalna števila.

Primer kode: Loterija

001	// LCD-Library einbinden
002	<pre>#include <liquidcrystal.h></liquidcrystal.h></pre>
003	
004	// LCD-Pins festlegen
005	// RS, E, D4, D5, D6, D7
006	LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007	
800	∦define Backlight 9
009	#define TASTER 7
010	
011	int i, zahl=0;
012	int $Anz = 6;$
013	
014	void setup()
015	{
016	analogWrite(Backlight, 200);
017	
018	pinMode(TASTER, INPUT);
019	digitalWrite(IASIER, HIGH);
020	
021	Ica.begin(16, 2);
022	<pre>Icd.setLursor(0, 0); led.setLursor(0, 0);</pre>
023	ICO.print("LUIIU 6 aus 49");
024	delay(1000);
025	<pre>icu.crear();</pre>
020	randomSood(analogPoad(0)*5).
027	Tandomseed(anatogkead(0) 5),
020	}
030	,
031	void loop()
032	{
033	<pre>lcd.clear();</pre>
034	<pre>lcd.setCursor(0, 0);</pre>
035	<pre>lcd.print("TASTER DRUECKEN");</pre>
036	
037	<pre>while(digitalRead(TASTER));</pre>
038	{

039	if(!digitalRead(TASTER))
040	{
041	delay(50);
042	if(!digitalRead(TASTER));
043	{
044	<pre>lcd.clear();</pre>
045	<pre>lcd.setCursor(0, 0);</pre>
046	<pre>lcd.print("IHRE LOTTOZAHLEN");</pre>
047	
048	<pre>lcd.setCursor(0, 1);</pre>
049	<pre>for(i=0;i<anz;i++)< pre=""></anz;i++)<></pre>
050	{
051	zahl=random(49);
052	zahl++;
053	<pre>lcd.print(zahl);</pre>
054	<pre>lcd.print(" ");</pre>
055	delay(500);
056	}
057	
058	delay(5000);
059	}
060	}
061	}
062	}

Ko zaženete program, randomSeed() ustvarite izhodiščno vrednost za funkcijo Random(). Ko spreminjate vrednost randomSeed(), bodo ustvarjena različna naključna števila. Če je vrednost randomSeed() vedno enaka, bodo ustvarjena vedno ista naključna števila, kar ne bo pomagalo pri igranju lota.

Tukaj uporabimo našo anteno. Za tvorbo različnih vrednosti s funkcijo randomSeed() uporabite ADC vhod za priključenega skakalca in drugi del skakalca odprt. To deluje kot antena in proizvaja višji šum na analognem vhodu in tako različne vrednosti randomSeed(). To deluje najbolje če daste vašo roko zraven antene ali če se antena nahaja zraven električne naprave. Rezultat z različnimi vrednostmi števil lahko vidite samo ob pritisku tipke za ponovni zagon na Arduino[™]-PC in nato izpišete števila. Namesto analogRead() lahko enkrat vpišete določeno vrednost, da vidite isto vrednost izpisa po vsakem ponovnem zagonu.

13. Zaslon za izpis stolpčnega diagrama

Zasloni za izpis stolpčnega diagrama se v merilni tehnologiji pogosto uporabljajo. Imenujejo se tudi stolpčni zasloni. Prikazujejo trend izmerjenih vrednosti. Ko nastavljate elektronska vezja, vam stolpčni prikaz vrednosti olajša delo, ker lahko lažje razberete trende proti maks. ali min., kot pa iz digitalnih vrednosti. Ta stolpčni izpis poznamo tudi iz računalniških programov, ko nameščamo programe. Tukaj stolpec prikazuje koliko programa je že bilo naloženega. Na splošno je stolpčni diagram, prikazan v tem poskusu, analogni zaslon na digitalni osnovi. Elektromehanski stolpčni diagrami so bili uporabljeni že v obdobju zgodnje elektronike. Naši stolpčni diagrami uporabljajo sodoben LCD in mikrokrmilnik.

V preprostem primeru boste lahko prikazali celoten znak za vsak korak zaslona (5 x 8 pik). Lahko implementiramo zelo splošen zaslon od 0 do 16. Bilo bi lepo če bi lahko uporabili dodatnih 5 stolpcev vsakega znaka. Ker lahko ustvarite 8 lastnih znakov, je lažje sprogramirati stolpčni diagram z 5 x 16 = 89 znaki/pogoj.

Stolpčni diagram med izvajanjem.

Nalaganje Za poskus potrebujete osnovni zapis LCD, ki ste ga že nastavili v testu funkcij.

Primer kode: BARGRAPH

001	// LCD-Library einbinden
002	<pre>#include <liquidcrystal.h></liquidcrystal.h></pre>
003	
004	// LCD-Pins festlegen
005	// RS, E, D4, D5, D6, D7
006	LiquidCrystal lcd(11, 10, 2, 3, 4, 5);

00/	
008	#define LCD_LENGHT 16.0
009	
010	int value;
011	byte flag = 0;
012	
013	<pre>byte MyCharO[8] = {</pre>
014	B00000,
015	B00000,
016	800000,
017	B00000,
018	B00000,
019	B00000,
020	B00000,
021	B00000,
022	};
023	
024	byte MyChar1[8] = {
025	B10000,
026	B10000,
027	B10000,
028	B10000,
029	B10000,
030	B10000,
031	B10000,
032	B10000,
033	};
034	
035	byte MyChar2[8] = {
036	B11000,
037	B11000,
038	B11000,
039	B11000,
040	B11000,
041	B11000,
042	B11000,
043	B11000,
044	};
045	
046	byte MyChar3[8] = {
047	B11100,
048	B11100,
049	B11100,
050	B11100,
051	B11100,
052	B11100,

053	B11100,
054	B11100,
055	};
056	
057	<pre>byte MyChar4[8] = {</pre>
058	B11110,
059	B11110,
060	B11110,
061	B11110.
062	B11110.
063	B11110.
064	B11110.
065	B11110.
066	}:
067	
068	byte MyChar5[8] = {
069	B11111.
070	B11111.
071	B11111.
072	B11111.
073	B11111.
074	B11111.
075	B11111,
076	B11111,
077	};
078	
079	void draw_bargraph(byte percent)
080	{
081	byte i, c1, c2;
082	
083	<pre>lcd.setCursor(0, 0);</pre>
084	<pre>lcd.print(percent);</pre>
085	<pre>lcd.print("% ");</pre>
086	
087	<pre>lcd.setCursor(0, 1);</pre>
088	
089	percent = map(percent, 0, 100, 0, 80);
090	
091	cl = percent / 5;
092	c2 = percent % 5;
093	
094	for(i = 0; i < c1; ++i)
095	
096	<pre>lcd.write(byte(5));</pre>
097	<pre>lcd.write(c2);</pre>
098	}

099		
100	fo	r(i = 0; i < 16 - (c1 + (c2 ? 1 : 0)); ++i)
101	{	
102		<pre>lcd.write(byte(0));</pre>
103	}	
104	}	
105		
106	void	setup()
107	{	
108		analogWrite(9,200);
109		
110		<pre>lcd.createChar(0, MyChar0);</pre>
111		<pre>lcd.createChar(1, MyChar1);</pre>
112		<pre>lcd.createChar(2, MyChar2);</pre>
113		<pre>lcd.createChar(3, MyChar3);</pre>
114		<pre>lcd.createChar(4, MyChar4);</pre>
115		<pre>lcd.createChar(5, MyChar5);</pre>
116		
117		lcd.begin(16, 2);
118	}	
119		
120	void	loop()
121	{	
122		double percent;
123		
124		if(flag == 0)value++;
125		if(flag == 1)value;
126		if(value > 1024)flag=1;
127		else if(value == 0)flag=0;
128		
129		percent = value / 1024.0 * 100.0;
130		draw_bargraph(percent);
131		delay(10);
132	}	

Posamezni deli zaslona stolpčnega diagrama so določeni z Array MyChar0 in MyChar1. Programska koda že prikazuje kako se deli zapolnijo z Array za Array. V funkciji setup(), so znaki ustvarjeni z lcd.createChar().

V funkciji Loop(), je števec gor/dol, ki ga poznate iz prejšnjega primera, tukaj znova uporabljen. Vendar tokrat šteje od 0 do 1024. Na ta način je lahko števec zamenjan z Arduino[™] digitalnim vhodom, ki pokriva vrednosti od 0 do 1023. Vrednost števca je pretvorjena v procente in predana funkciji draw_bargraph().

draw_bargraph() funkcija je zanimiva. Tukaj je stolpčni diagram zložen skupaj in prikazan. Vsakič ko je funkcija klicana bo kazalka postavljena v položaj (0,0). To je začetni položaj za ponovno pisanje na zaslon. V prvi vrstici izpišemo procente iz spremenljivke percent in za njo izpišemo znak za procente. Za znakom za procente bosta dve prosti mesti. Izpisa digitalnih vrednosti v procentih je tako končan.

Nato uporabimo setCursor(0, 1) za namestitev kazalnika v spodnji, to je drugo vrstico LCD: Za delitev vrednosti procentov, ki gre od 0 do 100 % v 80 posameznih območij (pikslov),

uporabimo Map() funkcijo. To spremeni lestvico vhodnih vrednosti od 0 do 100 na izhodno vrednosti 0 do 80, glede na vhodno vrednost percent.

Sedaj določimo vrednost percent z delitvijo števila polj, ki jih moramo zapolniti s 5 in zapišemo rezultat v spremenljivko c1. Operator % določi ostale delne vrednosti. Spremenljivko zapišemo v spremenljivko c2. Sedaj vemo koliko polj moramo čisto zapolniti in katere samo delno.

Sledeča For() zanka šteje dokler polja niso zapolnjena, in izpiše celotno polje na LCD, ob vsakem končanju zanke. Ker vsak naknadni izpis na LCD samodejno premakne znak za ena, bomo imeli stolpec s polnimi polji na koncu zanke. Ta del programa prikazuje da For() zanka ne uporablja oklepajev. Prevajalnik v For() zanki naknadno vzame sledečo vrstico v zanko. V tem primeru bo klicana lcd.write(byte(5)). Po prevodu prve zanke, bo škatla z delno zapolnitvijo prikazana na LCD: To vodi do stolpiča ko je sestavljen piksel za pikslom na LCD:

Primer

Prikazana bo vrednost 43. Delite vrednost 43 s 5, kar znaša 4,6. Ker je spremenljivka c1 razglašena kot bajt, bo samo 8 shranjena v njej. Če ostanek 43 delimo s 5 je 3, kar pomeni 3 delne udarce.

Če se vrednost ponovno zmanjša, moramo izbrisati odvečni znak iz LCD. Nova operacija, ki se imenuje pogoji izraz ali ternarni izborni operator, je dodana.

Na splošno lahko na celotno stvar gledate kot If-Else navodila, vendar je samo okrajšana C izpeljava. Sintaksa za pogojna navodila bi bila: Condition ? Expression1 : Expression2 Se vam to zdi znano? Ni nobene razlike od:

001	if(Bedingung)
002	{
003	// Ausdruck1
004	}
005	else
006	{
007	// Ausdruck2
800	}
009	
010	for(i = 0; i < 16 - (c1 + (c2 ? 1 : 0)); ++i)
011	<pre>lcd.write(byte(0))</pre>

Zanka izbriše odvečen znak iz LCD z določitvijo kako dolgo je območje ki ni uporabljeno, ter ga prepiše z znaki.

Potrebnega je nekaj znanja za izpis stolpčnega diagrama, vendar ko enkrat razumete, pride zelo prav v številnih aplikacijah.

14. Merilec svetlobe - fotometer

Fotometer je merilnik ki določi gostoto svetlobe ali moč svetlobe. Uporabljajo ga na primer fotografi kot merilnik osvetlitve ali v astronomiji za določitev svetlosti zvezd.

Sestavljanje fotometra. LCD povezava je vzpostavljena.

V kemiji se uporablja za določitev koncentracije. V zadnje primeru smo programirali stolpčni diagram, tokrat bomo namesto gor/dol števca, predali v uporabo pravo fizikalno vrednost in programirali preprost fotometer.

Načrt priključitve fototrazistorja tipa PT331C na Arduino™ plošči.

V diagramskem vezju lahko vidite da je fototranzistor priključen na analogni vhod (ADC) na Arduino[™] plošči. Fototranzistor ni lahko ločiti od LED regulatorja. Ima čisto, transparentno ohišje, vendar je to res tudi za nekatere LED. Če niste prepričani ali imate LED ali fototranzistor, lahko preverite s pomočjo multimetra, tako da ga nastavite na določeno upornost. Za to priključite zbiralnik (C- ravni del ohišja) na pozitivni del in oddajnik (E) na negativni kabel multimetra. Če potemnite fototranzisotr, se bo upornost močno spremenila. Na LED bo učinek veliko manjši. Multimetri s samodejno funkcijo range so tukaj idealni, saj je lahko meritev nekje med kilo Ohm in nekaj mega Ohm.

Primer kode: FOTOMETER

001	// LCD-Library einbinden
002	<pre>#include <liquidcrystal.h></liquidcrystal.h></pre>
003	
004	// LCD-Pins festlegen
005	// RS, E, D4, D5, D6, D7
006	LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007	
800	#define LCD_LENGHT 16.0
009	
010	const int numReadings = 10;
011	unsigned int readings[numReadings];
012	<pre>int index = 0;</pre>
013	unsigned int total = 0;
014	int average = 0;
015	
016	byte MyCharO[8] = {
017	B00000,
018	B00000,
019	B00000,
020	B00000,
021	B00000,
022	B00000,
023	B00000,
024	B00000,
025	};
026	
027	byte MyCharl[8] = {
028	B10000,
029	B10000,
030	B10000,
031	B10000,
032	B10000,
033	B10000,
034	B10000,
035	B10000,
036	};
037	but a Muchan $2[0] = 1$
020	$Dyte Mythar2[8] = {$
0.39	B11000,
040	D11000, D11000
041	P11000,
042	D11000,
043	R11000
044	R11000,
045	D11000,
040	DI1000,

047	};	
048		
049	byte	MyChar3[8] = {
050	B1110	00,
051	B1110	00,
052	B111	00,
053	B1110	00,
054	B111(00,
055	B1110	00,
056	B111(00,
057	B111(00,
058	};	
059		
060	byte	MyChar4[8] = {
061	B111	10,
062	B111	10,
063	B111	10,
064	B111	10,
065	B111	10,
066	B111	10,
067	B111	10,
068	B111	10,
069	};	
070		
071	byte	MyChar5[8] = {
072	B111	11,
073	B111	11,
074	B111	11,
075	B111	11,
076	B111	11,
0//	B111	11,
0/8	B111	11,
0/9	B111.	11,
080	};	
180		
082	int a	adc_AVG(byte channel)
083	{	Likil kikil avadžani[žadin]
084		total= total - readings[index];
085	1	readings[index] = analogkead(channel);
086		total= total + readings[index];
087		Index - Index + 1;
000	8	if (index) = numDecidings)index = 0.
009		<pre>iii (index /= numkeauings)index = 0;</pre>
090		average = total / numPosdings.
091	(return average / 1024.0 ± 100.0
092	}	100.0,
000		

094	
095	<pre>void draw_bargraph(byte percent)</pre>
096	{
097	byte i, cl, c2;
098	
099	<pre>lcd.setCursor(0, 0);</pre>
100	<pre>lcd.print("Brightness: ");</pre>
101	<pre>lcd.print(percent);</pre>
102	<pre>lcd.print("% ");</pre>
103	
104	<pre>lcd.setCursor(0, 1);</pre>
105	
106	percent = map(percent, 0, 100, 0, 80);
107	
108	c1 = percent / 5;
109	c2 = percent % 5;
110	
111	for(i = 0; i < c1; ++i)
112	<pre>lcd.write(byte(5));</pre>
113	
114	<pre>lcd.write(c2);</pre>
115	
116	for(i = 0; i < 16 - (c1 + (c2 ? 1 : 0)); ++i)
117	<pre>lcd.write(byte(0));</pre>
118	}
119	
120	void setup()
121	{
122	analogWrite(9,200);
123	
124	lcd.createChar(O, MyCharO);
125	<pre>lcd.createChar(1, MyChar1);</pre>
126	<pre>lcd.createChar(2, MyChar2);</pre>
127	lcd.createChar(3, MyChar3);
128	lcd.createChar(4, MyChar4);
129	<pre>lcd.createChar(5, MyChar5);</pre>
130	
131	lcd.begin(16, 2);
132	}
133	
134	void loop()
135	{
136	<pre>int raw_adc = adc_AVG(0);</pre>
137	draw_bargraph(100 - raw_adc);
138	delay(20);
THE R. P. LEWIS CO., LANSING MICH.	

Ko ste nastavili vezje in prenesli kodo na Arduino[™] ploščo, se bo izpisala vrednost blizu 100 % na LCD v svetlem okolju, in stolpec na stolpčnem diagramu bo skoraj povsem zapolnil spodnjo vrstico LCD.

Če sedaj skoraj popolnoma zatemnite fototranzistor, se bo vrednost zmanjšala na blizu 0. Natančneje si poglejte vezje. Fototranzisotr je priključen na 10 kΩ upornik na sprejemniku, ki je priključen na +5 V in na GND (ozemljitev) na oddajniku. Analogni vhod 0 Arduino[™]-PCB je priključen na presek med sprejemnikom in uporom. Če je sedaj fototranzistor izpostavljen svetlobi, bo postal prevoden. Padec napetosti med sprejemnikom in oddajnikom se bo zmanjšal. Ko je fototrazistor zatemnjen bo teklo zelo malo toka, fototrazistor se bo zaklenil in sprejemnik-oddajnik napetost se bo povečala. Sedaj merimo na območju skoraj celotnih 5 V.

Med dvema ekstremoma bo fototranzistor zelo dinamičen, odzval se bo tudi na majhne spremembe v svetlobi. Ker bo zaslon deloval obratno, zelo svetlo bi bila nizka vrednost in temno zelo visoka vrednost, moramo prilagoditi izmerjeno vrednost. Za to odštejemo izmerjeno vrednost od 100 %, da dobimo želen rezultat. Obrnemo analogno izmerjeno vrednost.

Če nočete da se stolpčni diagram neprenehoma spreminja, zaradi majhnih sprememb v svetlobi, ima funkcija stolpčni zaslon dodano povprečno obliko. Zgladi analogno izmerjeno vrednost in izračuna drseče povprečje, imenovano AVG za povprečje.

Trenutna izmerjena vrednost je zato dodana v Array v vsakem izvajanju glede na to, kako visoko vrednost ima števec. Neprekinjeno bo vračal povprečno vrednost. Število meritvenih serij za določitev povprečja je določeno s spremenljivko numReadings. Višja kot je vrednost vrednosti ki bodo povprečne, večja bo natančnost, vendar bo tudi dlje časa zaslon brez izpisa. Tukaj se lahko igrate z vrednostmi. Za najboljše so se izkazale vrednosti med 8 in 64. Na koncu AVG funkcije, je izračunana vhodna vrednost (0 do 1023) za vrednost v procentih za funkcijo izpisa stolpčnega diagrama.

Takšen fotometer je lahko programiran tudi za vklapljanje ali izklapljanje luči ali, kot prikazuje naslednji primer, za uporabo alarma.

15. Alarmni sistem

Fotometer lahko uporabite tudi kot alarmni sistem, ki se odzove že na majhne spremembe svetlobe. Na začetku programa za alarm je določena trenutna moč osvetlitve, ki bo uporabljena na analognem vhodu A0. Če se vrednost napetosti v neprekinjenih meritvah, poveča ali zmanjša, zaradi sprememb v svetlobi (na primer ker se mimo sprehodi oseba) in nato preseže ali pride pod določeno mejo, se sproži alarm.

Ker se bo svetloba spreminjala čez cel dan, mora biti nova referenčna vrednost (trenutna napetost fotometra) določena samodejno vsakih 10 sekund, da je uporabljena kot nova referenčna točka za neprekinjene meritve.

Zato primerjamo točno določene vrednosti svetlobe, ki so merjene na novo vsakih 10 sekund, z vrednostjo svetlobe v neprekinjenih meritvah. Samo določeno odstopanje bo povzročilo sprožitev alarma, kar je +/- neka vrednost odstopanja od trenutne osvetlitve.

001	Schwelle = 25
002	if(analogRead(PHOTOTRANSITOR) > (value + Schwelle)
	analogRead(PHOTOTRANSITOR) < (value - Schwelle))

Če je vrednost nad 2000, bo prebrana nova vrednost iz analognega vhoda A0. Vstavljen premor, ki vpliva na hitrost izvajanja programa, bo zvišala spremenljivko cnt za 1 vsakih 5 ms. To vodi do vrednosti 5 ms x 2000 = 10000 ms = 10 sekund.

001	Schwelle = 25
002	if(analogRead(PHOTOTRANSITOR) > (value + Schwelle)
	analogRead(PHOTOTRANSITOR) < (value – Schwelle))

Tukaj je nastavljena vrednost spremenljivke imenovane Treshold. Odgovorna je za občutljivost sprožilca in ne sme biti nastavljena previsoko ali prenizko, ker bo alarmni sistem reagiral zelo slabo ali pa bo sprožil preveč lažnih alarmov. Ocena neprekinjenih meritev, ki je posneta vsakih 5 ms se bo izvedla v programski vrstici.

Da to preizkusite potegnite roko čez fototranzistor na razdalji približno 50 cm v normalno osvetljeni sobi in alarm se bo sprožil. To lahko storite tudi zelo hitro. Detektor vas bo zaznal če zatemnitev preseže 5 ms.

Alarmni sistem lahko namestite v hladilnik in lahko dodate vrednost števca v alarmno sporočilo, da izmerite cikle odprtja hladilnika. V poskusu s hladilnikom boste videli da LCD spremeni svoj kontrast in bo tudi bolj neaktiven. Poskusite.

Nalaganje

Uporabite enako nastavitev kot pri merilniku svetlobe!

|--|

001	// LCD-Library einbinden
002	<pre>#include <liquidcrystal.h></liquidcrystal.h></pre>
003	
004	// LCD-Pins festlegen
005	// RS, E, D4, D5, D6, D7
006	LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007	
008	#define Backlight 9
009	
010	<pre>int PHOTOTRANSITOR = 0;</pre>
011	<pre>int cnt = 0;</pre>
012	int value, Schwelle;
013	
014	void setup()
015	{
016	analogWrite(Backlight, 200);
017	lcd.begin(16, 2);
018	<pre>lcd.setCursor(1, 0);</pre>
019	<pre>lcd.print("ALARMANLAGE!!!");</pre>
020	<pre>value = analogRead(PHOTOTRANSITOR);</pre>
021	}
022	
023	void loop()
024	{
025	
026	Schwelle = 25;

16. Digitalni voltmeter z zaslonom za stolpčni diagram in USB vmesnikom

S tem kar ste se naučili do sedaj lahko programirate digitalni voltmeter z analognim zaslonom za stolpčni diagram. Zaslon za stolpčni diagram je zelo uporaben za nastavitve. Natančneje lahko vidite kje se nahajata maksimum in minimum na analognem zaslonu, kot na digitalnem zaslonu s čistim numeričnim izpisom. Kot posebni dodatek, zagotovimo programu serijski izhod, ki pošlje vaše izmerjene podatke na računalnik preko USB

vmesnika. Tukaj uporabimo USB vmesnik,ki se že nahaja na Arduino™-UNO plošči in ga že uporabljate za programiranje.

Upornika R1 in R2 nista potrebna v tem poskusu in nista priložena učnemu paketu! Vendar bosta v nadaljevanju kljub temu razložena. Če ju potrebujete ju lahko dokupite v trgovini z elektroniko.

Sestavljanje digitalnega voltmetra.

Za zelo natančno izmero napetosti, med 0 in 5 V, lahko uporabite vezje in analogni izhod A0 brez uporabe upornikov R1/R2. Vendar zagotovite da ne priključite višje napetosti na povezavo, saj lahko s tem poškodujete Arduino[™] ploščo. Zelo natančno lahko izmerite napetost ene izmed dveh Mignon celic (AA) ali mikro celic (AAA) z uporabo vezja. Primer je zelo podoben tistemu z fotometerom z nekaterimi manjšimi razlikami. Tokrat uporabimo tudi serijski vmesnik (UART = univerzalni asinhroni sprejemnik oddajnik) na Arduino[™] mikrokrmilniku. Izmerjeni podatki so poslani preko serijskega vmesnika na mikrokrmilnik (UART) na pretvornik UART v USB na Arduino[™]-PCD, ki pošlje podatke na računalnik. Serijski povezavi D0/RX in D1/TX sta trdno povezani na pretvornik in ni potrebe po dodatnem ožičenju. Na strani računalnika se naredi navidezni vhod, ko namestite Arduino[™]-PCD. To se že uporablja za programiranje. Sedaj ga lahko uporabimo za prenos podatkov na računalnik. Zato moramo sprožiti UART vmesnik v programu. Ta je nastavljen z Serial.begin(). Parameter 19200 med oklepaji predstavlja hitrost prenosa. Sprožitev mora biti izvedena samo enkrat na začetku programa v funkciji Setup().

001 Serial.begin(19200)

Baud je enota za hitrost prenosa v telekomunikacijski tehnologiji. 19200 Baud pomeni, da bo prenesenih 192000 simbolov na sekundo. Znak za hitrost lahko vsebuje različno število bitov glede na kodiranje in mora biti nastavljeno enako na oddajniku in sprejemniku da je prenos dovoljen.

Sledeče vrstice so sedaj uporabljene za pošiljanje merjenih vrednosti ADC (0 do 1013) neposredno na računalnik brez predhodne pretvorbe. Pretvorba v Volte se zgodi v računalniškem programu, ker moramo poslati samo dva posamezna bajta na računalnik, ki jih program veliko lažje oceni kot pa niz (ASCII znakovni niz).

Sedaj bo spomin UART vmesnika izpraznjen z ukazom flush.

001 Serial.flush()

Tako bomo razstavili analogno izmerjene vrednosti, ki imajo razpon med 0 in 102, v visoke in nizke bajte. Visok bajt dobite tako, da delite izmerjeno vrednost z 256.

001 highbyte = adc_raw / 256

Nizki bajt dobimo z modulo (iskanjem ostanka) operacijo 256.

001 lowbyte = adc_raw % 256

Nato pošljemo na računalnik najprej visoke in nato nizke bajte.

001 Serial.write(highbyte) 002 Serial.write(lowbyte)

Za preverjanje če so bile poslane prave vrednosti, lahko preverimo vsoto na koncu prenosa, ki bi naj bila točna številka in XOR formacija tega, kot tudi dva bajta.

```
001 crc = 170^highbyte^lowbyte
002 Serial.write(crc)
```

Informacije

Program deluje tudi brez računalniškega programa in je lahko uporabljen kot samostojen voltmeter.

```
Primer kode: VOLTMETER
```

001 // LCD-Library einbinden 002 #include <LiquidCrystal.h> 003 004 // LCD-Pins festlegen 005 // RS. E. D4. D5. D6. D7 006 LiquidCrystal lcd(11, 10, 2, 3, 4, 5); 007 008 #define LCD_LENGHT 16.0 009 #define ADC CHANNEL 0 010 011 const int numReadings - 20; 012 unsigned int readings[numReadings]; 013 int index = 0; 014 unsigned int total = 0; 015 016 byte MyChar0[8] = { 017 B00000. 018 B00000. 019 B00000, 020 B00000. 021 B00000. 022 B00000. 023 B00000. 024 B00000. 025 1: 026 027 byte MyChar1[8] - 1 028 B10000. 029 B10000. 030 B10000. 031 B10000. 032 B10000. 033 B10000. 034 B10000. 035 B10000. 036 1: 037 038 byte MyChar2[8] = { 039 B11000. 040 B11000. 041 B11000. 042 B11000. 043 B11000. 044 B11000.

045	B11000,
046	811000,
047	1:
048	
049	byte MyChar3[8] - I
050	811100,
051	B11100,
052	B11100.
053	B11100.
054	B11100,
055	811100,
056	B11100,
057	811100,
058);
059	
060	byte MyChar4[8] = (
061	B11110,
062	811110,
063	811110,
064	811110,
065	811110,
066	811110,
067	B11110.
068	B11110.
069];
070	
0/1	byte MyChar5[8] - {
072	B11111,
0/3	B11111,
074	B11111.
075	B11111,
076	BIIIII,
077	BIIIII,
078	B11111, 011111
079	B11111,
080	1;
001	int ada AVC(buta abannal)
082	Inc. auc_Avecoyce channels
003	total total - readings[index].
004	readings[index] = analogDead(channel).
005	total total + readings[index].
000	index = index + 1.
000	if (index \rightarrow numBeadings)index $= 0$.
000	roturn total / numPoadings;
009	i ecuri cocar / numeeurings,

```
091
092 void draw_bargraph(byte percent)
093 [
094
      byte i, c1, c2;
095
096
      lcd.setCursor(0, 1);
097
098
      percent = map(percent, 0, 100, 0, 80);
099
100
      c1 = percent / 5:
101
      c2 - percent % 5:
102
103
     for(i = 0; i < c1; ++i)
104
      lcd.write(byte(5));
105
106
    lcd.write(c2);
107
108
      for(i = 0; i < 16 - (c1 + (c2 ? 1 : 0)); ++i)
109
      lcd.write(byte(0));
110 }
111
112 void setup()
113 (
114
        analogWrite(9, 200);
115
116
        lcd.createChar(0, MyChar0);
117
        lcd.createChar(1, MyChar1);
        lcd.createChar(2, MyChar2);
118
119
        lcd.createChar(3, MyChar3);
120
        lcd.createChar(4, MyChar4);
121
        lcd.createChar(5, MyChar5);
122
        lcd.begin(16, 2);
123
124
        Serial.begin(19200);
125 1
126
127 void loop()
128 (
129
        double percent;
130
        float voltage:
131
        byte highbyte, lowbyte, crc;
132
        int adc_raw - adc_AVG(ADC_CHANNEL);
133
134
        voltage = (5.0 / 1024.0) * adc_raw;
135
136
        lcd.setCursor(0, 0);
```

137	lcd.print(voltage, 2);
138	<pre>lcd.print(" V ");</pre>
139	
140	percent - voltage / 5.0 * 100.0;
141	draw_bargraph(percent);
142	
143	Serial.flush();
144	highbyte=adc_raw/256;
145	lowbyte=adc_raw%256;
146	Serial.write(highbyte);
147	Serial.write(lowbyte);
148	crc-170^highbyte^lowbyte;
149	Serial.write(crc);
150	
151	delay(20);
152]

Comport			
COM20		Correct	Disconnect
1	2 -	7/	V
_	,,,	-+	v

VB.NET program v delovanju.

Da zaženete računalniški program, morate zagnati EXE datoteko v mapi ...\VOLTMETER\vb.net\bin\Release. Nato izberete Comport (vhod), ki je enak tistemu, ki ste ga že nastavili v Arduino[™]-IDE za prenos programa. Če kliknete Connect, bo prikazana napetost v računalniškem programu.

VB.NET program je priložen kot izvorna koda in je lahko uporabljen kot osnova za vaše poskuse. Zato si morate naložiti brezplačen Visual-Basic-Express-Version podjetja Microsoft. Najdete ga na <u>https://www.visualstudio.com/downloads/download-visual-studio-vs</u>. Ko odprete program z Visual Basic, boste videli izvorno kodo in oblikovalca. Oblikovalec izpiše vizualne nadzorne elemente kot so tipke, tekstovna polja itd. Sedaj si poglejte izvorno kodo programa Voltmeter s preklopom na pogled za izvorno kodo.

```
001 Imports System.IO.Ports.SerialPort
002 Imports System.Text.Encoding
```

Najprej bomo uvozili funkcije potrebne za serijski vmesnik in kodiranje. Brez uvoza Encoding knjižnice ne bo mogoča ocena vrednosti ki presegajo 128, ker ne moremo preklopiti vmesnika na UTF-8 format. Izmerjeni rezultati bodo napačni.

```
001 Dim input_data(10) As Byte
```

input_data(10) je uporabljena za nastavitev Arraya ki lahko vzame do 10 bajtov. Prejeti bajti iz serijskega vmesnika bodo vpisani kasneje.

```
001 Private Sub Form1_Load(ByVal sender As System.Object.
ByVal e As System.EventArgs) Handles MyBase.Load
```

V funkciji Form1_load() bodo poiskani trenutni računalniški vhodi (Comport). Zapisani so v posebnem seznamu. Funkcija Form1_Load() bo samodejno klicana ob zagonu program, podobno kot Setup() funkcija v Arduino[™] programu.

001 Private Sub Button_Connect_Click(ByVal sender As System. Object, ByVal e As System.EventArgs) Handles Button_Connect.Click

V funkciji Button_Connect_Click() lahko nastavite in odprete serijske vmesnike istočasno. Ta funkcija je klicana ko pritisnete tipko Connect.

```
001 SerialPort1.PortName = ComboBox_Comport.Text
002 SerialPort1.BaudRate = 19200
003 SerialPort1.Encoding = System.Text.Encoding.UTF8
004 SerialPort1.Open()
```

Tukaj določimo Comport, Baud hitrost in Encoding (kodiranje) ter odpremo vmesnik z SerialPort1.Open(), ki bo pripravljen za prenos in prejemanje.

```
001 Private Sub Button_Disconnect_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button_Disconnect.Click
```

Funkcija Button_Disconnect_Click() zapre vmesnik. Sedaj je na voljo tudi drugim programom, kot je Arduino[™]-IDE. Če želite prenesti spremembe v programu ali druge programe na Arduino[™] ploščo, morate prekiniti program ali klikniti Disconnect, da znova sprostite vmesnik.

001	Private	Sub	SerialPort1_DataReceived(sender As Object
	, е	As S	System.IO.Ports.SerialDataReceivedEventArgs)
	Hand	dles	SerialPort1.DataReceived
002			
003		Dim	cnt As Byte
004		Dim	in_bytes As Byte
005		Dim	HighByte As Byte
006		Dim	LowByte As Byte
007		Dim	crc As Byte
008		Dim	crc_ok As Byte
009		Dim	data_Word As Integer
010		Dim	voltage As Single
011			
012		Try	
013			
014			' Hier werden die Daten empfangen
015			If SerialPort1.IsOpen Then
016			
017			Control.CheckForIllegalCrossThreadCalls
			= False
018			
019			' wie viele Bytes sind im Puffer
020			in_bytes = SerialPort1.BytesToRead
021			
022			' Alle Bytes holen
023			For cnt - 1 To (in_bytes)
024			input_data(cnt) - SerialPort1.ReadByte
025			Next
026			
027			' Puffer leeren
028			SerialPort1.DiscardInBuffer()
029			
030			HighByte = input_data(1)
031			LowByte - input_data(2)
032			crc = input_data(3)
033			
034			' Checksumme
035			<pre>crc_ok = 170 Xor input_data(1) Xor input_</pre>

	data(2)
036	
037	If crc = crc_ok Then
038	
039	' High und Low Byte wieder
	zusammensetzen
040	<pre>data_Word = ((HighByte * 256) + LowByte)</pre>
041	voltage = data_Word * (5.0 / 1024.0)
042	
043	' RAW Wert umrechen und als Spannung Anzeigen
044	Label1.Text - Format(voltage, "0.00 V")
045	
046	End If
047	
048	End If
049	
050	Catch ex As Exception
051	End Iry
052	
053	End Sub

V funkciji SerialPort1_DataReceived() bo sedaj sledil najbolj zanimiv del programa VB.NET. Ta funkcija bo klicana vsakič ko bodo prejeti podatki serijskega vmesnika. Tukaj preberemo bajte ki jih pošlje program Arduino[™] in jih takoj procesira. Pred branjem in procesiranjem vedno preverimo ali je povezava najprej odprta in nato preverimo koliko bajtov je na voljo v sprejemnem spominu. Nato preberemo bajte v input_data() in jim določimo prejete vrednosti spremenljivkam HighByte, LowByte in crc. Na koncu preverimo, če se izračunana in prejeta vsota ujemata, da ni prišlo do napake med prenosom. Sedaj izračunamo vrednost izmerjenih meritev. Da dobimo določeno obliko uporabimo funkcijo Format() v VB.NET in izpišemo urejeno vrednost v Label1.

16.1 Razširitev merilnega območja

Če želite meriti višje napetosti, potrebujete prenapetostni delivec, sestavljen iz upornika R1 in R2. Lahko ju uporabite za razširitev območja vhodne napetosti po želji. Vendar se bo ločljivost zmanjšala z večjim merilnim območjem.

V našem primeru, ki je namenjen za vhodno napetost 5 V, je ločljivost 0,00488 V ali 4,88 mV na pretvorbeni korak. Digitalna vrednost analognega vhoda lahko razreši 1024 korakov,ker ima digitalno ločljivost 10 bitov.

Koraki pretvorbe (koraki): $1024 = 2^{10}$ Ločljivost na število = U_{ADC}/koraki 5 V / 1024 = 0,00488 V = 4,88 mV

Če bi dvignili vhodno napetost razpona na 30 V, bi se ločljivost zmanjšala za petkrat ((30 V - 5 V) / 5 V = 5). Delali bi z ločljivostjo 0,0244 V = 24,4 mV.

Sedaj lahko določimo delivec napetosti za območje delovanja do 30 V. Kot že vemo hočemo razširiti vhodno območje iz 5 V na 30 V, kar ustreza faktorju 5. Vhodni signal za merjenje napetosti ne sme imeti prenizkih Ohmov in mora biti vsaj 100 k Ω . Sodobni voltmetri imajo, za primerjavo, vhodno upornost 10 M Ω , da dajo kar najmanj obremenitve na vir napetosti in da se izognejo napačnim rezultatom meritev.

Da bo vhodna upornost približno 100 k Ω določimo upornik R1 pri 100 k Ω . V serijskem vezju je razmerje napetosti enako razmerju upornikov med seboj. Upornik R2 mora biti le 1/5 tako veliko kot je upornik R1. Vzamemo 100 k Ω /5 in dobimo vrednost 20 k Ω za R2.

Sedaj določimo tok ki teče v vezju. V serijskem vezju je tok skozi upornik enak in napetosti bodo deljene. Tok skozi upornika je izračun sledeče:

 $I = U / R_{Total} \\ 30 \ V / 120 \ k\Omega = 0,25 \ mA$

Sledeč padec napetosti bo na R2: U = R2 x I 20 k Ω x 0,25 mA = 5 V

Pri uporabljeni napetosti 15 V bo vrednost ADC: 15 V / 120 k Ω = 0,125 mA 20 k Ω x 0,125 mA = 2,5 V

Izračunajmo izgubo moči skozi upornik pri maksimalni napetosti: P = U x I 30 V x 0,25 mA = 7.5 mW

Sedaj lahko izračunate vaš delivec napetosti in prilagodite merjeno vrednost v programu z pomnožitvijo z vašim faktorjem delivca napetosti. Meritvena napaka je lahko določena s poskušanjem z natančnim voltmetrom in je lahko nato vključena v izračun faktorja za pomnožitev. Opazujte vrednost upornika E-serije in ne poskusite vključiti matematično določenih vrednosti v vezju z uporabo E-serije ali zamenjave upornikov v seriji ali vzporedno, da bi dobili natančno izmerjeno vrednost.

Ta izračun ne upošteva vhodne upornosti ADC. V Arduino™-UNO ATmega328 znaša približno 100 kΩ.

Zato ne smete iti višje kot 100 k Ω z delivcem vhodne napetosti da dobite uporabne merilne rezultate. Za bolj natančne rezultate lahko naredite izračun za obremenjen delivec napetosti in vključite upor ADC in R2.

Upoštevajte tudi da se toleranca sešteva v serijskih vezjih. Če uporabljate upornik s 5 % toleranco za prikazano vezje, je skupna toleranca že 10 %.

Vrednosti E12-serije so se izkazale kot najboljše. Na voljo so v vsaki elektronski trgovini in so del standardne serije. Ko izdelujete merilnike morate paziti da je toleranca komponent čim nižja za natančnejšo meritev.

Nasvet

Sledeča povezava vas bo usmerila na spletno orodje za izračun delivcev napetosti: <u>http://www.peacesoftware.de/einigewerte/spannungsteiler.html</u>

17. Temperaturni zaslon v stopinjah Celzija in Fahrenheit

Ta poskus prikazuje kako lahko uporabite stroškovno učinkovit temperaturni upor kot NTC (negativni temperaturni koeficient termistor) ki je tukaj uporabljen za programiranje preprostega LCD termometra.

Sestavljanje NTC-LCD termometra. Povezava je podobna kot pri fotometru z razliko, da je namesto fotranzistorja uporabljen NTC.

NTC je upor ki spreminja svoj upor glede na temperaturo. NTC se imenuje vroč prevodnik. To pomeni, da se njegova upornost zmanjša, ko se temperatura poveča.

Diagram povezave NTC termometra.

Diagram vezja prikazuje to nastavitev podrobneje. To je še ena spremenljivka delilnika napetosti, ki sestoji iz 10 k Ω fiksnega upora in spremenljivega NTC-upora. Ko temperatura pade, se upornost NTC povečuje in tako tudi napetost na analognem vhodu A0.

Primer kode: LCD THERMO

001	// LCD-Library einbinden
002	<pre>#include <liquidcrystal.h></liquidcrystal.h></pre>
003	
004	// LCD-Pins festlegen
005	// RS, E, D4, D5, D6, D7
006	LiquidCrystal 1cd(11, 10, 2, 3, 4, 5);
007	
800	#define Backlight 9
009	#define ADC_NTC 0
010	
011	float temp_celsius, temp_fahrenheit;
012	Int ADC_raw;
013	
014	float Grad_to_Fahrenheit(float grad)
015	1
016	return (9.0 / 5.0) * grad + 32;
017	1
018	
019	void setup()
020	
021	analogWrite(Backlight, 200);
022	lcd.begin(16, 2);
023	<pre>lcd.setCursor(0, 0);</pre>
024	<pre>lcd.print("THERMO - ARDUINO");</pre>
025	Serial.begin(9600);
026	delay(2000):
027	(cu.clear();
028	1
029	
030	vold 100p()

```
031 (
032
        ADC_raw = analogRead(ADC_NTC):
033
        temp_celsius = (580.0 - ADC_raw) / 10:
        temp_fahrenheit = Grad_to_Fahrenheit(temp_celsius);
034
035
036
        lcd.setCursor(0, 0):
037
        lcd.print(temp_celsius, 1):
038
        lcd.write(223):
039
        lcd.print("C "):
040
041
        lcd.setCursor(0, 1);
042
        lcd.print(temp_fahrenheit, 1);
043
        lcd.write(223):
044
        lcd.print("F "):
045
046
        Serial.print("Temperatur = "):
047
        Serial.print(temp_celsius):
048
        Serial.print(" °C"):
049
050
        Serial.print(" | "):
051
        Serial.print(temp_fahrenheit);
052
        Serial.println(" °F"):
053
054
        delay(1000);
055 1
```

Krivulja upornosti NTC ni ravno linearna in zato jo je potrebno prilagoditi z izračunom.

001 temp_celsius = (580.0 - ADC_raw) / 10

Če želite prejeti prikaz, ne le v stopinjah Celzija, se bo vrednost pretvorila v stopinje Fahrenheita in prikazala na zaslonu.

```
001 float Grad_to_Fahrenheit(float grad)
002 |
003 return (9.0 / 5.0) * grad + 32:
004 )
```

Kot lahko vidite, lahko zapišemo izračune naenkrat po ukazu return in ni potrebno, da najprej predate spremenljivko. Ta funkcija izračuna vrednost v stopinjah Fahrenheit, kot se uporablja v ameriškem sistemu, ki pa temelji na stopinjah Celzija.

							Send	
Temperatur	-	25.40	Grad	1	77.72	Fahrenheit		
Temperatur	-	24.50	Grad	1	76.10	Fahrenheit		1
Temperatur	=	24.50	Grad	1	76.10	Fahrenheit		
Temperatur	-	24.50	Grad	1	76.10	Fahrenheit		
Temperatur	-	25.30	Grad	1	77.54	Fahrenheit		H
Temperatur	-	24.50	Grad	1	76.10	Fahrenheit		
Temperatur	-	24.60	Grad	1	76.28	Fahrenheit		
Temperatur	-	24.60	Grad	1	76.28	Fahrenheit		
Temperatur	-	25.30	Grad	1	77.54	Fahrenheit		۲
Temperatur	-	24.60	Grad	1	76.28	Fahrenheit		
Temperatur	-	24.50	Grad	1	76.10	Fahrenheit		

V tem programu je tudi uporabljen serijski vmesnik in enaka vrednost je prikazana na LCD in dodatno preko ASCII niza preko UART vmesnika.

Pri odpiranju notranjega terminalskega programa Arduino ™ in nastavitvi lastnega vmesnika za 9600 Baud, boste prejeli izmerjeno vrednosti v golo besedilo v terminalski program.

18. Ploter za temperaturo z USB vmesnikom

Razširimo termometer z VB.NET-programom in spremenimo programsko kodo, tako da se bo golo besedilo prikazano kot predhodnik programa nadomeščen le s pošiljanjem temperaturne vrednosti na računalnik. Vezje ostaja enako, vendar se program spremeni, kot sledi:

001	Serial.flush()	
002	highbyte=ADC_raw/256	
003	lowbyte=ADC_raw%256	
004	Serial.write(highbyte)	
005	Serial.write(lowbyte)	
006	crc=170^highbyte^lowbyte	
007	Serial.write(crc)	

Kot lahko vidite, smo prenesli vrednost temperature, kot so izmerjene vrednosti napetosti v digitalnem USB voltmetru. Tu lahko najdete celoten program na priloženem CD-ju. To se imenuje »TEMP_PLOT«. Programske kode ni potrebno našteti preko tega, saj ustreza predhodnemu programu.

Vendar so se nekatere stvari spremenile v VB.NET programu. Ta se je razširil z grafično močjo. Za to je bila programirana kontrola elementa z imenom »AutoRedraw«, ki riše neprekinjeno črto v X in Y smeri, odvisno od vhodne spremenljivke in služi kot temperaturni ploter. Ta program je priložen kot izvorna koda in se lahko uporablja za lastne poizkuse. Podroben opis funkcij za risanje pa bi presegel obseg tega učnega paketa. Uporabite lahko sorodne spletne strani, kot na primer <u>www.vb-paradise.de</u> in VB.NET priročnike, če želite izvedeti več o VB.NET programiranju.

Plotter			. 🖃 🗴
Schnittstelle			
COM20 *	Connect	Disconnect	
- Temperatur: 2	5,1 °C —		
++/-			 _

Temperaturni ploter v uporabi.

19. Ura Websynchronous

V tem učnem paketu smo že programirali uro. Ker to ni zelo natančna ura in ima zelo veliko odstopanje v okviru obratovalnega časa, bomo sedaj programirali uro Websynchronous, s poznavanjem serijskega prenosa podatkov med računalnikom in Arduino [™]. To je Websynchronous, ker je Windows čas kot privzeto samodejno usklajen s spletnim časovnim strežnikom v ozadju. V tem VB.NET programu bomo sedaj poslali čas računalnika na Arduino [™] in ga oddajali na LCD. VB.NET program je priložen kot izvršljiva EXE datoteka in kot izvorna koda.

Računalnik pošlje čas na Arduino™ ploščo.

Arduino[™] z natančnejšim prikazom časa.

Nalaganje

Poskus zahteva osnovno pisanje LCD, ki ste ga nastavili v testu funkcije.

Prin	ner kode: PC cas
001	// LCD-Library einbinden
002	<pre>#include <liquidcrystal.h></liquidcrystal.h></pre>
003	
004	// LCD-Pins festlegen
005	// RS, E, D4, D5, D6, D7
006	LiquidCrystal lcd(11, 10, 2, 3, 4, 5);
007	
008	#define Backlight 9
009	
010	byte Stunde, Minute, Sekunde;
011	
012	void setup()
013	1
014	Serial.begin(9600):
015	
016	analogWrite(Backlight, 200);
017	
018	lcd.begin(16, 2);
019	<pre>lcd.clear():</pre>
020	<pre>lcd.setCursor(0, 0);</pre>
021	<pre>lcd.print("ARDUINO PC-UHR");</pre>
022	
023	Stunde = 0;
024	Minute = 0:
025	Sekunde = 0;
026	1
027	
028	void loop()
029	1
030	
031	if(Serial.available()>3)
032	1
033	<pre>Stunde = Serial.read():</pre>
034	Minute = Serial.read():
035	Sekunde = Serial.read():
036	
037	<pre>lcd.setCursor(0, 1):</pre>
038	<pre>lcd.print("NOW: "):</pre>
039	
040	if(Stunde < 24)
041	1
042	if(Stunde < 10) lcd.print("0"):
043	lcd.print(Stunde):
044	<pre>lcd.print(":"):</pre>
045	
046	if(Minute < 60)
047	
048	if(Minute < 10) lcd.print("0").
049	lcd.print(Minute):
050	lcd.print(":"):
051	1
the loss of the	

Osnovna struktura programa ustreza točnemu času (RTC - Real Time Clock), ki smo se ga že naučili na začetku učnega paketa.

Tokrat nismo prejeli nobenih podatkov v VB.NET programu, ampak poslane podatke iz računalnika na Arduino [™]. Podatki ustrezajo uram, minutam in sekundam v obliki bajtov. Beremo jih z Arduino [™], ko je Serial.available () večji od tri. To je značilno da so trije bajti v teku v sprejemnem vmesnem pomnilniku. Uporabljamo Serial.read () za sistematično branje v treh bajtih ki prihajajo in jih dodelijo Arduinu [™] spremenljivke za ure, minute in sekunde. Tako je na strani Arduino [™]. Poglejmo si funkcijo prenosa v programu VB.NET. Za to smo uporabili časovnik nastavljen na 500 ms.

001	Priva	ite	Sub	Timer1_Tick(sender As System.Object. e As System.EventArgs) Handles Timer1.Tick
002				
003			If S	SerialPort1.IsOpen Then
004				
005				SerialPort1.Write(Chr(Now.Hour) & Chr(Now.
4				Minute) & Chr(Now.Second))
006				Labell.Text = Now.Hour & ":" & Now.Minute &
j.				":" & Now.Second
007				
008			End	If
009	End S	Sub		

Časovnik lahko nastavite tudi na 1000 ms. Možno je tudi, da bo drugi izhod poskočil na LCD ker se podatki prekrivajo. Bolje je, da nastavite čas posodabljanja malo hitreje ali pa samo do polovice, da bi prikaz bil videti bolj tekoče.

V funkciji VB.NET-timer se preverjanje opravi pred dejanskim prikazom za varnostne namene, da se ugotovi ali se serijska povezava odpre. Če se to zgodi bo uporabljen SerialPort1.Write () za prenos časovnih podatkov. Za to smo uporabili funkcijo Now ().Vsebuje čas in datum in se lahko naroči s parametri uro, minuto in sekundo, za prikaz samo želenih mest. Za pretvorbo vrednosti za prenos bajtov bo vsaka vrednost, ki se pretvori z Char(), en bajt.

Naša PC ura sedaj kaže točen čas na LCD.

20. Dodatek

20. 1 Merske enote za elektriko

Razlikujemo med napetostjo, tokom, uporom in enotami, v katerih so izmerjene vrednosti (npr. Volt ali Amper). Vsaka merska enota ima kratico, ki jo uporabljamo v enačbah. Kratice omogočajo kratek in dobro strukturiran zapis.

Namesto toka, ki je 1 Amper pišemo samo I = 1 A.

Te kratice so uporabljene v vseh enačbah v tem priročniku.

Vrednost	Kratica	Enota	Kratica
Napetost	U	Volt	V
Tok	1	Amper	А
Upor	R	Ohm	Ω
Moč	р	Watt	W
Frekvenca	f	Hertz	Hz
Čas	t	sekunda	S
Valovna dolžina	Λ (Lambda)	meter	m
Induktivnost	L	Henry	Н
Kapaciteta	С	Farad	F
Ploščina	Α	kvadratni meter	m ²

20. 2 ASCII tabela

Znak	Decimalka	Heksadecimalka	Binarno	Opis
NUL	000	000	00000000	Ničti znak
SOH	001	001	0000001	Začetek v glavi
STX	002	002	00000010	Začetek teksta
ETX	003	003	00000011	Konec teksta
EOT	004	004	00000100	Konec prenosa
ENQ	005	005	00000101	Poizvedba
ACK	006	006	00000110	Odgovor
BEL	007	007	00000111	Zvonec
BS	008	008	00001000	Vračalka
HAT	009	009	00001001	Vodoraven TAB
LF	010	00A	00001010	Dovod
VT	011	00B	00001011	Navpični TAB
FF	012	00C	00001100	Vnos oblike
CR	013	00D	00001101	Vračalka
SO	014	00E	00001110	Pomik ven
SI	015	00F	00001111	Pomik notri
DLE	016	010	00010000	Povezava za podatkovni izhod
DC1	017	011	00010001	Nadzor nad napravo 1
DC2	018	012	00010010	Nadzor nad napravo 2
DC 3	019	013	00010011	Nadzor nad napravo 3
DC4	020	014	00010100	Nadzor nad napravo 4
NAK	021	015	00010101	Negativni odgovor
SYN	022	016	00010110	Sinhron prosti tek
ETB	023	017	00010111	Konec prenosnega bloka
CAN	024	018	00011000	Prekiniti
EM	025	019	00011001	Konec medija
SUB	026	01A	00011010	Zamenjava
ESC	027	01B	00011011	Izhod
FS	028	01C	00011100	Izločevalec datotek
GS	029	01D	00011101	Izločevalec skupin
RS	030	01E	00011110	Prošnja za pošiljanje,
				izločevalec snemanja
US	031	01F	00011111	Izločevalec enot
SP	032	020	00100000	Presledek
!	033	021	00100001	Klicaj
~	034	022	00100010	Dvojni narekovaj

#	035	023	00100011	Znak za števila
\$	036	024	00100100	Dolar znak
%	037	025	00100101	Procent
&	038	026	00100110	Ampersand
6	039	027	00100111	Enojni narekovaj
(040	028	00101000	Levi odprti oklepaj
)	041	029	00101001	Desno odprti oklepaj
*	042	02A	00101010	Zvezdica
+	043	02B	00101011	Plus
	044	02C	00101100	Veiica
-	045	02D	00101101	Minus ali pomišliaj
	046	O2E	00101110	Pika
/	047	O2F	00101111	Poševnica
0	048	030	00110000	
1	049	031	00110001	
2	050	032	00110010	
3	051	033	00110011	
4	052	034	00110100	
5	053	035	00110101	
6	054	036	00110110	
7	055	037	00110111	
8	056	038	00111000	
9	057	039	00111001	
•	058	O3A	00111010	Dvopičie
•	059	O3B	00111011	Podpičje
,	060	030	00111100	Mani kot
=	061	O3D	00111101	Enako
>	062	O3E	00111110	Več kot
?	063	O3F	00111111	Vprašai
@	064	040	01000000	@ znak
A	065	041	01000001	
В	066	042	01000010	
С	067	043	01000011	
D	068	044	01000100	
Е	069	045	01000101	
F	070	046	01000110	
G	071	047	01000111	
Н	072	048	01001000	
1	073	049	01001001	
K	075	04B	01001011	
L	076	04C	01001100	
М	077	04D	01001101	
Ν	078	04E	01001110	
0	079	04F	01001111	
Р	080	050	01010000	
Q	081	051	01010001	
R	082	052	01010010	
S	083	053	01010011	
Т	084	054	01010100	
U	085	055	01010101	
V	086	056	01010110	
W	087	057	01010111	
Х	088	058	01011000	
Y	089	059	01011001	
-----	-----	-----	----------	----------------------
Z	090	05A	01011010	
[091	05B	01011011	Levi zaprti oklepaj
Ň	092	05C	01011100	Leva poševnica
]	093	05D	01011101	Levi zaprti oklepaj
^	094	05E	01011110	Strešica
	095	05F	01011111	Podčrtaj
``	096	060	01100000	
а	097	061	01100001	
b	098	062	01100010	
С	099	063	01100011	
d	100	064	01100100	
е	101	065	01100101	
f	102	066	01100110	
g	103	067	01100111	
h	104	068	01101000	
i	105	069	01101001	
j	106	06A	01101010	
k	107	06B	01101011	
1	108	06C	01101100	
m	109	06D	01101101	
n	110	06E	01101110	
0	111	06F	01101111	
р	112	070	01110000	
q	113	071	01110001	
r	114	072	01110010	
S	115	073	01110011	
t	116	074	01110100	
u	117	075	01110101	
V	118	076	01110110	
W	119	077	01110111	
х	120	078	01111000	
у	121	079	01111001	
Z	122	07A	01111010	
{	123	07B	01111011	Levi odprti oklepaj
	124	07C	01111100	Ravna črta
}	125	07D	01111101	Desni odprti oklepaj
~	126	07E	01111110	Tilda
DEL	127	07F	01111111	Brisanje

21. Vir naročanja

Conrad Electronic SE Klaus-Conrad-Straße 1 92240 Hirschau www.conrad.de Electronic Assembly GmbH Zeppelinstraße 19 82205 Gilching bei München www.lcd-module.de

GARANCIJSKI LIST

Izdelek: Učni paket Conrad Components Arduino[™] razumeti in uporabljati 10174 od 14. leta starosti naprej **Kat. št.:** 138 41 45 Conrad Electronic d.o.o. k.d. Ljubljanska c. 66, 1290 Grosuplje Fax: 01/78 11 250, Tel: 01/78 11 248 www.conrad.si, info@conrad.si

Garancijska izjava:

Proizvajalec jamči za kakovost oziroma brezhibno delovanje v garancijskem roku, ki začne teči z izročitvijo blaga potrošniku. Garancija velja na območju Republike Slovenije. Garancija za izdelek je 1 leto.

Izdelek, ki bo poslan v reklamacijo, vam bomo najkasneje v skupnem roku 45 dni vrnili popravljenega ali ga zamenjali z enakim novim in brezhibnim izdelkom. Okvare zaradi neupoštevanja priloženih navodil, nepravilne uporabe, malomarnega ravnanja z izdelkom in mehanske poškodbe so izvzete iz garancijskih pogojev. **Garancija ne izključuje pravic potrošnika, ki izhajajo iz odgovornosti prodajalca za napake na blagu**.

Vzdrževanje, nadomestne dele in priklopne aparate proizvajalec zagotavlja še 3 leta po preteku garancije.

Servisiranje izvaja proizvajalec sam na sedežu firme CONRAD ELECTRONIC SE, Klaus-Conrad-Strasse 1, Nemčija.

Pokvarjen izdelek pošljete na naslov: Conrad Electronic d.o.o. k.d., Ljubljanska cesta 66, 1290 Grosuplje, skupaj <u>z izpolnjenim garancijskim listom</u>.

Prodajalec:

Datum izročitve blaga in žig prodajalca:

Garancija velja od dneva izročitve izdelka, kar kupec dokaže s priloženim, pravilno izpolnjenim garancijskim listom.